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The pair distribution function (PDF) is an important metric for characterising structure in
complex materials, but it is well known that meaningfully different structural models can
sometimes give rise to equivalent PDFs. In this paper, we discuss the use of model
likelihoods as a general approach for discriminating between such homometric
structure solutions. Drawing on two main case studies—one concerning the structure
of a small peptide and the other amorphous calcium carbonate—we show how
consideration of model likelihood can help drive robust structure solution, even in cases
where the PDF is particularly information-poor. The obvious thread of these individual
case studies is the potential role for machine-learning approaches to help guide
structure determination from the PDF, and our paper finishes with some forward-
looking discussion along these lines.

1 Introduction

The pair distribution function (PDF) is a well-known and widely-used measure of
local structure in complex materials.* Essentially a (weighted) histogram of
interatomic distances, it is an appealing metric for a number of reasons. First, it is
well-defined for any material—whether crystalline or amorphous, molecular or
extended, liquid or solid. One can always meaningfully ask how likely it is to find
a pair of atoms separated by a given distance. Second, the PDF can be can be
measured experimentally as the Fourier transform of the X-ray, neutron, or
electron total scattering functions—all that differs in each case is the weighting of
contributions to the PDF from different atomic scattering strengths. And, third,
the PDF can be calculated directly from the coordinates of any structural model,
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and hence it is straightforward to test consistency between model and experiment
by comparing calculated and observed PDFs.

The inverse problem—namely using PDF measurements to determine struc-
ture—is a famously difficult but important challenge,*® framed back in 2007 as
the ‘nanostructure problem’.” In a landmark study of the day, Billinge and co-
workers showed that the PDFs of small highly-symmetrical molecules such as
Ceo appeared to contain sufficient information to constrain fully the corre-
sponding three-dimensional structures.® The problem of structure solution then
became, in this paradigm, one of developing intelligent algorithms for exploring
configurational space to identify the unique configuration capable of reproducing
a given PDF.

Yet it has long been known that this apparent success cannot be universal,
since meaningfully-different structural models can give rise to identical PDFs.>*°
The simplest example of which we are aware concerns the square and pyramidal
arrangements of four atoms shown in Fig. 1(a). For specific geometries, the two
arrangements contain precisely the same set of six interatomic distances, and so
the corresponding PDFs are, by definition, equivalent. In general, as the number
of atoms in a system grows, so too does the number of possible equivalent
geometries. It is no surprise then that uniqueness is a particular challenge for
amorphous materials, with a-Si being the canonical example.®™® Even fully-
ordered crystals are not immune to these limitations, and a useful historical
observation in this regard is Pauling’s identification of what Patterson called
‘homometry’ in systems of particular crystal symmetries [Fig. 1(b)].**** A subtler,
but more broadly relevant, example is the insensitivity of diffraction measure-
ments to discriminating enantiomers of chiral crystals in the absence of anom-
alous diffraction effects. Three-dimensional PDF measurements'®*’—in which
the 3D diffuse scattering function of a disordered crystal is transformed to give
a direction-dependent PDF as a scalar field g(r)—are certainly more information-
rich than the conventional (one-dimensional) PDF, but again it is known that
meaningfully different disordered states can give identical diffuse scattering
patterns (and hence g(r) functions) when the differences involve multi-body
correlations beyond second order [Fig. 1(c)].*®

Mindful of this ambiguity, we argue here that the real problem to be addressed
is not “given a PDF, what is the corresponding structure?”—since in general there
is no unique solution—but rather “given a PDF, what is the most likely corre-
sponding structure?”. Casting this point in the language of Bayes,' one might
compare the likelihoods P of two models A and B, given a PDF, as

P(AIPDF)  P(PDF|A) P(A)
P(B|PDF) ~ P(PDF|B) P(B)’ 1)

In other words, the relative abilities of models A or B to account for the PDF (i.e.,
the first ratio on the right-hand side of eqn (1)) ought to be weighted by the
corresponding a priori likelihoods of the models themselves. The implication is
that, in cases where model likelihoods are sufficiently well characterised or
calculable, any ambiguity of fitting to the PDF might nonetheless be ameliorated
(and perhaps even overcome entirely).>

In this paper, we explore two particular directions in which this likelihood-
weighted approach to interpreting the PDF might be developed. The first
makes use of likelihoods determined using statistical analysis of large databases.
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Fig. 1 Examples of homometry. (a) Two arrangements of four atoms that give rise to the
same set of six pairwise distances. The apex atom of the pyramidal arrangement of the
right-hand side sits directly above one vertex of the basal equilateral triangle. (b) In the
space group /a3, inversion of the x-coordinate for atoms on the 24d Wyckoff site (X,O,%)
generates a pair of structures that are neither superimposable nor mirror-images of one
another.** The two structures contain the same interatomic vectors (up to inversion) and
hence give rise to identical Bragg intensities.*® (c) Examples of disordered site-occupancy
models that share identical pair correlations but different three-body correlations. The two
images are fragments of much larger configurations that give rise to identical diffuse
scattering patterns. This panel is adapted from ref. 18 with permission from the Interna-
tional Union of Crystallography.

We use a test case based on protein structure (for which statistical analysis is
particularly mature), showing that surprisingly detailed structural information
can be extracted from an ostensibly featureless protein PDF by exploiting back-
bone conformational analysis. The second example uses state-of-the-art empirical
potentials to compare the energetics of competing atomistic models, which can in
turn be interpreted as relative likelihoods through the Boltzmann formalism. The
specific case we consider is that of amorphous calcium carbonate, with our
analysis drawing heavily on the results of ref. 21 and 22. The common thread of
these case studies is the potential for applied statistics and machine-learning
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approaches to help guide structure determination from the PDF. We conclude
with a forward-looking discussion along these lines.

2 Results
2.1 Pathology of unbiased fitting to the PDF

Before launching into our case studies, we begin by making a general point
regarding the counterintuitive statistical bias against simplicity when fitting to
the PDF. Since the PDF represents a histogram of distances, the process of
structure solution is essentially one of assigning elements in a distance matrix.
Two solutions are equivalent if there exists a permutation of atom labels that
transforms the corresponding distance matrices, one into the other. In the case of
the six distances of the four-atom models shown in Fig. 1(a), for example, it can be
shown that there are exactly two distinct solutions, given by matrices of the form

0 1 V2 1 0 1 v2 V2

1 0 1 V2. 1 0 1 1
Vil oo 1™l o0 @)
1 V2 1 0 V21 1 0

Here, each element d;; gives the distance between atoms i and j. Note that there is
no permutation of labels that would transform the two matrices in eqn (2) into

one another. The <g> = 15 possible ways of assigning the set of distances

{1,1,1,1,/2,/2} amongst pairs of four atoms correspond to 3 distance matrices
of the first kind (i.e., the square) and 12 of the second kind (the triangular
pyramid). Hence, a purely stochastic approach is four times more likely to obtain
the second solution than the first, despite the two corresponding to precisely the
same PDF.

This bias has as its origin the different symmetries of the two solutions: there
are simply more unique ways of labelling the atoms in a lower-symmetry solution
than in a higher-symmetry one. Generalising beyond the toy model of Fig. 1(a),
the implication is that stochastic approaches are statistically biased towards
structure solutions with maximal variance amongst atom environments. Nature,
as Pauling would have it, seems to be biased in precisely the opposite sense: from
a purely empirical perspective, one finds that structures tend to adopt as few
different environments as possible (‘law of parsimony’).>® And so the unguided
structure solution from the PDF suffers not only from the often-discussed
uniqueness problem, but from a subtler pathology whereby the most natural
structure solutions are also inherently the least likely to be found.

We encountered this problem, albeit in reverse, many years ago when seeking
to improve the effectiveness of Reverse Monte Carlo (RMC) approaches to nano-
structure solution. In its purest form, RMC is a good example of an unguided
stochastic methodology for structure solution. It uses the Metropolis algorithm**
to accept or reject proposed moves within a randomly-arranged box of atoms, with
the acceptance criterion dependent on the fit between calculated and observed
PDF.* After many successive moves, and once equilibrium is established, RMC
gives a structure that is statistically biased towards maximally-variant solutions,
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as described above. Within the field, one often uses phrasing along the lines of
‘the most disordered structure consistent with the data’.*® By including an addi-
tional term within the Metropolis acceptance criterion that penalised variance, we
were able to guide structure solution (in favourable cases) to more natural solu-
tions. In the formalism of eqn (1), this so-called INVERT approach effectively
interpreted the prior probability of a model in terms of the variance of atom
environments within that model.****

2.2 Exploiting statistical knowledge

There are many cases where our understanding of prior likelihood is much more
robust than inference on the basis of atom-environment variance alone. Pauling’s
law of parsimony was developed through his own empirical observations of the
many thousands of structures he encountered (and is not universal*’). However,
we now have access to vastly superior statistical information from the enormous
number of structures that have since been solved. This places us in a position to
determine accurate estimates of the likelihood of a particular structural model,
based on its similarity or difference from other known structures.

Nowhere is this possibility more effectively applied than in the field of
sequence-driven protein structure prediction.?® Algorithms such as AlphaFold***°
exploit the enormous volume of structural information contained within the
protein data bank (PDB) to predict a protein fold (and the corresponding likeli-
hood) from knowledge of amino-acid sequence alone. Consequently we sought to
establish whether sequence-derived prior probabilities might be able to guide the
structure solution of small proteins from their corresponding PDFs.

The particular example we have explored as a proof of principle is the case of
the small (27-residue) peptide melittin, a key component of bee venom
[Fig. 2(a)].** Its corresponding PDF, which might be measured experimentally in
suitable small-angle scattering experiments, is essentially featureless [Fig. 2(b)],
but nonetheless contains basic information concerning the size and shape of the
protein.*> The degree of information content within the PDF was interrogated
using a simple RMC approach as follows. We first generated a model of melittin
from its known amino-acid sequence, but with random backbone torsion angles.
These angles were then treated as RMC variables: each successive move involved
changing an individual torsion angle by some small random amount, and the
move was accepted or rejected using the usual Metropolis algorithm applied to
the quality of fit to the PDF. For ease of calculation, our implementation used the
cumulative PDF C(r) = [, g(r')dr’ derived simply from the alpha carbon

o % ra Y

Fig.2 (a) Representation of the structure of melittin: the peptide forms an alpha helix with
an off-center bend. (b) The simulated PDF of melittin.
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Fig. 3 Representative melittin structure ‘solutions’ obtained by RMC fitting to (a) the PDF
alone, (b) the TALOS-N likelihoods alone, and (c) the PDF when biased by TALOS-N
likelihoods.

positions;'®* here g(r) denotes the relative probability of two alpha carbons being
separated by a distance r. A typical converged structure ‘solution’ is represented in
Fig. 3(a). As anticipated, the basic envelope of the protein is correctly modelled,
but details of the protein fold are lost.

Our next step was to incorporate information regarding the likelihood of
a given model of melittin structure. There are a variety of approaches one might
take, but the one on which we focussed was to exploit the statistical information
regarding the likelihood of individual residue torsion angles provided by the code
TALOS-N.**** Taking the known melittin structure as a reference, we first
computed the corresponding backbone NMR chemical shifts using the SPARTA+
code.?®* TALOS-N, which is trained on the same dataset as SPARTA+, then returns,
for each residue, a prior likelihood P(¢, ¥) of it adopting a conformation with
torsion angles ¢, ¥ given the corresponding NMR chemical shifts.**** By design,
these likelihoods include the statistical information contained within Ram-
achandran distributions.?”*® Here we are intentionally using a prior calculation
process that is less powerful than state-of-the-art structure prediction protocols in
order to demonstrate the complementary roles of the two terms in eqn (1). So, for
example, a model of melittin generated using the TALOS-N-likelihoods alone
gives a solution that is not fully correct [Fig. 3(b)].

Combining these two strands, we then carried out a new RMC refinement
against the melittin PDF in which the selection of torsion angles was biased by the
prior likelihoods given by TALOS-N. The result can be interpreted as the
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Fig. 4 Representative prior probability distributions of backbone torsion angles deter-
mined for melittin using TALOS-N for two residues. Note the presence of a small number
of likely conformations in each case.

statistically most likely structure solution that fits the PDF. A typical solution we
obtained is shown in Fig. 3(c). What is clear is that it matches more closely the
known structure than solutions obtained using either the PDF data or model
likelihoods by themselves. Quantifying this point, the root mean-squared devia-
tion between the refined and known structure is less than 2 A for the biased RMC
result, and significantly larger than this value (as much as 8 A) for both unbiased
RMC and TALOS-N-alone refinements.

The success of this combined approach is easily rationalised. It is often the
case that, for individual residues, there are a handful of maxima in the torsional
likelihood distributions; some examples are shown in Fig. 4. Choosing one or the
other of two similarly-likely conformations can have a relatively stark effect on the
overall protein fold, since the collective conformation propagates from residue to
residue. This is why the information within the PDF regarding overall shape—as
coarse at it is—is useful nonetheless in selecting which particular conformations
are observed in practice.

Of course, we make no claim that this biased RMC approach is a general
methodology for protein structure solution from PDF data. Our study is simply
one of proof-of-principle to demonstrate the (perhaps surprising) power of
incorporating statistical likelihoods to bias PDF-driven structure determination,
as envisaged by eqn (1).

2.3 Exploiting energetics

An alternative approach for comparing the likelihoods of two competing models,
where their corresponding energies are known, is to consider the Boltzmann
factor

P(A

%:exp[f(EAfEB)/kBT]. (3)
Clearly the ability of this term to meaningfully discriminate models through eqn
(1) depends on the accuracy with which energies can be determined. Many simple
constraints and restraints conventionally applied during RMC refinements can be
recast in terms of simple effective potentials. For example, a closest-approach
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constraint that forbids atoms from approaching nearer than a critical value r.
might be understood in terms of a potential

u(r) = {?,o r=re (4)

r<re

contributing to a lattice energy E = ) U(r;).” In this picture, any two models that
iy
satisfy the closest-approach constraint have the same (zero) energy and are

treated as equally likely; a model that violates the constraint has infinite energy
and hence a likelihood of zero. Likewise, bond-angle and bond-length
restraints—which are routinely used in RMC refinements—behave as simple
empirical potentials that weight the solution space accordingly.***°

One chemical system for which very-high-quality empirical potentials have
been developed is that of calcium-carbonate-water. The state-of-the-art potential
includes electrostatic terms, rigid carbonate ions, and a combination of Buck-
ingham and Lennard-Jones two-body potentials; its quality is seen in the ability to
reproduce a variety of key thermodynamic properties, including the calcite-
aragonite phase transition and the calcite dissolution enthalpy.**** This potential
is significantly more sophisticated than the conventional harmonic restraints
used in many RMC refinements, and so might be expected to provide a particu-
larly robust measure of the likelihood of competing candidate models.

We have performed two separate RMC studies of amorphous calcium
carbonate (ACC), both driven by the same X-ray total scattering (i.e., PDF) data.
The first study, carried out in 2010, made use of simple closest-approach
constraints of the type described by eqn (4);* the second, much more recent,
study included the state-of-the-art calcium-carbonate-water potential of ref. 22
and 41. The inclusion of such sophisticated empirical potentials within an RMC
refinement process is usually referred to as a ‘hybrid’ RMC (or HRMC) method-
ology because it is essentially intermediate between force-field simulation and
data-driven refinement.** A comparison of the two corresponding fits to data is
given in Fig. 5. While there are subtle differences between the two—most
noticeably at very low-Q and again around a weak oscillation near Q = 20 A~'—

4 T T T T T
- Expt.
s — RMC -
P — HRMC
S
= (0] -
G
—4 1 1 1 1 1
0 10 20

Q (A
Fig. 5 The Q-weighted X-ray total scattering function QFx(Q) of ACC (black line) can be
accounted for satisfactorily using both RMC and HRMC refinement strategies (red and blue
lines, respectively).
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the fits are comparable in quality. This point can be quantified by comparing the
fit metrics

Jreale N _ O).EFXp . 2
XZZZ[QIFX (Ql) QzFx (Qz)] ’ (5)

— o2
1

where the sum is taken over data points / and ¢ is the estimated uncertainty on the
experimental Q-weighted X-ray total scattering QFx(Q) values. Here, Q is the

(b)

Fig. 6 Comparison of ACC models determined using (a) RMC and (b) HRMC refinement
strategies. In both cases, only the connected calcium-carbonate network is shown in stick
representation. The presence of Ca-poor regions in (a) is highlighted by the white surfaces,
which correspond to regions of the configuration more than 4 A away from any Ca atom.
There are no such regions in the HRMC model.
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magnitude of the scattering vector, and the superscripts ‘calc’ and ‘exp’ denote
calculated and experimental values, respectively. We obtain > = 13.7 and 17.5 for
RMC and HRMC methodologies, respectively. To put this difference in perspec-
tive, a fit obtained using the empirical potentials alone gave x> = 71.2.

Despite this ostensible similarity in fit-to-data, the underlying configurations
from which the fits were calculated are remarkably different. Perhaps the key
distinction is that Ca-ion distributions are heterogeneously distributed in the
RMC configuration but are essentially uniform in the HRMC configuration
[Fig. 6]. This is an important difference, because the presence of Ca-poor channels
had been interpreted as a possible mechanism for intercalation-driven stabili-
sation of ACC.”* The degree of heterogeneity in Ca arrangements for the two
models can be compared quantitatively using a smooth overlap of atomic posi-
tions (SOAP) similarity function.** For each Ca atom in each configuration, its
local environment of neighbouring Ca atoms within a given radius (up to 4.5 A)
was expressed in terms of a power spectrum p that contains coefficients of
a neighbour-density expansion into a local basis with radial and spherical
harmonic terms. The similarities between all Ca environments can then be
visualised by performing dimensionality reduction on these vectors, here giving
a two-dimensional embedding (or map) using UMAP.*>*¢ In this representation,
atoms in a similar environment appear near to one another. The UMAP maps for
both the RMC and HRMC configurations are shown in Fig. 7, which also includes
Ca environments in key crystalline polymorphs. Our point regarding the greater
variance in Ca environments in the RMC configuration relative to HRMC is made
clear by the different areas covered by the corresponding data points in this map.

The potential of ref. 41 also gives an enormous energy difference between the
two configurations: we calculated the RMC configuration to be approximately 880
k] per mole of CaCO;-H,O less stable than the HRMC configuration.”> The
number is particularly large because of the variation in charge distribution
between the two configurations. Interpreted in the context of the Boltzmann
factor, this energy difference translates to a vanishingly small probability that the
RMC result can be correct.

) Monohydrocalcite
o °
® |kaite

Calcite

@ RMC
e HRMC

Fig. 7 Two-dimensional embedding representing the distribution of local Ca-atom
arrangements in RMC and HRMC models of ACC and also some key crystalline poly-
morphs of (hydrated) calcium carbonates. In this embedding, Ca atoms whose local
environments are similar appear as points close to one another.
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So the key points of our comparative study are that (i) remarkably different
models of ACC can result in very similar fits to data, and (ii) high-quality empirical
potentials allow discrimination between these models via the formalism of

eqn (1).

3 Discussion

Turning to the question raised in the title of this paper, these various small
studies suggest some conditions under which we might hope to trust structural
models derived from fitting to PDF data. We argue there are two scenarios. The
first is the case where PDF data are sufficiently information-rich that high-quality
fits are possible only for correct structural models. Here the ratio P(PDF|A)/
P(PDF|B) is the term in eqn (1) that is responsible for discriminating correct from
incorrect solutions. Disordered crystals (rather than amorphous materials) and
the use of single-crystal measurements (e.g., 3D-APDF) will favour this scenario.
The second scenario corresponds to cases where we have a suitably robust
measure of the relative likelihoods of competing models. Here it is the P(A)/P(B)
term in eqn (1) that discriminates. We have shown how likelihood might be
introduced either through statistical sampling (as in the case of torsion-angle-
probabilities for peptide conformations) or through energetics via the Boltz-
mann factor (as in the case of ACC).

In both respects, one might expect machine-learning (ML) approaches to play
an increasingly important role. On the one hand, libraries of previously solved
PDF data—with each observed pattern “labelled” with the corresponding struc-
ture—can be used to train supervised ML models to assign the structure that
corresponds to an unknown PDF, and unsupervised ML may help to analyse large
and complex experimental datasets; see ref. 47 and references therein. And, on
the other hand, ML methods are now firmly established for fitting accurate
interatomic potential models based on quantum-mechanical reference data,***
and such machine-learned potentials may very well facilitate energy calculations
for guiding robust HRMC refinements. In the case of ACC, we were fortunate to
have access to high-quality empirical potentials; however, there are many
chemical systems (not least amorphous silica®) for which even the best empirical
potentials available face challenges in capturing the subtleties of the potential-
energy landscape. As ML potentials become available for systems of ever-
increasing complexity (e.g. metal-organic frameworks®), we anticipate that
HRMC approaches will become increasingly popular and effective in determining
high-quality structure models informed at once by both experiment and
computation.

On a purely qualitative level, eqn (1) also provides a useful heuristic for
assessing competing models, even in cases where quantitative measures of model
likelihoods are inaccessible. Experience in the field often gives one a sense for
which structure solutions are more or less likely to be chemically and/or physi-
cally reasonable, and this intuition (for want of a better word) may itself be useful
in discriminating between models with similar fits to data. An example from our
own experience is that of characterising the orbitally-disordered (high-
temperature) phase of LaMnO;.*> We found that three different models with
very different underlying physics were almost equally able to reproduce a combi-
nation of neutron and X-ray PDF measurements. A key difficulty was that, at the
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high temperatures involved, the PDF peak widths were relatively large and as
a consequence it was very difficult to disentangle static and dynamic contribu-
tions to local distortions. In such cases, we argued that the physicality of the
models themselves ought to be taken into account, and this influenced our own
conclusions regarding the nature of the high-temperature phase of LaMnO;
(rejecting, in that case, the model that emerged from RMC refinements).

4 Concluding remarks

If there is one general conclusion to be drawn from our study, it is to underscore
the point that the ability to match an experimental PDF is a necessary but not
sufficient condition in validating a candidate structural model. We have shown
that unconstrained fitting to the PDF is actually biased against naturally-preferred
solutions, but that by weighting fits according to model likelihood, it is possible
to overcome this bias and correctly discriminate between homometric models.
Ultimately, our conclusions here with respect to interpretation of scattering data
are converging on the same central tenets of the field of NMR crystallography:*
namely, that it is by combining the complementary sensitivities of different
computational and experimental approaches that the task of structure ‘solution’
is most robustly addressed.
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