Polarization detection in deep-ultraviolet light with monoclinic gallium oxide nanobelts†
Abstract
Detection of polarization in deep-ultraviolet (DUV) wavelength is of great importance, especially in secure UV communication. In this paper, we report DUV polarization detectors based on ultra-wide bandgap β-Ga2O3 nanobelts, which belong to a monoclinic system with a strong anisotropic lattice structure. Single-crystalline β-Ga2O3 nanobelts are synthesized at high-temperature via chemical vapor deposition (CVD). Crystallographic investigation is performed to determine the crystal orientation of the nanobelts, by the combination of selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HRTEM), crystal modeling and diffraction simulation. The photoresponse to unpolarized DUV light shows a high responsivity of 335 A W−1 and high sensitivity even to a low illumination power of pW. Strong anisotropy in responsivity and response speed, depending on incident light polarization, is observed. The underlying mechanism is attributed to the combination of internal dichroism and 1D morphology, as indicated by the DFT calculation and FDTD simulation. This work shows a way of DUV polarization detection using CVD grown Ga2O3 nanobelts, which could broaden the investigation of the Ga2O3 material and DUV photodetection.
- This article is part of the themed collection: Welcome to the community