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-driven gait-assisted self-
powered wearable sensing: a triboelectric
nanogenerator-based advanced healthcare
monitoring†
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Wei-Zan Hsu,d Yao-Hsuan Tseng,d Jaba Roy Chowdhury,a Yu-Hui Huang,a

Jen-Chung Liao,*e Fu-Cheng Kao*ef and Zong-Hong Lin *a

Advanced point-of-care healthcare systems are vital in contemporary healthcare, providing decentralized,

real-time diagnostics and enabling continuous physiological assessment. Gait monitoring, a key application,

benefits from wearable sensors integrated with flexible electronics, enabling precise, real-time tracking of

biomechanical parameters. Despite the advantages, state-of-the-art systems are constrained by external

power requirements, limited operational life, and low sensitivities, which impede their applicability.

Triboelectric nanogenerators (TENGs), harnessing biomechanical motion to generate electrical signals,

present a viable self-powered alternative, enhancing system autonomy and performance for real-time

gait monitoring and rehabilitation. Herein, we propose a next-generation machine learning (ML)-driven

TENG-based wearable sensing system for gait-assisted healthcare monitoring. The system features four

TENG sensors with nylon 6/6 nanofibers and drop-like microstructured PTFE films as triboelectric layers.

The sensors exhibit stable performance for 10 000 seconds, unaffected by environmental factors such as

temperature and humidity. Integrated into shoe insoles at key anatomical points, they enable real-time

monitoring of gait and plantar pressure distribution. By analyzing temporal variations in foot-ground

contact during the gait cycle, the system accurately identifies biomechanical deviations associated with

the pes planus condition, facilitating the development of prompt personalized orthotic prescriptions.

Furthermore, highly sensitive TENG-based wearable sensors capture unique biomechanical signatures

that can be leveraged to develop an automated, ML-driven advanced health monitoring system. First, the

integration of ML algorithms enables high-precision user identification, achieving a remarkable accuracy

of 99.6%. Subsequently, upon identification, personalized rehabilitation and athletic exercise programs

are continuously monitored using highly accurate ML-driven systems, thereby laying a foundation for

healthcare professionals to accurately assess individual recovery trajectories and optimize performance

strategies. Therefore, this work represents a transformative approach to personalized healthcare, offering

a self-powered, low-cost, scalable, and durable point-of-care solution for gait analysis and rehabilitation,

with significant commercial potential due to its ease of use and accessibility.
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1. Introduction

The exponential rise in the aging population, coupled with the
global health crises triggered by pandemics, has intensied the
focus on point-of-care health monitoring systems.1,2 These
platforms mark a critical evolution in modern healthcare by
integrating advanced wearable sensors with exible elec-
tronics,3 facilitating uninterrupted physiological monitoring
and dynamic interaction with the human body. This enables
multifaceted applications such as continuous real-time health
surveillance, proactive disease diagnostics, and rehabilitation
tracking, all with enhanced diagnostic accuracy, precision, and
user-centric efficiency. The increasing prioritization of
This journal is © The Royal Society of Chemistry 2025
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personalized medicine has catalyzed signicant advancements
in wearable sensor technologies, resulting in devices engi-
neered with highly specialized functionalities tailored for
specic clinical applications.4–7

Wearable pressure sensors, including capacitive,8,9 piezor-
esistive,10,11 microuidic,5,12 and electromagnetic types,13,14 have
made signicant strides in health monitoring. However, their
reliance on external power sources, limited operational life-
spans, instability, and rigid structural designs impeded their
long-term applicability and performance.15 In recent advance-
ments, sensors based on magnetoelastic systems,16,17 optoelec-
tronic technologies,18,19 and articial intelligence20 have
emerged as promising innovations. Magnetoelastic sensors
operate using external magnetic excitation elds and rely on
specialized magnetostrictive materials, presenting unique
operational constraints. Optoelectronic systems, while effective,
are prone to risks such as damage to bers or electronic
components during use, which can limit their reliability. Arti-
cial intelligence-based sensors, on the other hand, offer
exciting potential for accurately predicting pressure values.
However, this domain still demands extensive research and
development to fully realize its capabilities and practical
applications.

These challenges underline the need for developing self-
powered, compact, exible sensors with enhanced sensitivity,
capable of operating autonomously for extended periods. Such
innovations would signicantly advance not only point-of-care
diagnostics but also continuous health monitoring. In this
context, triboelectric nanogenerators (TENGs) have emerged as
a transformative technology. By coupling contact electrication
with electrostatic induction, TENGs efficiently convert biome-
chanical energy into electrical signals,21,22 providing a sustain-
able solution for wearable electronics.15,23–29 This innovation has
unlocked signicant potential in medical and rehabilitation-
based healthcare applications, where continuous, real-time
tracking of physiological data is critical.30,31 Applications of
self-powered TENGs span a wide range of use cases, including
human joint movement monitoring,32 augmented neuromus-
cular transmission,33 respiration monitoring,34 PM2.5 particle
ltration,35 movement tracking36,37 and human gait analysis.38–41

These advancements underscore the versatility and utility of
TENGs in addressing key challenges in modern healthcare,
particularly in enabling precise and personalized monitoring
solutions.

Human gait, dened as the manner of walking, is a complex
biomechanical process involving the nervous, muscular, and
skeletal systems. Each individual's gait pattern is unique, acting
as a biometric signature and providing crucial insights into
health andmobility. Monitoring and analyzing gait patterns can
reveal information about an individual's overall health,
including potential neurological disorders, musculoskeletal
injuries, or the effects of aging.39,42,43 This makes gait analysis an
essential tool in medical diagnostics and rehabilitation. None-
theless, the data typically associated with human gait are highly
complex, requiring signicant computational resources and
intricate analytical processes. Traditional methods for pro-
cessing such data are oen labor-intensive and time-
This journal is © The Royal Society of Chemistry 2025
consuming. However, the integration of articial intelligence
(AI) and machine learning (ML) technologies could revolu-
tionize this eld by automating and optimizing these tasks.44,45

Given the complexity and variability of large gait datasets, AI
and ML are crucial for enhanced accuracy and reducing the
computational burden associated with traditional
methods.42,43,46 These technologies facilitate real-time data
processing, enabling the detection of subtle gait anomalies that
are difficult to identify manually. ML-powered models can
automatically classify and analyze gait patterns, offering
personalized diagnostics and intervention plans. Additionally,
the Internet of Things (IoT) ecosystem enhances wearable gait
monitoring systems by improving accuracy, allowing contin-
uous monitoring, and enabling intelligent health systems for
long-term care and rehabilitation.

In this work, we propose an ML-driven TENG-based low-cost,
highly stable, and self-powered wearable sensing system (WSS)
for gait-assisted advanced healthcare monitoring. The system is
composed of an array of four TENG pressure sensors with nylon
6/6 nanober and microstructured polytetrauoroethylene
(PTFE) lms as positive and negative triboelectric layers,
respectively. The as-fabricated sensors demonstrate extended
operational stability, maintaining performance for 10 000
seconds, with output unaffected by varying environmental
parameters, such as temperature and humidity and gait-related
factors, including frequency variations. Moreover, four highly
sensitive TENG sensors have been strategically embedded
within the shoe insoles at critical anatomical locations,
including the heel, fourth metatarsal, rst metatarsal, and big
toe positions, to enable high-precision real-time human gait
analysis and plantar pressure monitoring. The system leverages
the temporal differences in ground contact between the heel,
fourthmetatarsal, rst metatarsal, and big toe during the stance
phase of the gait cycle to drive a time-ratio-based diagnostic
model. By analyzing the sequence of these contact events, the
model quanties deviations in the biomechanical parameters of
individuals with pes planus in real-time. This assessment allows
for the quick prescription and modication of custom orthotics
that adapt to each individual's biomechanical patterns,
designed to correct the contact sequence, aligning it more
closely with that of a typical healthy gait pattern. In the medical
eld, such models signicantly improve patient outcomes by
providing personalized interventions that address individual
biomechanical deviations, enhancing gait efficiency, reducing
discomfort, and preventing future complications.

Furthermore, leveraging the subject's biomechanical char-
acteristics, including body mass distribution and distinct gait
dynamics, an automated gait-assisted advanced healthcare
monitoring system is conceptualized. Driven by ML algorithms,
this platform efficiently captures and analyzes critical biome-
chanical parameters to enable high-precision user identica-
tion in the initial phase, achieving an accuracy of 99.6%.
Subsequently, the system facilitates the continuous remote
monitoring and personalized assessment of 12 rehabilitation
and 13 workout exercises, tailored to each individual's
prescribed therapeutic and athletic regimen. The proposed self-
powered, low-cost, durable, and highly scalable TENG sensor
J. Mater. Chem. A, 2025, 13, 13750–13762 | 13751
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system represents a transformative approach for personalized
healthcare, offering a point-of-care solution for gait evaluation
and rehabilitation, with signicant potential for commerciali-
zation due to its ease of use and accessibility.
2. Results and discussion
2.1 Design concept of the TENG-based wearable sensing
system for advanced healthcare monitoring

Fig. 1a illustrates the schematic of the WSS designed for gait-
assisted advanced healthcare monitoring. The TENG-based
wearable sensor array (four sensors), integrated with a multi-
channel data acquisition (DAQ) system, enables real-time gait
monitoring through precise signal acquisition and processing.
The collected signals are subsequently processed by ML algo-
rithms, which efficiently detect and analyze key biomechanical
parameters related to human gait. This integration fosters the
development of an ML-driven advanced healthcare system
tailored for biomedical applications, ensuring automated and
enhanced patient monitoring. The simplied schematic for the
ML-driven gait-assisted advanced health monitoring system
(from sensing to analysis) is depicted in Fig. S1.†

The TENG sensor utilizes nylon 6/6 nanobers and PTFE
lms as triboelectric contact layers and operates in a double-
electrode conguration, employing aluminum (Al) as the
conductive electrode. The sensor's structural composition is
illustrated in Fig. 1b. The highly biocompatible PTFE lm
Fig. 1 Overall illustration and working kinematics of the proposed w
Schematic depicting the ML-driven gait-assisted healthcare monitoring c
nanofiber and drop-like microstructured PTFE film). (c) Electron cloudmo
Schematic of the insole depicting TENG sensors embedded at four anat

13752 | J. Mater. Chem. A, 2025, 13, 13750–13762
surface has been engineered with drop-like microstructures (∼2
mm diameter), via a simple double replica molding process
(Fig. S2†), to facilitate enhanced effective surface area. Analo-
gously, the biodegradable nylon 6/6 nanober lm (∼0.155 mm
diameter), fabricated through a cost-effective electrospinning
technique, exhibits a high surface area-to-volume ratio.

This structural conguration enhances triboelectric charge
generation by increasing the material's contact area during
triboelectrication. The Scanning Electron Microscopy (SEM)
images along with energy dispersive X-ray spectroscopy (EDX)
mapping for the PTFE and nylon lms are presented in Fig. S3
and S4,† respectively. The elemental mapping conrmed the
presence of carbon (C), oxygen(O), and uorine (F) elements in
the PTFE lm. Similarly, C, O, and nitrogen (N) are present in
the nylon 6/6 nanober lm. Moreover, Fourier transform
infrared (FTIR) spectra of the PTFE and nylon lms are depicted
in Fig S5.† It could be observed that in the typical absorption
spectrum of PTFE, the peaks at 1203 cm−1 and 1142 cm−1 are
assigned to the asymmetric stretching vibration and symmetric
stretching vibration of C–F bonds, respectively. Similarly, nylon
6,6 nanobers are characterized by N–H stretching vibration at
3300 cm−1. Other characteristic peaks for nylon 6,6 nanober
appear around C–H stretching vibration at 2932 cm−1 and
amide-I, amide-II, and amide-III peaks at 1639 cm−1,
1537 cm−1, and 1371 cm−1, respectively.

The electron cloud/potential well model for charge transfer
via contact electrication is depicted in Fig. 1c. When the nylon
earable sensing system-based advanced healthcare monitoring. (a)
oncept. (b) Structure of the TENG sensor (with SEM images of the nylon
del for the charge transfer mechanism between triboelectric layers. (d)
omical positions (heel, fourth metatarsal, first metatarsal, and big toe).

This journal is © The Royal Society of Chemistry 2025
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6/6 nanober and PTFE lm are in a separated state, their
electron clouds do not overlap, resulting in no charge transfer
between the triboelectric materials. However, upon contact, the
electron clouds overlap, facilitating electron transfer from the
nylon 6/6 nanober to the PTFE lm due to the lower work
function of nylon 6/6, which drives the charge redistribution.
Fig. 1d illustrates key anatomical positions, including the heel,
fourth metatarsal, rst metatarsal, and big toe regions, where
the four TENG sensors have been strategically integrated into
the insole structure.
2.2 Working mechanism and triboelectric capability of the
TENG-based wearable sensor

The working mechanism of the self-powered TENG sensor
(contact-separation mode), characterized by contact electrica-
tion and electrostatic induction phenomena, is presented in
Fig. 2a. In the initial contacted state, the PTFE layer interfaces
with the nylon 6/6 nanober membrane, resulting in the
generation of negative triboelectric charges on the PTFE surface
and corresponding positive charges on the nylon 6/6 substrate.
In the separation state, the induced positive charges on the Al
electrode facilitate a transient current ow through an external
Fig. 2 Working mechanism of the TENG sensor and triboelectric series
Force response of the TENG sensor with various positive triboelectric m
common materials along with their surface potentials (f) and Gaussian p

This journal is © The Royal Society of Chemistry 2025
circuit, establishing charge equilibrium. In the fully separated
state, the absence of external current indicates the stabilization
of charge. Upon re-approaching or contact with the nylon 6/6
membrane, the sensor transitions back to the contact phase,
resulting in a reverse current ow through the circuit, thereby
enabling a cyclical energy harvesting mechanism. Fig. 2b pres-
ents the force response characteristics of the TENG sensor
utilizing various positive triboelectric materials, specically
nylon 6/6, polyethylene terephthalate (PET), and paper, in
conjunction with a common negative PTFE layer. The nylon 6/6-
based TENG exhibits superior sensitivity compared to PET and
paper-based TENGs across both low (0–15 N) and high (15–50 N)
force regimes, demonstrating sensitivities of 19.5 mV N−1 and
2.93 mV N−1, respectively. Consequently, in this work, nylon 6/6
has been utilized as the positive triboelectric layer to fabricate
a wearable sensor with enhanced sensitivity. Furthermore, the
impact of spacer thickness (Kapton tape) on force variation is
illustrated in Fig. S6,† demonstrating that the conguration
utilizing three layers of spacer (18 mm total thickness) achieved
optimal sensitivity for the TENG sensor.

Moreover, the electric surface potentials (f) of various
materials, including PTFE, PVC, copper (Cu), polyvinyl alcohol
(PVA), aluminum (Al), and nylon 6/6, were assessed using Kelvin
. (a) Working mechanism of the TENG (contact-separation mode). (b)
aterials (nylon 6/6, PET, and paper). (c) Triboelectric series of some
otential distributions.

J. Mater. Chem. A, 2025, 13, 13750–13762 | 13753
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Probe Force Microscopy (KPFM) under ambient conditions.
Fig. 2c illustrates the relative positions of these materials within
a triboelectric series alongside their surface potentials (f) and
Gaussian potential distributions. Notably, PTFE exhibits the
most negative potential at −369 mV, indicating a strong
propensity for electron acceptance. In contrast, nylon 6/6
displays the highest positive surface potential at 1150 mV,
reecting its ability to donate electrons. Therefore, charge
transfer from the nylon 6/6 lm to PTFE will be higher than that
from other materials, which in turn will result in a higher
electrical output of the TENG. In comparison, the surface
potentials of PVC, Cu, PVA, and Al are at −55 mV, 77 mV,
701 mV, and 830 mV, respectively.
2.3 Electrical characterization of the TENG-based wearable
sensor

The force response of the TENG-based wearable sensor from 1 N
to 45 N is presented in Fig. 3a. It could be seen that as the force
is increased, the voltage output of the TENG sensor also
increases. The linear motor setup with the TENG sensor (top
view and side view) is illustrated in Fig. S7.† Furthermore,
practical wearable applications necessitate long-term stability
Fig. 3 Electrical characterization of the TENG sensor. (a) Force respon
variation with resistance. (d) Power density variation with resistance. (e) H
Humidity variation effect on TENG output. (h) Temperature variation eff

13754 | J. Mater. Chem. A, 2025, 13, 13750–13762
of the sensor's output. From Fig. 3b, the fabricated sensors
exhibit robust operational stability, maintaining consistent
performance for 10 000 seconds. Additionally, the sensor's
output remained stable for an eight-day period, thereby con-
rming the reproducibility of the proposed TENG sensor across
multiple days (Fig. S8†). Fig. 3c and d illustrate the outputs of
voltage–current density and power density, respectively, across
varying external load resistances. Specically, the voltage output
increases with higher external load resistance, while the current
density decreases under the same conditions. The open circuit
voltage (VOC), short circuit current density (JSC), and maximum
power density measured approximately 9 V, 0.9 mA m−2, and
2.75 mW m−2, respectively at an external load resistance of 70
MU.

The hysteresis curves shown in Fig. 3e demonstrate that the
TENG-based wearable sensor exhibits remarkable hysteresis
characteristics as the applied force is increased and subse-
quently decreased with nominal variations. As illustrated in
Fig. S9,† our proposed TENG sensor demonstrated an instan-
taneous response time of approximately 67 ms (le inset) and
a recovery time of approximately 48 ms (right inset), measured
under a force of 45 N at 1 Hz frequency, indicating its suitability
se. (b) Long-term stability (10 000 s). (c) Voltage and current density
ysteresis curve. (f) TENG output response with frequency variation. (g)
ect on TENG output.

This journal is © The Royal Society of Chemistry 2025
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for real-time gait monitoring applications. Furthermore, the
wearable sensor exhibited consistent electrical output when the
linear motor frequency was varied between 0.5 Hz and 3 Hz, as
illustrated in Fig. 3f. Additionally, we investigated the inuence
of diverse environmental parameters on the electrical stability
of the proposed wearable sensor. The output voltage demon-
strated resilience and remained unaffected by uctuations in
humidity (20–80%) (Fig. 3g) and temperature (20–45 °C)
(Fig. 3h), thereby conrming the exceptional stability of the
TENG-based sensor under varying environmental conditions.
2.4 Human gait cycle and real-time sensor data acquisition

Human gait refers to the biomechanical dynamics of locomo-
tion, characterized by a repetitive sequence known as the gait
cycle. This process is underpinned by the intricate coordination
between afferent and efferent neural pathways, facilitating
communication between the volitional control centers of the
supraspinal regions and the reexive mechanisms within the
Fig. 4 Human gait cycle and real-time sensor data acquisition. (a) Typi
profiles of the four TENG sensors (1st, 2nd, 3rd, and 4th) under actuation. (
diagnostic model depiction. (e) Illustration of the CC2652R1FRGZ MCU-

This journal is © The Royal Society of Chemistry 2025
spinal cord.47 The gait cycle encompasses two primary phases:
the stance phase, wherein the reference foot (blue) maintains
contact with the ground and accounts for 60% of the gait cycle,
and the swing phase, comprising 40%, where the foot is
elevated and moves forward,48 as depicted in Fig. 4a. The stance
phase is divided into ve sub-phases: (i) initial contact (heel
strike), (ii) loading response (forefoot and heel contact), (iii)
mid stance, (iv) terminal stance (heel-off), and (v) pre-swing
(toe-off). The swing phase includes three sub-phases, all
involving the foot's elevation and forward motion. This
sequence, from one heel strike to the next of the same foot,
demonstrates the coordinated interaction of musculoskeletal
and neuromuscular systems.

Fig. 4b depicts the dynamic response proles of the four
TENG sensors (1st, 2nd, 3rd, and 4th) under simultaneous actu-
ation. The rst curve represents the distinct electrical output
generated by the 1st sensor upon initial contact. The second
curve demonstrates the superimposed signal from the 1st and
2nd sensors, where the 2nd sensor is activated while the 1st
cal human gait cycle-stance and swing phases. (b) Dynamic response
c) Image of the insoles with TENG sensors and DAQ. (d) Time-domain
based DAQ system.

J. Mater. Chem. A, 2025, 13, 13750–13762 | 13755
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remains in the actuated state. Similarly, the third and fourth
curves reect the aggregate electrical responses as additional
sensors (3rd and 4th) are consecutively triggered, resulting in
cumulative output signals from multiple sensor engagements.
The actual TENG sensor embedded insole image for both feet is
presented in Fig. 4c. As mentioned earlier, a time-domain
diagnostic model was employed for detailed gait analysis
(Fig. 4d). Refer to eqn (1) and (2) for model specics. The
detailed information can be extracted from our previous work.39

Time ratio = (TX − TH)/CY (1)

CY = TH0 − TH (2)

The time ratio quanties the delay between contact points
during the gait cycle: TH represents the heel strike, and TFM,
TOM, and TBT denote the contact instants for the rst meta-
tarsal, fourth metatarsal, and big toe, respectively. CY denes
the full gait cycle duration, measured as the interval between
consecutive heel strikes. By analyzing the sequence of these
contact events, the model quanties deviations in the biome-
chanical parameters of individuals. The DAQ system specica-
tions are depicted in Fig. 4e. The four TENG sensors are
connected to amicrocontroller unit (MCU) via an RC circuit (R=

976 kU, C= 0.3 nF) for signal processing. The CC2652R1FRGZ is
a wireless MCU from Texas Instruments, part of the
SimpleLink™ CC26xx family. The generated data are wirelessly
transmitted to a human machine interface (HMI) for storage
and further analysis. Real-time data acquisition and generation
within the wearable sensing system for gait analysis is depicted
in Movie S1.†
2.5 Application of the WSS for pes planus (atfoot)
detection, assessment, and orthotic intervention

Pes planus, commonly known as atfoot, is marked by the
collapse of the medial longitudinal arch, a valgus deformity of
the heel, andmedial talar prominence.49 Factors contributing to
atfoot include ligamentous laxity, equinus deformity, tibial
torsion, accessory navicular bone, congenital vertical talus, and
tarsal coalition, with obesity also recognized as a contributing
factor.50 Traditional atfoot detection methods oen rely on
footprint analysis, assessing the shape and pressure distribu-
tion of the foot's imprint51 and radiographic analysis.52

Although easy to perform and requiring minimal equipment,
the footprint analysis approach lacks precision and does not
provide quantitative data on the severity of the condition. In
contrast, radiographic analysis offers relatively high diagnostic
precision, and its limitations in visualizing so tissue struc-
tures reduce its effectiveness for comprehensive evaluation.
Furthermore, the method introduces a risk of unnecessary
radiation exposure, particularly with repeated imaging, and
variability in foot positioning during scans can hinder consis-
tent identication of atfoot deformities. Moreover, visual
inspection and palpation by clinicians, while common, are
subjective and depend on the examiner's experience, limiting
their ability to detect subtle cases of atfoot. These methods
13756 | J. Mater. Chem. A, 2025, 13, 13750–13762
focus primarily on visible physical signs, offering little biome-
chanical insight.

In this study, we utilized a time-ratio diagnostic model that
analyzes timing differences in ground contact between the heel,
fourthmetatarsal, rst metatarsal, and big toe during the stance
phase of walking. By monitoring the sequence of these contact
points, the model calculates real-time deviations in biome-
chanical parameters in individuals with atfoot using a time-
ratio-based approach. As depicted in Fig. 5a, the schematic
outlines the diagnostic process. Fig. 5b illustrates the foot of
a atfooted individual alongside orthopedic insoles. Prior to
orthotic intervention, the medial aspect of the plantar surface is
nearly in full contact with the ground, eliminating the foot arch
and contributing to pes planus (Fig. 5c, without orthopedic
insoles). When the foot bears full body weight, internal stress
increases compared to those with a normal arch, potentially
leading to structural deformities, degenerative changes, and
complications such as osteoarthritis, plantar tendinopathy, and
anterior pelvic tilt. The introduction of orthotic insoles provides
structural support, emulating a natural arch and preventing the
medial sole from coming into contact with the ground (Fig. 5c,
with orthopedic insoles). Morphologically, these insoles redis-
tribute plantar pressure, shiing the center of gravity laterally
and creating a pressure distribution pattern similar to that of
individuals with a normal arch.

Data collected for ve gait cycles using the time-ratio diag-
nostic model (with and without orthotic insoles) reveal that,
prior to the use of orthotics, the normalized time-ratio of the
rst metatarsal is consistently lower than that of the fourth
metatarsal and big toe (TFM < TBT, TOM), as presented in
Fig. 5d. This sequence reects a foot pressure transfer pattern
common in atfoot patients: heel / inner plantar / outer
plantar, leading to plantar valgus. The application of orthotic
insoles recongures plantar pressure distribution to resemble
a typical normal arch pattern (TOM < TFM < TBT): heel /
lateral plantar (fourth metatarsal) / medial plantar (rst
metatarsal) / big toe. This adjustment improves temporal gait
sequence alignment, bringing it closer to the standard healthy
gait pattern (Fig. S10†). The transformation indicates that
orthotic insoles effectively reduce valgus, promote the forma-
tion of an arch-like structure, and redistribute plantar pressure
toward a more optimal outer-ring pattern. This enhances
biomechanical alignment and improves load-bearing efficiency.

Furthermore, a ML-based classier was incorporated to
enhance diagnostic precision. This classier, designed to eval-
uate key gait biomechanical parameters, achieved 100% accu-
racy in differentiating normal arches from pes planus
(Fig. S11†). While the time-ratio diagnostic model provides
biomechanical analysis and quanties orthotic efficacy, the ML
model offers robust validation, ensuring high reliability in foot
type classication. Together, these systems establish a compre-
hensive diagnostic framework, with the time-ratio model
delivering dynamic biomechanical insights and the ML model
ensuring precise classication.

In summary, the time-ratio diagnostic model presents
signicant advantages for real-time, accurate detection and
reliable assessment of atfoot abnormalities. By analyzing
This journal is © The Royal Society of Chemistry 2025
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Fig. 5 Flatfoot detection, assessment, and orthotic intervention. (a) Schematic illustrating the diagnostic process. (b) Images of the flatfooted
individual alongside orthopedic insoles. (c) Images representing flatfoot individual medial aspect of the plantar surface (with and without
orthopedic insoles). (d) Normalized time ratio of flatfoot individuals without orthopedic insoles. (e) Normalized time ratio of flatfoot individuals
with orthopedic insoles.
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temporal differences in ground contact points, it enables rapid
and precise identication of biomechanical deviations. Addi-
tionally, the model's ability to track dynamic plantar pressure
redistribution permits real-time assessment of orthotic correc-
tions, ensuring that clinicians can promptly modify insole
designs as needed. This adaptability enhances therapeutic
efficacy and allows for personalized patient care.
2.6 Application of the WSS for ML-driven gait-assisted
advanced health monitoring

The asymmetrical distribution of body mass and individual gait
pattern variances signicantly inuences the interaction
dynamics and output voltage of insole sensors. Highly sensitive
TENG-based wearable sensors capture unique biomechanical
signatures that can be leveraged to develop an automated, ML-
driven advanced health monitoring system. Real-time gait
monitoring involves analyzing gait phase durations across
a typical gait cycle for user identication. A conceptual model of
this intelligent health monitoring framework is shown in
This journal is © The Royal Society of Chemistry 2025
Fig. 6a. In the initial phase, multi-channel data generated by the
wearable system is acquired via a DAQ system, facilitating
signal processing and user identication through machine
learning methodologies. For simplicity, three gait phases—mid-
swing (green), mid-stance (turquoise), and heel-off (pink)—are
analyzed for four individuals (P1, P2, P3, and P4) under normal
walking conditions (Fig. 6b).

The voltage magnitude and shape vary among individuals,
indicating unique biomechanical characteristics. The extracted
average durations for these gait phase events are depicted in
Fig. S12.† Notably, the mid-stance phase duration exhibits the
greatest variance across individuals due to differences in
behavioral gait characteristics and body mass distribution,
making it suitable for user identication. In addition to manual
feature extraction for user identication, machine learning-
assisted methods provide a lucrative alternative. The voltage
signals from the four users during normal walking are pro-
cessed, and the complete le foot raw data are presented in
Fig. S13.† The raw data undergo standard preprocessing
J. Mater. Chem. A, 2025, 13, 13750–13762 | 13757
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Fig. 6 Gait assisted advanced healthcare monitoring. (a) Schematic depicting initial phase-user identification. (b) Left heel data for 4 persons (P1,
P2, P3, and P4). (c) User identification confusion matrix. (d) Schematic depicting second phase-rehabilitation and monitoring. (e) Confusion
matrix for the classification of 4 exercises (E1, E2, E3, and E4).
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techniques, including data cleansing, management of missing
values and outliers, data standardization, and elimination of
inconsistencies. The dataset comprises 60 000 samples (15 000
per class), with each sample containing data from the four
sensors. The dataset is randomly split into an 80 : 20 ratio for
training and testing. A random forest ensemble model
(Fig. S14†) is trained on the training set, while the test set is
utilized to evaluate model performance. The normalized multi-
class confusion matrix shown in Fig. 6c indicates that the
classier achieved an overall accuracy of 99.6%. A brief
description of the random forest classier and associated
dataset information for ML-assisted classications are included
in ESI Note S1.†

In the second phase, subsequent to user identication,
a personalized rehabilitation plan is enacted. The user under-
takes a series of exercises, each prescribed for a dened dura-
tion based on the individualized rehabilitation or athletic
workout regimen (Fig. 6d). Data gathered during these exercises
are subsequently processed through a ML model for analytical
purposes. The unique characteristic signals produced by
various exercises enable differentiation via ML-assisted classi-
cation. As a proof of concept, we rst trained a ML model
tailored specically for only four exercises (treadmill E1, rope
jumping E2, jumping jacks E3, and walking lunges E4) for an
individual user, achieving an overall classication accuracy of
99.95%. The corresponding confusion matrix, which illustrates
the model's performance, is presented in Fig. 6e. Furthermore,
we conducted classications across a total of 12 rehabilitation
exercises (half squat, standing on tiptoes, standing on heels,
liing legs up from the front side (while standing), liing legs
up from the side direction (while standing), liing legs up from
the rear side (while standing), stepping leg up when sitting (on
chair), chair-assisted tiptoe squat down and standing up, chair
sitting and standing with arms akimbo, standing lunges, step-
ping from the side directions, and walking on heels) and ach-
ieved a remarkable accuracy of 99.96% (Fig. S15†). The
associated rehabilitation exercise images and raw data (le
heel) are depicted in Fig. S16 and S17,† respectively.

In addition to the rehabilitation exercises, we further clas-
sied 13 workout exercises (deep squat, mountain climbing,
high knee, squat jacks, lateral lunges, rope jumping, walking up
the stairs, walking down the stairs, burpees, jumping jacks,
cross jumping, kicking hips, and walking lunges) with an
accuracy of 99.68% (Fig. S18†). The workout exercise images
and associated raw data (le heel) are presented in Fig. S19 and
S20,† respectively. Analysis reveals that the data collected by our
proposed WSS exhibit distinct variations, resulting in excep-
tionally high accuracies for ML applications. In an ideal
scenario, the assessment of training efficiency, exercise
completion rates, and the duration taken would occur post-
training session. Such metrics are essential for healthcare
professionals to gauge the patient's recovery status and can
serve as a reference point for future rehabilitation or workout
sessions. Thus, the integration of highly sensitive and stable
TENG-based sensors into shoe insoles underscores the poten-
tial for developing an advanced health monitoring system
This journal is © The Royal Society of Chemistry 2025
specically designed for point-of-care gait evaluation and sports
applications.

3. Experimental section
3.1 Fabrication of microstructured PTFE layers

To begin, the mold for the microstructure was prepared by
cleaning the patterned sapphire substrate with isopropyl
alcohol and deionized water. A 10 : 1 ratio of poly-
dimethylsiloxane (PDMS) and curing agent was mixed and
applied to the cleaned substrate. The mixture was then evenly
distributed using a spin coater at 300 rpm for 30 seconds. The
coated sample was placed in a vacuum oven for 1 hour to
remove air bubbles, followed by curing at 60 °C in a conven-
tional oven for 2 hours. Once PDMS was fully cured, the layer
was carefully peeled off the sapphire substrate using tweezers.
This PDMS layer was subsequently used as a mold to fabricate
the PTFE layer. A PTFE precursor solution was drop-cast onto
the PDMS mold and heated at 120 °C for 15 minutes to evapo-
rate the solvent. Upon curing at 120 °C, the PTFE precursor
formed a microstructured PTFE lm with drop-like features.

3.2 Fabrication of nylon 6/6 nanober membranes

Initially, a solution was prepared by mixing 10 wt% nylon 6/6
with formic acid and dichloromethane in an 8 : 2 ratio, fol-
lowed by magnetization. The mixture was stirred at room
temperature using a heated stirrer set to 90 rpm for 4 hours
until all nylon 6/6 particles were fully dissolved. Aer dissolu-
tion, the mixture was transferred into a syringe connected to
a syringe pump. Aluminum foil was utilized as a substrate on
the collector for the electrospinning process. During the rst
ve minutes of applying the electrical eld, some bers were
collected using a slide rather than the collector and examined
under a microscope to assess their morphology. The supply
voltage was then ne-tuned based on the appearance of the
Taylor cone at the spinneret to ensure consistent ber produc-
tion. The parameters for the electrospinning setup were
congured as follows: a positive high voltage of 18–22 kV was
applied, using a 21-gauge needle, with a ow rate of 0.2 mL h−1,
and 10 cm working distance from the needle tip to the collector.
The duration of ber collection was set at 1.5 hours. Addition-
ally, the power supply voltage for the control slider was adjusted
to 12 V, and the collector was operated at a speed of 400 rpm.

3.3 Fabrication of the TENG sensor

The developed self-powered sensor is based on a contact-mode
TENG functioning as a self-powered unit. The structure utilizes
a 20 mm diameter PET lm as the substrate, onto which a layer
of aluminum foil is adhered. The microstructured PTFE lm is
then attached to the aluminum foil (electrode), serving as the
negative triboelectric layer. For the lower part of the structure,
another 20 mm PET lm is used, also layered with aluminum
foil (second electrode). The nylon 6/6 nanober lm is subse-
quently bonded to this aluminum layer, forming the positive
triboelectric surface. Both triboelectric layers have a circular
diameter of 15 mm. Adhesive tape is applied around the layers
J. Mater. Chem. A, 2025, 13, 13750–13762 | 13759
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to maintain a dened gap between the two triboelectric
surfaces.

3.4 Characterization and measurements

Field emission scanning electron microscopy (FESEM) was
utilized to analyze the morphological characteristics of nylon 6/
6 nanobers and microstructured PTFE lms. Prior to the
analysis, samples underwent an overnight vacuum treatment to
eliminate moisture. Aerward, they were xed to the sample
stage with copper tape and sputtered with platinum at a current
of 30 mA for 90 seconds. Scanning electron microscope (SEM)
images were captured at an accelerating voltage of 10 kV. A
linear motor facilitated the continuous contact-separation
process to investigate charge transfer phenomena and the
electrical output generated by the TENG, with data acquisition
performed using a Keithley 6514 programmable electrometer.
The four TENG sensors are connected to the microcontroller
unit (MCU) via an RC circuit (R = 976 kU, C = 0.3 nF) for signal
processing. The CC2652R1FRGZ MCU with wireless function-
ality from Texas Instruments, part of the SimpleLink™ CC26xx
family, was utilized. It is designed for low-power, multi-protocol
wireless communication, supporting various standards such as
Zigbee, Thread, Bluetooth Low Energy (BLE), and IEEE 802.15.4.
Additionally, to assess the surface potential of various mate-
rials, amplitude-modulated Kelvin probe force microscopy (AM-
KPFM) was employed, specically utilizing a BRUKER ICON
system equipped with ScanAsyst technology. The detection area
was maintained at 1 mm2 in tapping mode, and to minimize tip
effects, all samples were measured with the same probe tip.

3.5 Ethical approval and informed consent

All procedures performed in studies involving human partici-
pants were conducted in accordance with the ethical standards
of the institutional and/or national research committee and
with the 1964 Helsinki Declaration and its later amendments or
comparable ethical standards. The study protocol was approved
by the Institutional Review Board of the Chang Gung Medical
Foundation, Taipei, Taiwan (Approval Number: 202301899B0).
Informed consent was obtained from all individual participants
included in the study.

4. Conclusions

In this work, we developed a machine learning (ML)-driven
wearable sensing system based on TENG sensors for gait-
assisted healthcare monitoring. The fabricated TENG sensor
is composed of nylon 6/6 nanobers and drop-like micro-
structured PTFE lms as the positive and negative triboelectric
layers, respectively. The fabricated sensors exhibit prolonged
operational stability, maintaining consistent performance over
10 000 seconds. Their output remains unaffected by uctua-
tions in humidity (20–80%) and temperature (20–45 °C) levels,
thereby conrming long-term stability under various environ-
mental conditions. Additionally, the wearable sensor exhibited
consistent electrical output when the frequency was varied
between 0.5 Hz and 3 Hz. Four highly sensitive TENG sensors
13760 | J. Mater. Chem. A, 2025, 13, 13750–13762
are precisely integrated into shoe insoles at key anatomical
points—the heel, fourth metatarsal, rst metatarsal, and big
toe—allowing for high-accuracy real-time gait analysis and
plantar pressure monitoring. By analyzing the sequential
ground contact points, the model computes real-time devia-
tions in biomechanical parameters for individuals with atfoot
using a time-ratio algorithm. This approach supports the inte-
gration of orthotic insoles that effectively correct valgus defor-
mities, promoting the formation of a more anatomically normal
arch structure and gait patterns by redistributing plantar pres-
sure towards an optimized outer-ring, enhancing biomechan-
ical alignment and load-bearing efficiency. Finally, the unique
biomechanical signatures associated with human gait are
exploited to develop an advanced ML-driven health monitoring
system. The integration of ML algorithms enables precise user
identication with an exceptional accuracy of 99.6% for 4 users.
Additionally, ML-powered systems demonstrated high accuracy
in classifying 12 personalized rehabilitation exercises and 13
athletic workout routines, achieving 99.96% and 99.68% accu-
racy, respectively. Therefore, our developed self-powered, cost-
effective, exible, and durable TENG sensor system offers an
innovative solution for personalized advanced healthcare,
enabling point-of-care gait evaluation and rehabilitation. Its
scalability and user-friendly design make it highly suitable for
commercialization.
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