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etching of MXenes: mechanism,
challenges and future outlooks

Shaista Nouseen ab and Martin Pumera *abc

Transition metal carbides, nitrides and carbonitrides, commonly known as MXenes, are an astonishing class

of two-dimensional materials, offering versatile surface chemistry, high electrical conductivity, tunable

band gaps, and a unique layered morphology, which render them highly attractive for multiple

applications ranging from energy storage and conversion to biomedical fields. However, recognising the

true potential of MXenes demands precise regulation over their fabrication process and surface

functionalization. Traditional MXene fabrication relies on HF acid and fluoride-based etching agents,

which pose environmental and safety concerns, subsequently introduce defects and alter surface

properties. Consequently, innovative fluoride-free strategies are garnering attention. This review focuses

on the eco-friendly electrochemical etching strategy for MXene synthesis, which enriches the MXene

surface with a variety of surface terminal groups, such as –O, –OH, and –Cl, varying the electrolyte and

etching parameters including their cutting-edge advancements compared to the conventional strategy,

highlighting the innovations, challenges, and future outlooks in MXene electrochemical synthesis.
1. Introduction

Two-dimensional (2D) materials have emerged as an intriguing
and groundbreaking class of materials that redene the limits
of conventional materials science.1–10 There are diverse types of
2D materials such as transition metal dichalcogenides
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(TMDs),11 hexagonal boron nitrides,12–14 graphene,15–22

phosphorene,23–25 layered double hydroxides (LDHs)26,27 and
transition metal carbides (MXenes).28–37 Among other 2D
materials, transition metal carbides, commonly known as MX-
enes, are exceptional 2D materials due to their unique struc-
tural morphology, electrical conductivity, larger surface area,
tunable band gaps, versatile surface chemistry, and mechanical
robustness.38–50

MXenes were introduced in 2011 at Drexel University51 and
since then MXenes have been explored for a diverse range of
applications, including energy storage,52–56 like
supercapacitors,57–62 conversion,63–67 sensing,68 electromagnetic
interference shielding,69–71 catalysis,72–74 and in the biomedical
eld75,76 (Fig. 1). As the MXene-based electrodes demonstrate
few advantages compared to the conventional carbon-based
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Fig. 1 The MXene properties, multiple applications and wide-ranging applications. MXene structure. Reproduced with permission.172 Copyright
2021, Wiley-VCH.

Fig. 2 (A) The illustration of the chemical formula and structure of the MAX phases and their corresponding MXenes. Reproducedwith permission.78

Copyright 2014, Wiley-VCH. (B) The fabrication process of MXene from the corresponding MAX phase via HF treatment. Reproduced with
permission.79 Copyright 2012, American Chemical Society. (C) Graphic illustration of the synthesis procedure of the MAX phase and the corre-
sponding MXene. (i) Fabrication of the MAX phase through the reactive pressure-less sintering. (ii) MAX phase fabrication process variables employed
in this process. (iii) HCl washing to remove intermetallic impurities. (iv) Pre-etch cleaning of the fabricated MAX phase with HCl by varying the time
duration and temperature conditions. (v) The eradication of the aluminium layer from theMAX phase through selective etching. (vi) The etching agent
HF–HCl is employed to etch theMAX phase. (vii) Delamination stage to convert the etchedmultilayered powder into the single-flakeMXene. (viii) The
delamination variables for the fabrication of the acquired MXene. Reproduced under the terms of the CC-BY license.80 Copyright 2023, Wiley-VCH.
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materials due to their superior conductivity, higher capacitance,
and higher energy density, which arise from their unique
structure and the ability to combine both electrochemical
double layer capacitance (EDLC) and pseudocapacitance,
making MXenes ideal for high-performance supercapacitors
and energy storage devices.54,60–62,77

MXenes are fabricated from their parent ternary layered MAX
phases78 (Fig. 2A). Conventionally, hydrouoric acid (HF)/HF-
based compounds are used to remove the aluminium metal
layer from the parent MAX phase79 (Fig. 2B). Recently, Thakur et al.
reported the step-by-step fabrication process of MXene,80 as shown
in Fig. 2C. The MXene chemical structure is composed of Mn+1-
XnTx, whereM refers to the number of layers of transitionmetals (n
= 1, 2, 3, or 4), X is represented by carbon and/or nitrogen and Tx is
represented by different surface functional groups such as –Cl, –F,
–OH, and –O.81–83 To date, theoretical studies indicate the possi-
bility of different stoichiometric MXenes, and with current prog-
ress in the MXene research, the compositions will expand in
future.84–101 MXene family consists of a broad range of promising
components, including V2CTx, Nb2CTx, Mo2CTx, Ti2CTx,
etc.84,85,102–109 To date, the most investigated MXene for multiple
applications in the eld of batteries,110–112 supercapacitors,113–120

electro-photo-catalysis,121–123 biosensing,49 and drug delivery124

among others is titanium-based MXene, i.e., Ti3C2Tx.106,125

However, the main approach for fabricating MXenes is
employing HF acid or HF-based compounds as etching agents.
The major challenges encountered by employing HF as the
etching agent are: (i) the introduction of –F terminal groups on
the surface of MXene, which could negatively affect the conduc-
tivity and have a detrimental inuence on applications such as
batteries and supercapacitors.126–128 (ii) Health hazards for
humans occur due to the formation of corrosive and poisonous
HF production, as uoride ions are highly reactive, and extended
exposure can easily result in the penetration of uoride ions into
the human body tissue and initiate fatal damage to tissues and
organs.129–133 (iii) The handling of HF requires special personal
protective equipment (PPE).129–133 (iv) The ecological effects due to
the formation of corrosive HF are catastrophic for the
environment.130–133 Thus, the requirement to substitute the HF-
based compounds for the synthesis of MXene is signicant with
the non-hazardous, sustainable, and eco-friendly strategies.134–136

The MXene synthesis journey began with the revolutionary
fabrication of Ti3C2Tx (MXene) using the traditional method,
which involves employing HF as an etching agent to etch A layers
from their parent MAX phases. Subsequently, in 2014, the
mixture of hydrochloric acid (HCl) + lithium uoride (LiF)137 and
later bi-uoride salts such as NaHF2, NH4HF2, KHF2, NH4F, etc.
were employed as etching agents to synthesise MXene, which
showcased innovative possibilities.101,138–143 Moreover, several
uorine-free approaches were explored for MXene fabrication,
including the chemical vapour deposition (CVD) method144 and
the electrochemical etching method;145–151 Jawaid et al. reported
a halogen etching method to etch the MAX phases to fabricate
corresponding MXenes152 (Fig. 3A); Wang et al. reported a HCl-
assisted hydrothermal etching approach to fabricate MXenes153

(Fig. 3B); Wang et al. proposed a low-temperature molten-salt
(LTMS) etching approach for the fabrication of Ti3C2Tx
This journal is © The Royal Society of Chemistry 2025
employing NH4HF2 as the etching agent154 (Fig. 3C). Further-
more, triuoromethanesulfonic acid solution was also employed
to synthesise MXenes (Ti3C2Tx)155 (Fig. 3D).

Other routes to fabricate MXenes without HF were explored
employing HF-free solutions. For example, Shi et al. reported an
ambient stable iodine-assisted etching method to formulate
MXenes156 (Fig. 4A); Li et al. proposed the fabrication of high-
purity MXenes through alkali treatment. They etched the MAX
phase Ti3AlC2 with NaOH in the water solution by varying the
etching parameters and etching conditions for the synthesis of
uoride-free-terminated MXene Ti3C2 (ref. 157) (Fig. 4B). Liang
et al. proposed a photo-Fenton approach to fabricateMXenes and
compared it to the conventional MXene fabrication process,158 as
shown in Fig. 4C. Several other HF-free routes were reported,
including Lewis acid molten salt etching,159–162 hydrothermal
etching,163 UV-induced selective etching,164 ball-milling,165

halogen etching (Br2, I2, ICl, IBr, etc.),152 thermal reduction
etching,81 large-scale fabrication of MXene through supercritical
etching,166 and microwave-assisted etching approaches.167

Additionally, severalMXene hybrid structure formulations were
reported using an HF-free based MXene fabrication route,
including the fabrication ofMXene–copper/cobalt hybrids through
the Lewis acidic molten salt etching for excellent energy storage
applications in symmetric supercapacitor devices,168 as illustrated
in Fig. 5A. In addition, Huang et al. proposed the fabrication of
MXene/transition metal sulde (Ti3C2Tx/MSy) heterostructures
with interfacial electronic coupling employing a molten salt
etching approach. The fabricated Ti3C2Tx/MSy heterostructures
were used for sodium storage applications169 (Fig. 5B). Xuan et al.
proposed the intercalation and delamination technique forMXene
fabrication by treating the Ti3AlC2 MAX phase with the organic
base tetramethylammonium hydroxide (TMAOH) solution
(Fig. 5C), which leads to the formation of Al(OH)4

−-modied and
TMA+-intercalated MXene. The acquired MXene exhibited high
NIR absorption. Thus, they were utilised as the photothermal
agent against tumour cells.129 Different types of HF-free etching
routes for MXene fabrication, technique, etching agent, terminal
groups and their applications are outlined in Table 1.

Among different uoride-free etching strategies, electro-
chemical etching is garnering signicant research attention due
to several benets such as (i) rapid and selective MXene fabri-
cation with tunable morphology through electrochemical
etching of A layers.170 (ii) A straightforward delamination can be
achieved with just sonication in electrochemical capacitors,
eliminating the need for multiple steps typically required in the
conventional etching method.171 (iii) Electrochemical etching of
MXene with controlled surface termination, which results in
improved electrochemical performance.172 (iv) Green, sustain-
able, eco-friendly and less hazardous approach compared to
HF-based fabrication of MXenes.172,173 In summary, the main
aim of this review is to provide a comprehensive study of the
electrochemical etching of MXenes, including an in-depth study
to understand the mechanisms and process to selectively
remove A layers. Additionally, different transition metal-based
MXenes like Ti, Nb, V, and Mo prepared by the electro-
chemical etching process are discussed. This review article
highlights the various advantages of electrochemical etching,
J. Mater. Chem. A, 2025, 13, 34055–34084 | 34057
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Fig. 3 (A) Schematic illustration of the halogen etching route of the MAX phase to fabricate MXenes. (i) A general procedure of etching, puri-
fication, delamination and separation for the creation of halogen-terminatedMXenes. (ii) The addition of Br2 to Ti3AlC2 in anhydrous cyclohexane
produces a deep red solution. (iii) When bromine (Br2) reacts with the MAX phase aluminium interlayer, the supernatant solution converts into
a pale-yellow coloured solution, indicating the exhaustion of Br2 in the solution and the creation of the AlBr3 species. AlBr3 species are rendered
inert due to the presence of tetrabutylammonium bromide (TBAX), which acts as the stabiliser. (iv) Subsequently, purification of the MXene crude
through continual redispersion in the CHCl3 nonpolar solvent. (v) The purified MXene is achieved through dispersion and centrifugation in the
THF solvent. Reproduced with permission.152 Copyright 2021, American Chemical Society. (B) The HF-free Mo2CTx MXene was fabricated by
employing the HCl-assisted hydrothermal etching approach. Reproduced with permission.153 Copyright 2021, Wiley-VCH. (C) Diagrammatic
representation of the LTMS etching approach to produce the MXene Ti3C2Tx employing the NH4HF2-LTMS etching method. Reproduced with
permission154 Copyright 2024, Wiley-VCH. (D) Visual representation of the synthesis method of MXene Ti3C2Tx from the corresponding MAX
phase employing the trifluoromethanesulfonic acid solution. Reproduced with permission.155 Copyright 2024, Wiley-VCH.
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Fig. 4 (A) Schematic illustration of the fabrication and delamination route of the MXene employing iodine-assisted etching. Reproduced with
permission.156 Copyright 2021. Wiley-VCH, under Creative Commons Attribution-NonCommercial-No Derivatives License. (B) Schematic
illustration of the fabrication of MXene and the reactionmechanism of etching theMAX phase with NaOH in the water solution by varying etching
parameters and conditions. Reproduced with permission.157 Copyright 2018, Wiley-VCH. (C) Visual illustration of the synthesis of fluoride-
terminated MXene Ti3C2 through a traditional approach and a graphic model of P. F. approach for the creation of F-free Ti3C2 and their
application for the flexible lithium–sulfur batteries, along with the diagrammatic representation of the Fe(III)-oxalato P. F. reaction approach.
Reproduced with permission.158 Copyright 2022, American Chemical Society.

This journal is © The Royal Society of Chemistry 2025 J. Mater. Chem. A, 2025, 13, 34055–34084 | 34059
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Fig. 5 (A) Schematic illustration of MXene hybrid formulation of Ti3C2–Cu/Co. Reproduced with permission.168 Copyright 2021 Wiley-VCH. (B) A
graphic visual of the fabrication procedure of the Ti3C2Tx/MSy heterostructures. Reproduced with permission.169 Copyright 2022, Wiley-VCH. (C)
Graphic demonstration of the intercalation and delamination method for MXene using TMAOH. Reproduced with permission.129 Copyright 2016,
Wiley-VCH.
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such as sustainability, cost-effectiveness, and environmental
friendliness, compared to the conventional uoride-based
strategies. The innovations, trends, obstacles, and future
perspectives in the electrochemical etching of MXene fabrica-
tion are briey discussed (Fig. 6).
2. Mechanism of electrochemical
etching

The electrochemical etching approach enables modication of
the MXene properties and generates desired patterns/structures
34060 | J. Mater. Chem. A, 2025, 13, 34055–34084
on the MXene surface.192–196 In this approach, MXenes can be
synthesised using the corresponding MAX phase as an electrode
by selectively etching A layers under a certain applied voltage.
Lukatskaya et al. employed an electrochemical etching
approach using different electrolytic solutions like 5 wt% NaCl,
10 wt% HCl, and 5 wt% HF and MAX as the precursor to
fabricate carbon-derived carbon (CDC). They used three
different types of MAX phases—Ti3AlC2, Ti2AlC and Ti3SiC2.
They acquired cyclic voltammetry (CV) proles, as illustrated in
Fig. 7A. In this approach, a certain voltage is applied, which
This journal is © The Royal Society of Chemistry 2025
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Fig. 6 The outline of the review article.
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facilitates the disruption of the M–A bonds in the MAX phase
and initiates aluminium layer etching simultaneously.

However, when the voltage rises gradually, it eliminates the
transition metal (M) layers, producing amorphous carbon. In
summary, this report is crucial for the electrochemical etching
of MXene. As it conrms that the regulation of the voltage
window and time duration associated with the reaction
concerning M and A layers are crucial parameters to selectively
eliminate A layers and assist in effective MXene fabrication
without the removal of M layers.197 This method emphasises the
importance of the regulation of the etching parameters to
obtain optimum conditions for MXene fabrication. Moreover,
to better understand the signicance of the electrochemical
etching parameters, a summary of electrochemical etching
techniques, which includes different parameters like electro-
lytic solution, voltage window, time duration and temperature,
is provided in Table 2.

Sun et al. rst reported an electrochemical etching route to
fabricate Ti2C MXene using the Ti2AlC porous MAX phase
electrodes. In this approach, a controlled potential is provided
for the electrochemical etching using diluted aqueous hydro-
chloric acid (HCl) as an etching agent.198 The MAX phase Ti2AlC
was cut into pieces (0.7 × 3 × 0.1 cm3), and a copper wire was
attached to this MAX phase parallelepiped utilising a ash-dry
silver paint. To protect the lower part of the copper wire and
ash-dry silver paste, an epoxy paste was utilised. In a three-
electrode system, cyclic voltammetry proles were acquired,
34062 | J. Mater. Chem. A, 2025, 13, 34055–34084
providing the cycling rate at 20 mV s−1, where the MAX phase
parallelepiped acts as the working electrode, Pt foil acts as the
counter electrode and Ag/AgCl acts as the reference electrode.
Aer the electrochemical etching procedure, the MAX phase
electrodes were rinsed with deionised water to remove the
remaining aqueous HCl electrolytes on the electrode surface.

First, in the aqueous HCl electrolyte, the elimination of the
aluminium (Al) layers from the Ti2AlC electrodes occurs, which
results in the fabrication of the Ti2CTx MXene containing
several terminal functional groups like hydroxide (–OH), chlo-
ride (–Cl), and oxygen (–O). This reaction mechanism is very
similar to the chemical etching of the MAX to MXene using
traditional etching approaches, like using HF or LiF/HCl as the
etching agent. Subsequently, aer the successful elimination of
the Al metal from the MAX phase, the functional group –Cl is
attached to the surface of the fabricated MXene.198 The elimi-
nation of the Al layer on theMAX phase as the working electrode
is shown in eqn (1):

Ti2AlC + yCl− + (2x + z)H2O /

Ti2C(OH)2xClyOz + Al3+ + (x + z)H2 + (y + 3)e− (1)

Simultaneously, at the Pt counter electrode, the subsequent
reaction is shown in eqn (2):

Al3+ + 3e− / Al (2)
This journal is © The Royal Society of Chemistry 2025
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Fig. 7 (A) (i) Graphic demonstration of fabrication of the CDC from the MAX phase under room temperature conditions. Cyclic voltammograms
acquired in HF (triangles) and HCl (circles) when (ii) Ti3SiC2, (iii) Ti3AlC2, and (iv) Ti2AlC were employed as the anode. Reproduced with
permission.197 Copyright 2014, Wiley-VCH. (B) Anodic electrochemical etching of the bulk MAX phase Ti3AlC2 in the binary aqueous electrolyte
solution. (i) Diagrammatic illustration of the electrochemical etching and the delamination procedure. (ii) The electrochemical system employed
for the electrochemical etching. (iii) The acquired optical image of the as-received bulk MAX phase Ti3AlC2. (iv) Aqueous dispersion of the
delaminated MXene Ti3C2Tx. (v) X-ray diffraction curves of different MAX phases – Ti3AlC2, MXene–Ti3C2Tx, and Ti3C2Tx sheets. (vi and viii) SEM
micrographs of the MAX phases Ti3AlC2 and Ti3C2Tx. (vii and ix) Cross-sectional HR-TEMmicrographs of the MAX phase and MXenes Ti3AlC2 and
Ti3C2Tx, respectively. Reproduced with permission.199 Copyright 2018, Wiley-VCH.
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Aerwards, the outer layer of Ti2CTx MXene, i.e., Ti2C(OH)2x-
ClyOz, goes through additional electrochemical etching, where it is
converted into the carbon-derived-carbon (CDC) layer with the
functional groups like –O, –OH, and –Cl, owing to the concurrent
elimination of both Al and Ti layers. Thus, when Ti is also elimi-
nated, due to the over-etching procedure, it results in a core–shell
structure, and TiO2 is formed at the counter electrode (Pt), as
shown in eqn (3). The proposed reaction mechanism of the
electrochemical etching process is outlined as follows:

Ti4+ + 2H2O / TiO2 + 4H+ (3)

Subsequently, Yang et al. reported another HF-free etching
approach to electrochemically etch the MAX Ti3AlC2. This
approach is based on the anodic corrosion of the MAX phase
utilising a binary aqueous solution containing tetra-
methylammonium hydroxide (TMAOH) and ammonium chlo-
ride (NH4Cl) as electrolytes.199

Following they performed physical and morphological char-
acterisation to conrm the fabrication of MXene as illustrated in
Fig. 7B. According to the experimental study, the following
reaction mechanism is proposed:

Ti3AlC2 − 3e− + 3Cl− / Ti3C2 + AlCl3 (4)

Ti3C2 + 2OH− − 2e− / Ti3C2(OH)2 (5)

Ti3C2 + 2H2O / Ti3C2(OH)2 + H2 (6)

where eqn (4) plays a crucial role in the eradication of
aluminium metal from the MAX phase anode. Next, the –OH
terminal group is introduced on the MXene surface, as illus-
trated in eqn (5) and (6). Furthermore, the intercalation of
ammonium ions and the removal of the Al metal are taking
place concurrently. The following reaction mechanisms are
proposed in eqn (7) and (8). This HF-free electrochemical
etching results in the formation of mono- and bilayers of MX-
enes (Ti3C2Tx, T–OH, and –O) with a high yield of up to 90% and
sizes of up to 18.6 mm. The obtained MXene exhibited a volu-
metric capacitance of 439 F cm−3 and an areal capacitance of
220 mF cm−2 with a scan rate of 10 mV s−1 for all solid-state
supercapacitor applications.199 The synthesis of MXene via the
electrochemical etching approach opens avenues for more
sustainable and eco-friendly ways to fabricate different varieties
of MXenes with different terminal groups, resulting in
enhanced electrochemical performance.

AlCl3 + 3NH3 + 2H2O 4 AlO(OH) + 3NH4
+ + 3Cl− (7)

AlCl3 + 2OH− 4 AlO (OH) + H+ + 3Cl− (8)

3. Electrochemical etching of
Ti-based MXenes

The thermal electrochemical etching route was reported by
Pang et al. for the synthesis of Ti-based MXenes, and they
extended this method to other transition metal-based MXenes
This journal is © The Royal Society of Chemistry 2025
like Cr and V, calling it a universal method, using a three-
electrode system employing HCl as the electrolyte by varying
the temperature, time, and voltage parameters. The SEM
images are provided to conrm the successful etching of MAX to
MXene, varying different parameters (Fig. 8A). In this approach,
different MAX phases, such as Cr2AlC, Ti2AlC, and V2AlC, are
mixed separately with carbon black to fabricate the corre-
sponding 3D composite MXene electrodes.200 These electro-
chemically etched MXene electrodes doped with the cobalt ions
demonstrate a superior capability for catalysing multiple
electrochemical reactions, including the HER, OER, and zinc
ion batteries. In addition, Cao et al. fabricated electrochemically
etched MXene (Ti3C2) with –O/–OH and –F terminal groups
under room temperature conditions using 1 M NH4HF2
aqueous solution. They provided the following etching param-
eters, varying voltage and time as follows: 2.5 V for 2 h, 5 V for
2 h, and 7.5 V for 1.5 h, demonstrating that synthesised MXene
has a larger surface area and a narrow pore size distribution201

Another major challenge in MXene fabrication is to fabricate
MXene with different terminal groups. To resolve this issue, the
molten salt assisted electrochemical etching approach for
fabrication of a –Cl terminated MXene (Ti3C2Cl2) was reported
by Shen et al. In this approach, the terminal groups of MXene
are in situ modied from –Cl to –S and/or –O using different
inorganic salts, which leads to the shortening of the modica-
tion stages and additionally increases the different types of
terminal groups in MXenes (Fig. 8B). In this approach, Ti3AlC2

acts as the anode and nickel acts as the cathode in the LiCl–KCl
salt, and a voltage of 2.0 V is applied at 450 °C. However, the real
operational bias on the anode attained 0.365 (V vs. Ag/AgCl). At
this stage, the Al metal atoms from the MAX phase are selec-
tively oxidised and eliminated owing to the weaker Ti–Al bonds
in comparison to the Ti–C bonds. Subsequently, the oxidised Al
forms a bond with the Cl ions present in the electrolytic solu-
tion, forming AlCl3 because of their robust binding capabilities.

Additionally, at 450 °C, the evaporation of AlCl3 occurs,
initiating the driving force for the diffusion of Al outwards. As
this etching process is thermodynamically inuenced, the
applied potential plays a signicant role.172 The acquired O-
terminated MXene is an outstanding electrode for energy
storage applications (supercapacitor), demonstrating a capaci-
tance of 225 F g−1 at a current density of 1.0 A g−1 with a rate
performance of 91.1% at 10 A g−1 and an outstanding capaci-
tance retention of 100%. This synthesis process is considered
more sustainable because no acid waste is generated, and the
salt can be recycled. The reaction mechanisms for electro-
chemical etching are depicted below (eqn (9)–(12)):

Anode:

Ti3AlC2 + 3Cl− = AlCl3[ + Ti3C2 + 3e− (9)

Ti3C2 + 2Cl− = Ti3C2Cl2 + 2e− (10)

Cathode:

Li+(K)+ + e− = Li(K) (11)
J. Mater. Chem. A, 2025, 13, 34055–34084 | 34065
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Fig. 8 (A) Electrochemical etching reaction mechanism and structural conclusions of the MXene Ti2CTx. (i) Anticipated electrochemical etching
reaction mechanism route of the MAX phase Ti2AlC in the HCl electrolyte solution. SEMmicrographs of the MXene were obtained under varying
HCl, temperature, time and voltage electrochemical etching conditions. (ii) MAX Ti2AlC, (iii) 1 M/25 °C/9 h/0.3 V, (iv) 1 M/50 °C/3 h/0.3 V without
CB, (v) 1 M/50 °C/3 h/0.3 V, (vi) 1 M/50 °C/6 h/0.3 V, and (vii) 1 M/50 °C/9 h/0.3 V. Scale bars: 1 mm. Reproduced with permission.200 Copyright
2019, American Chemical Society. (B) Illustration of the fabrication process of MXene from the corresponding MAX phase through MS-
electrochemical etching, followed by the in situ modification of surface terminations. Reproduced with permission.172 Copyright 2021, Wiley-
VCH.
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Fig. 9 (A) Graphic visual of the production process of the MAX phase Ti2AlC and MXene E-Ti2CTx. (a) The graphic illustration of the setup
employed for the electrochemical etching. (b) The diagrammatic representation of the production of 1D and 2D Ti2AlC structures employing
CNTs and rGO as their carbon resources. (c) The Ti, Al, and C pellets were immersed in LiCl/KCl, followed by heating at 950 °C for 1 hour. (d) The
fabrication of the MAX phase Ti2AlC. (e) Following the electrochemical etching process at a voltage of 1.3 V for 24 hours to achieve the E-Ti2CClx
MXene. Reproduced with permission170 Copyright 2022, Wiley-VCH, under Creative Commons Attribution-NonCommercial License.78 (B) (a)
Diagrammatic representation of the production of MXene EE-Ti3C2Tx. (b) Images of MXene dispersion illustrating the Tyndall effect. (c) Images of
the MXene films. Reproduced with permission.203 Copyright 2022, American Chemical Society.
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Overall:

Ti3AlC2 + 5LiCl(KCl) = Ti3C2Cl2 + 5Li(K) + AlCl3[ (12)

Subsequently, Liu et al. reported a one-pot molten salt
electrochemical etching approach. A straightforward technique
This journal is © The Royal Society of Chemistry 2025
is to synthesise chlorine-terminated MXene (Ti2CClx) from its
precursor elements (Ti, Al, and C). This method signicantly
simplies the MXene synthesis procedure, where Ti and Al
micro-powders are reacted with the carbon nanotubes (CNTs)
and reduced graphene oxide (rGO), which serve as different
J. Mater. Chem. A, 2025, 13, 34055–34084 | 34067
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carbon sources. To fabricate the MAX (Ti2AlC) phase with
tunable morphologies like 1D and 2D structures (Fig. 9A),
concurrently, the MAX phase is converted into MXene utilising
an electrochemically etching method in a cost-effective LiCl–
KCl solution. The pseudocapacitive redox reaction of MXene
can be initiated with the introduction of an –O surface terminal
group and ammonium persulfate washing (APS), which can lead
to a better Li+ storage capacity of approximately up to 857 C g−1

(240 mAh g−1) with a high rate capability of 86 mAh g−1 at 120C,
thus generating promising anode materials for fast-charging
batteries for energy storage applications.170

The fabrication of MXenes with controlled uorine termi-
nation is another concern. In this context, Yin et al. introduced
synchronous uorination and mild-electrochemical exfoliation
of Ti3C2Fx MXene using RTIL [BMIM][PF6] as the –F source and
MeCN. This ionic liquid electrolyte offers a non-aqueous
etching environment to prevent MXene oxidation. The fabri-
cated MXene was uorinated utilising TiF3 and CF groups.
These groups were electrochemically reactive, and they
contributed to the electrochemical performance of the fabri-
cated Ti3C2Fx. This uorinated Ti3C2Fx anode exhibited excel-
lent cycling stability for lithium-ion battery applications,
demonstrating a charge capacity of 329 mAh g−1 (initially) at the
current density of 200 mA g−1. Following 500 cycles, the charge
capacity of 211 mAh g−1 was maintained. Moreover, in this
study, they demonstrated that the uorination of Ti3C2Fx can be
regulated through adjusting the fabrication conditions.202

The use of hazardous organic intercalant agents for the
delamination of MXene is a major issue. To resolve this issue,
Chen et al. reported a simplied route to fabricate Ti3C2 MXene,
without using any organic intercalant agent for delamination.
In this study, they reported electrochemical etching of the MAX
phase utilising a mixture of LiOH and LiCl aqueous solution to
Fig. 10 (a) Schematic illustration of the fabrication process and morph
Ti3C2Tx. (b) The three-electrode configuration was employed to acquire t
and elemental mapping analysis images, and (d) XRD patterns of MXe
American Chemical Society.

34068 | J. Mater. Chem. A, 2025, 13, 34055–34084
produce chlorine-terminated MXene, and later sonication was
used to delaminate the obtained MXene (Fig. 9B). The acquired
delaminated chlorine-terminated MXene ake sizes range from
∼3.9 nm to ∼3.8 mm in thickness and lateral size, respectively,
with the stability of up to 15 days, when dispersed in an aqueous
solution.203 Following that, a vacuum ltration technique was
utilised to fabricate MXene lms. The obtained ltrate MXene
lms were used for electrochemical energy storage applications,
i.e., supercapacitors and exhibited excellent capacitances of
323.7 F g−1, 1.39 F cm−2, and 1160 F cm−3, respectively, out-
performing the conventionally fabricated MXene. According to
the experimental results, the following equations are proposed
to illustrate the etching mechanism (eqn (13)–(15)):

Ti3AlC2 + 3Cl− + 3e− / Ti3C2 + AlCl3 (13)

Ti3C2 + xCl− + (2 − x)OH− − 2e− / Ti3C2Clx(OH)2−x (14)

AlCl3 + 2OH− / AlOOH + H+ + 3Cl− (15)

Additionally, the uoride (−F) terminal group of MXene
drastically impacts the charge transfer efficiency and hinders
ion access to MXene (Ti3C2). To overcome this obstacle, Qian
et al. introduced uoride termination-free Ti3C2Tx MXene
fabrication. In this study, to electrochemically etch the MAX
phase, a three-electrode setup was used employing the cyclic
voltammetry technique using 1 M NH4Cl and 0.2 M TMAOH as
the electrolyte.204 An exact potential range of−0.25 to 0.35 V was
applied at room temperature for 5 hours with constant stirring
of 300 rpm. During this process, an in situ alkaline electrolyte
was formed, destroying the Ti–Al bonds and aiding in the
formation of –AlO(OH) and –OH terminal groups on the surface
of Ti3C2Tx MXene (Fig. 10a and b). The SEM images, along with
the EDS mapping and XRD pattern, conrm the successful
ological structure of the fluoride-free electrochemical etched MXene
he CV scan for the MAX electrode with a scan rate of 20mV s−1, (c) SEM
ne and MAX phase. Reproduced with permission.204 Copyright 2023,

This journal is © The Royal Society of Chemistry 2025

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ta04176g


Fig. 11 Schematic illustration of the low-fluoride electrochemical etching fabrication of MXene along with the TEMmicrograph of delaminated
MXene and SEMmicrographs of MXene powder. Reproduced with permission.145 Copyright 2024, The Royal Society of Chemistry under Creative
Commons Attribution 3.0 Unported License.
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fabrication of MXene (Fig. 10c and d). The fabricated MXene
was employed for capacitive deionisation (CDI) device applica-
tion delivering an outstanding salt elimination capacity of 20.27
mg−1 with an adsorption rate of 1.01 mg g−1 min−1 because of
the improved ion transport capability and hydrophilicity of
etched Ti3C2Tx.

Additionally, Chan et al. reported low uoride electro-
chemical etching of two titanium-based MAX phases, Ti3AlC2

and Ti3AlCN, to formulate the corresponding MXene Ti3C2 and
Ti3CN employing HBF4 as the electrolyte solution. The electro-
chemical etching process occurs in a graphite crucible, where it
also acts as the current collector to the MAX phase powder and
a platinum (Pt) wire serves as the cathode electrode.145 In this
electrochemical etching procedure, no binder is required as the
etching of the MAX phases Ti3AlC2 and Ti3AlCN is possible in its
powder state, as all the MAX particles are settled down on the
graphite crucible at the time of the electrochemical etching
procedure (Fig. 11). The reaction mechanism is proposed as
follows for this electrochemical etching route (eqn (16)–(18)):

Anode:

Ti3AlC2(s) + 3BF4
−(aq.) /

Ti3C2(s) + Al3+(aq.) + 3F−(aq.) + BF3(g) + e− (16)

Cathode:

H+(aq.) + e− / 1/2H2(g) (17)

Overall:

Ti3AlC2(s) + 3HBF4(aq.) /

Ti3C2(s) + 3BF3(g) + AlF3(s) + 3/2H2(g) (18)

According to the reaction mechanism, during the electro-
chemical etching process, the selective anodic dissolution of
This journal is © The Royal Society of Chemistry 2025
the aluminiummetal occurs on the MAX phase Ti3AlC2 with the
tetrauoroborate ion. This electrochemical etching pathway
reduces the etching time. Thus, the release of the HF gas is
minimal. Furthermore, the electrochemically etched MXenes
are tested for the energy storage application for lithium-ion
batteries and demonstrate similar electrochemical perfor-
mance compared to the chemically etched MXene. Following
that, Zheng et al. reported electrochemical synthesis of TiC and
carbon-derived carbon using Ti3SiC2 in CaCl2 molten salt at 900
°C with potentials 2.5 V and 3.0 V, respectively, illustrating that
non-Al precursors can be employed to fabricate MXene using an
electrochemical etching strategy.207

Besides, novel techniques can be explored to synthesise
MXene via electrochemical etching; for example, based on our
previous work, we formulated a 3D-printed MAX/PLA electrode
and investigated its in situ electrochemical etching process to
convert into an electrochemically active 3DP-etched MAX elec-
trode. In this process, the electrodes were washed with distilled
water and used directly for electrochemical analysis, without
any separation from the polymer, which exhibits promising
electrochemical performance, highlighting the capability of
direct use of these electrodes for various applications, unlike
the traditional carbon-based electrodes, which require addi-
tional formulation steps and lack precision. However, several
challenges persist in obtaining large quantities of pure MXene,
as separation from polymer is a challenging process.37
4. Electrochemical etching of Nb, V,
Mo-based MXene

The most extensively studied MAX phase until now is the tita-
nium transition metal-based MAX phase. Thus, exploration of
other MAX phases and their corresponding MXenes is
becoming more prominent. In this context, Song et al. reported
J. Mater. Chem. A, 2025, 13, 34055–34084 | 34069
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an electrochemical etching technique to fabricate Nb2CTx

MXene using the Nb2AlC MAX phase as the precursor. The
electrochemical etching was performed in a three-electrode
setup utilising 0.5 M HCl as the electrolyte by providing
a voltage of under 1 V for 4 hours.205 The aluminium metal was
selectively etched via anodization at a temperature of 50 °C. The
electrochemical etching reaction mechanism for Nb2AlC is
proposed in eqn (19):

Nb2AlC + yCl− + (2x + z)H2O/

Nb2C(OH)2xClyOz + Al3+ + (x + z)H2[ + (y + 3)e− (19)
Fig. 12 (A) Graphic illustration of the electrochemical exfoliation and d
chemical etching method, followed by demonstrating the enzyme inh
etched MXene Nb2CTx/AChE biosensor. Reproduced with permission.205

for the electrochemical etching procedure of Mo2TiC2 MXene fabrication
is employed, where Pt foil or carbon cloth acts as the cathode electrode
by using an NH4Cl and LiOH mixture as the electrolyte. Reproduced wit

34070 | J. Mater. Chem. A, 2025, 13, 34055–34084
The synthesised electrochemically etched MXenes were
puried. The uoride-free Nb2CTx–acetylcholinesterase (AChE)-
based electrochemical biosensors were assembled for phosmet
detection. These fabricated materials provide a limit of detec-
tion of as low as 0.046 ng mL−1. This uoride-free electro-
chemically etched MXenes have advantages such as improved
electron transfer potential and better enzyme activity compared
to the traditional HF-based etched MXenes (Fig. 12A).

Additionally, Sheng et al. recently reported a sustainable
approach using two-electrode congurations to fabricate 3D
MXene electrodes from the precursor Mo2TiAlC2 MAX phase173
elamination routes for the MAX phase (Nb2AlC) through the electro-
ibition effect for phosmet detection employing an electrochemically
Copyright 2020, Wiley-VCH under CC-BY License. (B) A graphic visual
from their correspondingMAX phase. The two-electrode configuration
and Mo2TiAlC2 MAX phase block acts as the anode electrode, followed
h permission.173 Copyright 2023, Wiley-VCH.

This journal is © The Royal Society of Chemistry 2025
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(Fig. 12B). They employed a synergistic blend of cathodic elec-
trophoretic deposition and anodic electrochemical etching of
the Al layer from the corresponding MAX phase. This process is
less time-consuming compared to the conventional MXene
fabrication process, as the MXene (Mo2TiC2) was obtained
without the use of an ultrasound and large organic molecule
intercalation reagent treatment. Within few minutes, MXene
(Mo2TiC2) was deposited onto the cathode part (carbon cloth or
platinum). Additionally, this route is benecial as less acid
waste is generated compared to the traditional MXene fabrica-
tion process. Because it allows an effective way to separate the
fabricated MXene (Mo2TiC2) from the electrolytic solution, as it
is directly uniformly deposited onto the cathode part. This
electrochemically etched Mo2TiC2 deposited on the carbon
cloth surface can be directly employed as a 3D MXene electrode
electrocatalyst material for energy conversion applications like
the HER.

The conventional multistep process of synthesis of MXene
from MAX using toxic chemical reagents, followed by device
Fig. 13 Physical and morphological characterisation of the in situ pro
micrographs of the cathode, (c) transmission electron microscopy (TEM)
analysis; insets display the V, C, O, and Zn elements related to MXene. (e)
at different cycles. (h) Wide survey XPS spectra. (i) Raman spectra at diff
etching process reaction mechanism. Reproduced with permission.171 C

This journal is © The Royal Society of Chemistry 2025
fabrication, is time-consuming. Thus, to tackle this issue, Li
et al. introduced a straightforward method by employing the
V2AlC MAX phase as the cathode, Zn metal as the anode and
21 M LiTFSI + 1 M Zn (OTf)2 as the electrolyte solution, for the
fabrication of a closed coin-type CR2030 device for battery
testing application.171 Because of the selection of F-enriched
solution as the electrolyte, it promotes the exfoliation of the
V2AlC MAX phase, resulting in the formation of V2CTX MXene
inside the battery cell directly, as conrmed by the morpho-
logical characterisation of the MXene cathode aer the
electrochemical performance of about 400 cycles at 10 A g−1, as
illustrated in the SEM image in Fig. 13a. It is demonstrated that
the microstructure of the MXene cathode alters signicantly,
where the V2AlC MAX phase particles are converted into V2CTX
MXene, which is evident in the magnied SEM image in
Fig. 13b.

This conversion of V2AlC MAX to V2CTX MXene is similar to
the conventional wet chemistry etching process, with the
smoother outer surface of V2CTXMXene without any impurities,
duced MXene V2CTX and their reaction mechanism. (a and b) SEM
micrograph. (d) TEM micrograph in the HADDF mode for EDS mapping
High-resolution TEMmicrograph. (f) AFMmicrograph. (g) XRD patterns
erent cycles. (j) Graphic demonstration of the in situ electrochemical
opyright 2020, Wiley-VCH.
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and the lateral size of V2CTX MXene ranges between 1 and 5 mm.
The A layers are removed along with the –O, –F and –OH
terminals formed in a parallel direction to (001), which results
in the preservation of original lamellar structures. The TEM
images illustrated in Fig. 13c show classic electron beam
transparent characteristics. Additionally, the etching of
aluminium layers was conrmed utilising EDS mapping with
the Al content less than 0.37 atomic%, as shown in Fig. 13d.
Furthermore, the high-resolution transmission electron
microscopy analysis (HR-TEM) shows the ordered lattice fringe
in Fig. 13e, further conrming the high crystallisation of the in
situ electrochemical etched V2CTX MXene.

Additionally, the atomic force microscopy (AFM) images
illustrated in Fig. 13f show that the thickness of the V2CTX
MXene is concentrated at 8.5 nm, suggesting that the number of
layers is ve or seven. The X-ray diffraction further proves the
phase transition from V2AlC MAX to V2CTX MXene, as the XRD
pattern is obtained aer 5, 150, and 400 cycles. At 5 cycles, the
V2AlC MAX phase and additive (polyvinylidene, carbon cloth
and carbon black) diffraction peaks are presently displayed in
Fig. 13g. Nonetheless, aer increasing the number of cycles, i.e.,
at 150 cycles, the peaks of the V2AlC MAX phase are di-
minishing, suggesting the conversion from V2AlCMAX to V2CTX
MXene. Following 400 cycles, the V2AlC MAX phase peak is
barely visible, specically in the peak regions of 13.3° and 41.3°,
which are associated with the (002) and (103) crystal planes. It
can be suggested that aer 400 cycles, the V2AlC MAX phase is
successfully exfoliated. To better understand the etching of Al
metal, the survey X-ray photoelectron spectroscopy (XPS)
spectra were obtained, as displayed in Fig. 13h, which validated
the XRD results, conrming the eradication of Al metal at 73 eV
and the addition of a new peak at 685 eV aer 400 cycles. This
conversion of V2AlC MAX to V2CTX MXene was further validated
by Raman spectra, as illustrated in Fig. 13g. The Raman peaks
associated with the V2AlC MAX phase at 158, 239, and 258 cm−1

were diminishing. While the Raman peaks at 114, 139, 262, and
298 cm−1 corresponding to V2CTX MXene were dominating. The
following reaction mechanism was proposed, based on the
observations (eqn (20)).

V2AlC + yF−1 + (2x + z)H2O − (y + 3)e−1 /

V2C(OH)2xF204yOz + Al3+(Al2O3, AlF3) (20)

So, Fig. 13j displays the breaking of the V–Al bonds in the
V2AlC MAX phase cathode as it was attacked by F−1, which is
present in the electrolytic solution, resulting in the etching of Al
layers and forming V2CTX MXene. In the single-step procedure,
the battery device undergoes three phases: MAX exfoliation,
electrode oxidation and redox of V2O5. This device can be
directly used for battery testing applications while all the reac-
tions are undergoing, and it is observed that the electro-
chemical performance keeps increasing. Moreover, this battery
device exhibited excellent electrochemical performance for
a zinc ion battery, demonstrating cycling stability of 4000 cycles
with the rate performance of 97.5 mAh g−1 at 64 A g−1.
According to this study, this in situ electrochemically etched
This journal is © The Royal Society of Chemistry 2025
MXene with its high capacity outperform the other reported
vanadium-based zinc ion batteries.

This single-step, straightforward green fabrication process of
MXene, followed by device assembly, prevents any contamina-
tion from outside and expands the applications of MXene in the
eld of aqueous energy storage devices. Overall, the electro-
chemical etching strategies hold particular importance in the
realm of MXenes, contributing towards a harmless and more
precisely controlled approach to synthesize MXene. These
strategies have garnered signicant attention due to their ability
to avoid the dangers related to the uorine compounds while
producing MXene with tunable properties. A summary of
electrochemical etching of MXene, including the technique,
etching agent, terminal groups, advantages and their applica-
tions, is provided in Table 3.
5. Conclusion, challenges, and future
outlooks

This review article emphasises the comprehensive study of the
electrochemical etching route for the fabrication of MXenes,
centering on its fundamental mechanism and the different
parameters that impact the electrochemical etching of the
aluminium layer from the MAX phase to fabricate the corre-
sponding MXene. The electrochemical etching synthesis of
MXene has attracted signicant research attention as a substi-
tute for the conventional HF-based etching route, owing to its
capability to produce MXene with varying terminal groups like –
O, –OH, and –Cl.

Additionally, several benets of electrochemical etching
fabrication processes are highlighted, such as this approach
being green, sustainable, less waste-generating, and cost-
effective, without using any tedious process. Moreover,
emphasis is given to the exploration of MXenes derived from
other than titanium-based MAX phases, as to date, most re-
ported studies are on titanium-based MXenes fabricated
through electrochemical etching. This review article focuses on
the electrochemical etching fabrication process of MXenes like
Nb2CTx, V2CTX, and Mo2TiC2 and their outstanding perfor-
mance for multiple applications in diverse elds, from
biomedical to energy storage and conversion, highlighting their
huge potential for the future.

Despite the ongoing research in the production of electro-
chemically etched MXenes, it exhibits various obstacles that
need to be resolved for efficient production and real-world
applications. The fundamental issues lie in the tuning of the
etching parameters, including the selection of a suitable elec-
trolyte solution, duration of etching and voltage window, to
attain a uniformly delaminatedMXene, concurrently preventing
the over-etching of the MXene and maintaining its structural
integrity. Because the inappropriate etching parameters can
cause defects in MXene, reduced electrical conductivity,
stability and residual aluminium impurities, which severely
impede its electrochemical performance. One of the most
crucial parameters to decide the properties of obtainedMXenes,
their oxidation resistance and intercalation capability, is
J. Mater. Chem. A, 2025, 13, 34055–34084 | 34073
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Fig. 14 The number of publications on electrochemically etched
MXenes vs. years (search performed on Google Scholar using the
keywords ‘electrochemical etching of MXene’).
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through the optimisation of the electrolytic solution. Thus, the
selection of the proper electrolytic solution is a crucial
parameter.

Another major challenge is mass-scale production, while
electrochemical etching provides a sustainable and safer route
to fabricate MXene compared to chemical etching. But retaining
the consistency when the production is large-scale is still chal-
lenging. Moreover, several obstacles, including oxidation of
MXene and long-term stability aer the electrochemical
etching, need to be resolved, as the MXene oxidation leads to
a compromise in the electrical and mechanical properties of
MXene, resulting in poor electrochemical performance in
various electrochemical applications, from energy storage to
conversion and biomedical elds. These issues can be resolved
by addressing the appropriate selection of electrolytes and the
post-etching process to ensure the manufacturing of high-
Fig. 15 The outline of the review article.

34074 | J. Mater. Chem. A, 2025, 13, 34055–34084
quality MXene for the advancement of MXene's future
research. The electrochemical etching strategy has been
garnering signicant attention since its discovery, as evidenced
by the increase in the number of publications each year
(Fig. 14).

The future direction of the electrochemical etching route to
fabricate MXene lies in the evolution of the current technolo-
gies. To enhance the MXene fabrication efficiency, through
optimisation of the MXene properties and terminal groups
designed for specic applications, exploration of novel elec-
trolytes, scalability, stability, integration of modern technology
with more eco-friendly routes (Fig. 15).

(1) The MXene fabrication efficiency could be enhanced
through the modication of MXene’s electrical and mechanical
properties, by modulating the electrochemical etching param-
eters to attain precise control over the MXene structure, selec-
tive etching of the A layer and integrating the specic terminal
groups for specic applications to boost the MXene electro-
chemical competence.

(2) Real-time monitoring methods like in situ spectroscopy
and theoretical studies like density functional theory (DFT) may
be benecial to better understand the electrochemical etching
route at a molecular scale, letting the researchers modulate the
electrochemical etching conditions for enhanced consistency
and high-quality MXene.

(3) Exploring novel electrolyte solutions like green solvents
and neutral electrolytes for electrochemical etching of selective
A-layers that are efficient, less toxic and sustainable could be
a promising approach to fabricate electrochemically etched
MXene. Most of the conventional approaches are dependent on
corrosive acidic electrolytes, which pose safety threats.

(4) The mass-scale economic production of MXene for
industrial applications should be the focus of the scientic
community. To design and innovate the electrochemical
etching routes with advanced features, to avail the MXenes
This journal is © The Royal Society of Chemistry 2025
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commercially, high-throughput production methods like roll-
to-roll manufacturing and large-batch fabrication must be
explored.

(5) Improving the stability of the electrochemically fabri-
catedMXene is another potential direction for future studies for
its long-term practical applications as degradation and oxida-
tion of MXene severely impede its electrochemical activity.

(6) Integrating different strategies to fabricate different types
of MXene composite with other 2D materials like Prussian blue
frameworks, COFs, MOFs, and HOF materials208–212 could be
explored in future. Additionally, proper storage conditions and
stability of fabricated MXene needs to be improved, which can
lead to enhanced electrochemical performance. Thus, resulting
MXene could be more appropriate for various purposes like
sensing, catalysis, bio-medical, electrochemical energy conver-
sion and storage applications. With the current progress in this
area of MXene fabrication, electrochemical etching is projected
to become one of the leading techniques for MXene production,
encouraging their extensive employment in next-generation
expertise.
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