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Enhancing drinking water quality modeling:
leveraging physics informed neural networks for
learning with imperfect reaction models and
partial data
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Chemical kinetics models, typically formulated as systems of ordinary or partial differential equations, are

valuable tools for simulating drinking water quality. However, these models often face inaccuracies due to

discrepancies between the laboratory and the real-world conditions, as well as limitations in experimental

analytical methods, hindering the accurate representation of the true underlying chemical mechanisms. In

this study, we propose a physics informed neural network (PINN), using the eXtreme Theory of Functional

Connections, to improve the prediction of chemical concentrations over time. The PINN method accounts

for imperfect chemical models and incorporates partial data to improve predictions. Focusing on reactions

describing water disinfection residual and disinfectant byproduct formation, which are crucial for public

health and regulatory compliance, we demonstrate that the PINN model is able to accurately predict the

concentrations of chemical species across various pH values. Notably, the model extends its accuracy to

predict concentrations of chemical species not originally included in its training data. The developed

method can be extended to a variety of chemical systems, offering a wide array of potential applications.

1. Introduction

Chemical kinetics models play a crucial role in predicting
chemical reactions relevant to drinking water quality in
distribution systems.1 These models are typically described
by systems of ordinary differential equations (ODEs). For
example, chemical kinetics models that characterize chlorine
decay,2 the formation of disinfection byproducts,3,4 and the
fate of monochloramine5 are instrumental in the proper
management of drinking water systems and prevent
pathogen growth.6,7 Their importance is underscored by the
persistent occurrence of health-based drinking water quality

violations across the United States.8–10 Although chemical
models are valuable tools for describing and predicting
chemical concentrations in environmental systems, their
accuracy can be limited. Even when developed using
advanced analytical and experimental methods, the true
underlying mechanisms may remain partially unknown or
oversimplified.11 Moreover, these models are typically
developed under controlled laboratory conditions, whereas
real-world environmental systems introduce additional
complexities that can lead to discrepancies between observed
concentrations and model predictions.12 For instance, recent
work to extend a monochloramine decay model to include
N-nitrosodimethylamine (NDMA), a carcinogenic disinfection
byproduct, illustrates these challenges as notable mismatches
with experimental data remained despite advances in
mechanistic understanding.5,11,13

Many approaches have been proposed to improve
chemical kinetics models. Traditional calibration methods
often rely on optimization to adjust rate constants based on
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Water impact

This work proposes a hybrid chemical and data-driven modeling approach to improve predictions of disinfection decay and byproduct formation in
drinking water across varying pH levels. The proposed PINN-based method with the X-TFC technique integrates imperfect chemical models and incomplete
data to enhance the accuracy of chemical concentration predictions.O
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measurements,14 but they often assume that all influential
reactions are accounted for, which may not hold true.
Alternatively, data-driven methods replace the process-based
models with purely data-driven approaches, such as neural
networks, to model drinking water quality, including chlorine
residual and disinfection byproduct formation.12,15–20

However, data-driven approaches require extensive datasets,
which are often difficult to collect and are typically
incomplete or noisy, necessitating substantial pre-
processing.19–21 These models tend to overfit to training data,
leading to suboptimal performance outside their
development domain.22

To address the limitations of relying solely on chemical or
data-driven models, we propose a hybrid approach that
incorporates both imperfect chemical models and partial
data to improve predictions. Our methodology uses a
physics-informed neural network (PINN), a novel framework
that is gaining popularity across a range of scientific
domains.23–25 The main idea behind PINNs is to leverage
both process-based knowledge and data to enable more
accurate and robust predictions, particularly in scenarios
where physical models or sparse measurements alone are
insufficient.26–28

Despite the growing use of PINN techniques across
various scientific domains,29 several key limitations hinder
their application to chemical kinetics in drinking water.
These include (i) difficulty handling stiff equations, (ii) the
use of PINNs primarily as numerical solvers rather than
predictive tools, and (iii) reliance on time alone as an input.
The first limitation stems from the inherent challenge of
solving stiff ODEs, which are common in drinking water
reaction processes.30–32 These systems are characterized by
sharp gradients in the solution33 and pose difficulties for
explicit numerical methods, often requiring extremely small
timesteps or failing to converge altogether.34,35 Various
methods have been proposed to improve the performance
and reliability of PINNs, especially for stiff systems. These
include techniques for enhancing physical fidelity by
enforcing conservation laws,36,37 embedding domain-specific
knowledge into the model structure,38 or adaptively
balancing multiple loss components to address scale
differences.39,40 Some studies have also proposed methods
to reduce stiffness or improve training stability through
quasi-steady-state assumptions or variable rescaling within
the PINN framework.31,32 Other approaches focus on
improving computational efficiency through tools for
automatic differentiation41,42 or through neural ODE-based
architectures designed to accelerate learning and simulation
of chemical kinetics.43,44 The second limitation is that most
current PINN implementations in chemical kinetics focus
on solving governing equations without incorporating data
to improve predictive performance,33 reducing their
usefulness in settings where partial data is available.
Finally, many implementations rely exclusively on time as
an input while keeping all other parameters fixed;33

however, reaction rates in water systems are strongly

influenced by other chemical characteristics, such as pH,
which are essential for accurate modeling.5

To address these challenges, we propose a PINN-based
method that integrates both imperfect chemical models and
partial data to improve predictive performance. Specifically,
we: (i) utilize the eXtreme Theory of Functional Connections
(X-TFC) technique to model stiff chemical kinetics, aiming to
improve accuracy and overcome limitations of previous
technique. The X-TFC technique has demonstrated strong
performance in rapidly and accurately solving various ODEs,
including stiff chemical systems;33,45 (ii) enhance the X-TFC
technique by transforming it into a predictive tool for
chemical concentrations, integrating data and incorporating
time and pH as input parameters into the training process;
and (iii) demonstrate the performance of the proposed
technique using three chemical models of increasing
complexity for secondary disinfectant residuals in drinking
water systems: a simplified model for monochloramine
decay,5 an expanded monochloramine decay model
accounting for natural organic matter,5,46 and a model for
the formation of NDMA, a carcinogenic disinfection
byproduct.11 We verify the approach using both simulated
and experimental data. This integrated method, combining
data and chemical modeling, can be extended to other
chemical reactions and holds significant potential for
improving public health through more accurate water quality
predictions.

2. Methods

In this section, we first provide a brief overview of the X-TFC
method for solving ODEs. We then present our proposed
approach, including the formulation of the PINN model and
the construction of loss functions for both chemical kinetics
and data. Lastly, we describe the three chemical processes
used to demonstrate the method.

2.1. Overview of X-TFC for solving first-order ODEs

We first illustrate the key features and intuition of the X-TFC
method using a general nonlinear first-order ODE with an
initial condition, representing a typical chemical reaction.
Consider the following equation:

dy
dt

¼ f y;tð Þ; ∀t∈ t0;t f½ �
y t0ð Þ ¼ y0

8<
: (1)

where y(t) is the concentration of a chemical species at time
t, t0 is the initial time, tf is the final time, and y0 and f ( y,t)
are the initial concentration and the rate expression of a
chemical species, respectively.

The X-TFC method has two unique features that make
it an effective framework for solving stiff ODE systems
compared to other PINN approaches: (i) it analytically
satisfies initial conditions by reformulating the ODEs
rather than relying on loss terms, and (ii) its choice of
free function and training method enables high
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computational efficiency. First, unlike most methods that
enforce both the initial condition and the rate of change
of y(t) through loss functions during training,30,31 X-TFC
satisfies the initial condition analytically using a
constrained expression. This is achieved by incorporating
the initial condition, y(t0), into the constrained
formulation y(t) ≃ yCE(t) = g(t) + (y0 − g0), where g(t) is a
free function defined on a the time domain and satisfies
g(t) = g0. In our case, g(t) is represented by a shallow
neural network (NN), as described below. This formulation
ensures that yCE(t) satisfies the initial condition exactly.
Substituting this constrained expression into the original
ODE transforms it into an unconstrained problem, greatly
simplifying the solution process. Second, X-TFC trains
extremely quickly due to its choice of free function, g(t),
which optimally approximates y(t). While the free function
can be any real function on the simulation domain,45

prior studies have used deep NNs (Deep-TFC47), Chebyshev
polynomials (CSVM48), and eXtreme learning machines (X-
TFC49). In the X-TFC implementation, g(t) is a shallow,
fully connected NN with one hidden layer trained using
the extreme learning machine (ELM) method.33 ELM fixes
input weights and biases randomly and tunes only the
output weights, enabling fast training via iterative least
squares regression. This makes it significantly more
efficient than traditional backpropagation methods.50 To

solve the ODE, the new unconstrained form,
dy

CE

dt
f y

CE
;t

� �

is incorporated into the X-TFC framework via a loss
function, , which quantifies the discrepancy between
both sides of the equation. The model iteratively
minimizes until convergence, ensuring the solution
satisfies the original ODE and the initial condition.
Further details and the application of this approach in
our chemical kinetics modeling context are described next.

2.2. Extended X-TFC framework with data and pH integration

This section presents the proposed approach that improves
the predictive capability of the X-TFC method by integrating
data into the training process and incorporating pH as an
additional input. As a key variable influencing many aquatic
chemical reactions (particularly those that are acid-catalyzed
or involve acid–base equilibria), pH enables the model to
predict species concentrations at values beyond those used in
training (see Text S1 in the SI for additional context). An
overview of the main steps is shown in Fig. 1 and described
in detail in the following subsections.

2.2.1. Formulating the constrained expression. The system
of ordinary differential equations describing chemical
kinetics for multiple species as a function of time and pH is
given by:

dyi t;pHð Þ
dt

¼ f i t;y1;…; ym;pH
� �

∀t∈ t0;t f½ �
yi t0;pHð Þ¼ yi;0

8<
: (2)

where i = 1,…, m is the species, yi(t;pH) is the concentration
of a chemical species i at time t and given pH, t0 is the initial
time, tf is the final time, and yi,0 and fi(t,y1,…, ym;pH) are the
initial condition and the rate expression of a chemical
species i, respectively. The chemical models and species used
in this work are detailed in section 2.3.

After inclusion of pH, for each species and pH, the
modified constrained expression is defined as follows:

yCE(t;pH) = g(t;pH) + y(t0;pH) − g(t0;pH) (3)

Substituting the constrained expression and the free
function, we get a new ODE that depends only on t and the
free function g(t;pH):

dg t;pHð Þ
dt

¼ f g t;pHð Þ þ y t0;pHð Þ − g t0;pHð Þ; t;pHð Þ ∀t∈ t0;t f½ �
(4)

The next step is to identify, for each species, a free
function, g(t;pH) that optimally approximates y(t;pH). The
following subsections describe the extended X-TFC model
components used to solve this general formulation, and
detailed examples are provided in Texts S2–S5 in the SI.

2.2.2. Domain scaling. Prior to setting up the X-TFC
model, the t and pH domains are scaled into a standardized
domain, x ∈ [x0, xf], which is independent of the underlying
problem. This scaling process, typically used with x ∈ [0, 1]
or x ∈ [−1, 1], achieves uniformity and better training
accuracy.33 In this context, t ∈ [t0, tf] is mapped into x1 ∈
[x1,0, x1,f] using linear transformation, as follows:

x1 = x1,0 + c1(t − t0) (5)

where c1 is the mapping coefficient defined as:

dg t;pHð Þ
dt

¼ c1βT
dσ x1; x2ð Þ

dx1
(6)

Fig. 1 Schematic of the proposed X-TFC PINN for water quality
prediction.
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Similarly, pH ∈ [pH0, pHf] is mapped into x2 ∈ [x2,0, x2,f].
The model is trained on the values in the standardized
domain, discretized into Nt × NpH uniformly spaced training
points. Accounting for mapping t and pH into a standardized
domain, the constrained expression is reformulated as follows:

yCE(x1; x2) = g(x1; x2) + y(x1,0; x2) − g(x1,0; x2) (7)

2.2.3. Neural network setup. The free function is
represented using a shallow NN, defined as:

g t;pHð Þ ¼
XNL

j¼1

βjσ w1jx1 þ w2jx2 þ bj
� �¼

σ1

⋮
σL

2
64

3
75
T

β ¼ σTβ (8)

where NL is the number of neurons, wj, βj, bj ∈  are the
input weight, output weight, and biases, respectively,
corresponding to the jth neuron. w1j is the weight between
x1, and neuron j, and w2j is the weight between x2, and
neuron j. The activation function, σ j(·), and number of
neurons, NL, are selected by the user. We adopted the
hyperbolic tangent function (tanh) as the activation function
because its effectiveness in modeling still chemical
kinetics.33 The input weights and biases are sampled from a
random uniform distribution in the interval [−1, 1], leaving
only β values to be tuned during model training. The
coefficients β govern the NN's approximation of chemical
concentrations. To identify the optimal values, the NN is
trained using a gradient loss function, , which minimizes
the mismatch between the time derivatives and the governing
equations, and a data loss function, , which accounts for
discrepancies between predictions and available data.

2.2.4. Formulating the gradient loss function. The ODE
problem consists of two components: the initial value and
the rate of change with respect to time. The initial value is
enforced through the constrained expression in eqn (7),
while the rate of change is incorporated into the loss
function minimized during training. For each chemical
species and training point, the gradient loss quantifies
the discrepancy between the time derivative and the
governing function, i.e., the left- and right-hand sides of
eqn (4), where the free function g(t;pH) is represented by
the shallow NN given in eqn (8). To derive the gradient loss
expression, the first-order derivative of eqn (8) with respect
to time is:

dg t;pHð Þ
dt

¼ c1βT dσ x1; x2ð Þ
dx1

(9)

Higher order derivatives can also be derived using the
chain rule.33 Substituting the constrained expression and its
derivative into the gradient loss function yields:

where σi, j are the activation functions evaluated at the
(i, j) training points, and σ0 corresponds to the initial
conditions. Minimizing the loss function for each
captures the concentration dynamics defined by the
chemical model.

2.2.5. Formulating the data loss function. An additional
data loss term is included to incorporate available data. For a
specific species, this is achieved by minimizing the deviation
between the available data, ỹi, j, at point (i, j) and the NN
prediction:

(11)

We note that training requires extremely fine time
intervals (on the order of 10−5 seconds), which is
typically impractical for many laboratory or field settings
and the sampled data rarely align with the model's grid.
In section 3.3, we show how this challenge can be
addressed by interpolating the available data, e.g., using
regression or cubic splines, and evaluating it at the
required training points.51,52

2.2.6. Minimizing the loss functions. Minimizing the
gradient and data loss functions involves solving an
unconstrained non-linear optimization problem,

(12)

where m is the number of species, n is the number of
species for which data is available, ωi is a user-defined
weight applied to the loss function for each species in the
chemical model, and γi is a user-defined weight for each
species with a data loss term. This optimization problem
can be solved using non-linear least squares, such as those
based on the Gauss–Newton algorithm.33,53 In each
iteration, k, the loss functions are approximated using a
linear function, and the output weights, β, are updated as
βk+1 = βk + sΔβk, and s is the user-defined learning rate. The
Δβ are calculated as follows:

(13)

where  is the Jacobian matrix of the loss functions
calculated as:

(14)

The iterations continue until either the L2 norm of the loss
functions or the difference in the L2 norm between
consecutive iterations falls below a user-defined tolerance,(10)
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ε.33 Further details on the choice of hyperparameters are
included in the SI.

2.2.7. Time subdomains. Due to the stiffness of the
differential equations, X-TFC may result in inaccurate
solutions when implemented over a long time domain.33,45

In order to improve the solution accuracy, the entire time
domain is split into n = 1,…, NT logarithmic-spaced
subdomains, consisting of a separate X-TFC model in each
subdomain. In the first subdomain, the initial concentration
of each species is specified by the initial conditions of the
ODEs. In the subsequent subdomains, the initial
concentration of each species is set equal to the final
concentration of the previous subdomain, ynt f ¼ ynþ1

t0 . The

solution over the entire time domain is achieved by
concatenating the solutions from each subdomain.

2.3. Chemical kinetics process models

We demonstrate our proposed approach applied to model
monochloramine decay, its interaction with natural organic
matter,46 and its association with the formation of reactive
nitrogen species.11,54 All three processes involve bulk-phase
reactions occurring within the water column. We verify the
approach using both simulated and experimental data.
Monochloramine is used as a secondary disinfectant to
maintain a chlorine residual within a distribution system by
approximately 25% of water utilities in the United States,55

highlighting the need for accurate modeling. The associated
chemical processes involve stiff systems of differential
equations, driven by sharp gradients and large concentration
differences among species,5,11,46 making them a compelling
test case for the proposed PINN framework. The three
chemical processes are outlined below, with additional
details provided in the SI.

2.3.1. Simplified monochloramine decay. The chemical
kinetics model describing abiotic decay of monochloramine
was originally proposed in 1992 as the unified model,
comprising a set of 14 reactions.5 The reactions of the unified
model are detailed in Table S1 in the SI (reactions r1–r14).
The first chemical kinetics process (CKP1) model utilized in
this study consists of four species and three chemical
reactions (r1–r3), forming a subset of the unified model.
The four species included in CKP1 are TOTNH (total
concentration of ammonia and ammonium), TOTCl (total
amount of hypochlorous acid and hypochlorite),
monochloramine (NH2Cl), and dichloramine (NHCl2).
Additional details of acid/base chemistry relevant to the
speciation of TOTNH and TOTCl based on pH are included
in Text 1 in the SI. We initially utilize this model for
demonstration purposes, as it contains three of the primary
equations and species governing the monochloramine
decay process. Specifically, these reactions describe the
formation of monochloramine from hypochlorous acid and
ammonia, as well as the formation of dichloramine from
monochloramine and hypochlorous acid.5 The PINN model
for CKP1, including the ODE system of equations,

constrained expressions, loss functions, and Jacobian, are
detailed in Text S2 in the SI.

2.3.2. Monochloramine decay in the presence of natural
organic matter. In 2005, the unified model was expanded
by introducing two additional reactions to account for the
impact of dissolved organic carbon (DOC).46 The
interaction between monochloramine and DOC is
important because monochloramine undergoes rapid
initial decay within approximately 10 hours of the
reaction. This set of 16 reactions has gained widespread
acceptance and is extensively used for simulating
monochloramine decay in water distribution systems.6,56

We utilize the expanded model as our second chemical
kinetic process (CKP2). CKP2 consists of the unified
model for monochloramine decay (reactions 1–14 in Table
S1 in the SI) and two additional reactions (reactions 15–
16 in Table S1 in the SI) describing interactions with fast
and slow components of DOC with monochloamine and
hypochlorous acid.5,46 In addition to the four species
previously defined, TOTCl, TOTNH, NH2Cl, and NHCl2,
CKP2 models an unidentified intermediate species (I),
trichloramine (NCl3), DOC1 and DOC2. DOC1 represents
the fast-reacting portion of DOC, which is responsible for
the initial fast decay of NH2Cl (described in r15 in Table
S1). DOC2 represents the slow-reacting portion of DOC,
which reacts with hypochlorous acid and increases the
rate of monochloramine decay throughout the duration of
the reaction. Details for the X-TFC model for CKP2 are
included in Text S3 in the SI.

2.3.3. Monochloramine decay and formation of reactive
nitrogen species. In the third chemical kinetic process
(CKP3) model, we leverage recent research advancement
focused on identifying reactions and pathways associated
with the formation of disinfection byproduct resulting from
monochloramine degradation.11,54 In constructing the PINN
model for CKP3, we utilized an expanded version of the
unified model, recently proposed to incorporate pathways
for the formation of reactive nitrogen species (RNS). This
model specifically addresses NDMA, a carcinogenic
byproduct of drinking water disinfection.11 CKP3 consists of
the unified and reactive nitrogen species model (UN-RNS)
for chloramine decay and NDMA formation proposed in ref.
11. The UN-RNS model contains 143 reactions, of which 114
reactions describe the decay of peroxynitrous acid and
peroxynitrite.57 To simplify the implementation in X-TFC
without compromising accuracy, we approximated the 114
reactions with a single calibrated first-order reaction across
pH values 7–10, ensuring concentration agreement of
peroxynitrous acid and peroxynitrite between the full and
the surrogate UN-RNS models. This simplification is
supported by a sensitivity analysis in ref. 57, which
identified the dominant reaction as the first-order decay of
peroxynitrous acid to nitric acid. The final UN-RNS model
used here consists of 30 reactions and 15 chemical species.
In addition to the model, we used experimental data
reported in ref. 11.
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3. Results

Our methodology was carried out in three phases. In phase 1,
we used CKP1 and CKP2 to evaluate the modified X-TFC
model trained solely on chemical reactions of increasing
complexity, without additional data. In phase 2, we trained
the model using a combination of inaccurate reactions and
partial data, available for only a subset of species. In phase 3,
we applied the methodology to CKP3, involving a more
complex and inaccurate chemical model along with partial
experimental data.11 Prediction accuracy was assessed for in-
sample pH (used in training), out-of-sample pH (excluded
from training), and holdout species (not included in the
training data). Model error was computed using two
complementary metrics: weighted root mean squared error
(WRMSE) and weighted absolute percentage error (WAPE).
These metrics are commonly employed in machine learning
to account for varying importance or scale of data points.58,59

A full mathematical description and error values are provided
in Text S6 and Tables S2–S4 in the SI. In the results below,
we use an initial monochloramine (NH2Cl) concentration of
4.22 × 105 mol l−1 (equivalent to 3.0 mg l−1 as Cl2) for CKP1
and CKP2, consistent with typical values found in water
treatment plant effluent entering distribution systems.60–62

For CKP3, we adopt the initial concentrations reported in the
experimental study.11 All results are compared against
solutions obtained using ode15s, a MATLAB solver designed
for stiff ODEs.63 The training times for all models range from
5 to 70 seconds, depending on the model, using a machine
equipped with an Intel(R) Core(TM) i7-1165G7 CPU@2.80
GHz and 16 GB of RAM.

3.1. Phase 1: chemical reaction-based training and validation

3.1.1. In-sample pH training. We first evaluate the X-TFC
model's ability to estimate concentrations of four species over
a 7 day period. The model is trained using only the chemical
kinetics equations (excluding advection and diffusion) for
CKP1 and CKP2 at in-sample pH values of 7, 8, 9, and 10.
Fig. 2 and 3 present the results for CKP1 and CKP2,
respectively, with solid lines showing X-TFC predictions and
dashed lines representing solutions from ode15s. The close
agreement between the two confirms the X-TFC model is
effective in solving stiff ODEs with varying scales and sharp
gradients at in-sample pH values. Details on the loss
functions and hyperparameters are provided in Texts S2 and
S3 of the SI.

3.1.2. Out-of-sample pH validation. To evaluate how well
each X-TFC model is able to interpolate for out-of-sample pH
values, we assessed the trained X-TFC model across pH 7.5,
8.5, and 9.5. Results for CKP1 and CKP2 are shown in Fig. 4
and 5. For CKP1, the X-TFC results closely matches the
ode15s solution for TOTNH, NH2Cl, and NHCl2
(Fig. 4a, b and d). While the X-TFC result for TOTCl follows a
similar trend, there is a difference in the predicted
concentration. This is likely due to the rapid initial increase
in TOTCl, which challenges the model's accuracy.

Additionally, the TOTCl response is non-monotonic with
respect to pH, i.e., it is highest at pH 10, followed by pH 7, 9,
and 8, making interpolation difficult. We hypothesize that

Fig. 2 CKP1 X-TFC results for in-sample pH values compared to
chemical model solved using ode15s: a) TOTNH, b) TOTCl, c) NH2Cl,
and d) NHCl2. X-TFC (solid lines), chemical model (dashed lines),
different pH values (colored lines).

Fig. 3 CKP2 X-TFC results for in-sample pH values compared to
chemical model solved using ode15s: a) TOTNH, b) TOTCl, c) NH2Cl, d)
NHCl2 e) I, f) DOC2, g) NCl3, and h) DOC1. X-TFC (solid lines), chemical
model (dashed lines), different pH values (colored lines). Note that
DOC1 does not vary with pH, hence the lines for different pH values
overlap.
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this irregular pH-response pattern contributes to the X-TFC
model's reduced accuracy for out-of-sample pH values in this
system.

Out-of-sample results for CKP2 also show good agreement
with ode15s solutions for TOTNH, NH2Cl, I, DOC1 and DOC2

(Fig. 5a, c, e, f and h). However, NHCl2, NCl3, and I show
negative chemical concentrations during parts of the
prediction period. These values result from model error and
do not reflect physically meaningful concentrations. Despite
this, the model's performance for species I is considered
strong, with negative values appearing only briefly at pH 7.5.
For NHCl2 and NCl3, large differences in concentration
magnitudes between training points, ranging from 10−6 to
10−8 for NHCl2 and 10−11 to 10−13 for NCl3, pose challenges
for interpolation at pH 7.5 (see Fig. 3). In that case, the
model slightly overpredicts peak values but still captures the
correct trend and converges toward the ground truth over
time. Similar deviations are observed at pH 8.5 and 9.5,
though overall trends remain consistent with the true
model.

3.2. Phase 2: integrating inaccurate chemical reactions with
partial data

Our primary objectives are twofold: (i) to assess the X-TFC
model's ability to compensate for inaccuracies in the
chemical model by leveraging available data, and (ii) to
evaluate its predictive accuracy for out-of-sample pH values
and hold-out species for which no training data were
provided. These challenges reflect real-world conditions,
where chemical models may not capture all reaction
dynamics and data are often available for only a subset of
species.

3.2.1. Evaluation strategy. To simulate such scenarios, we
train the X-TFC model using inaccurate reactions and partial
data limited to selected species. Here, training data refers to
data used for in-sample pH values, and hold-out species are
those for which no data was used during training. To ensure
the model is not simply overfitting to in-sample data, we
validate its performance on out-of-sample pH values using
the same trained X-TFC model. Hold-out data refers to data
excluded from training and used as ground truth for
assessing prediction accuracy under these out-of-sample
conditions.

For CKP1, training data was provided for TOTNH and
TOTCl at in-sample pH values (7, 8, 9, and 10), while data
for held-out species NH2Cl and NHCl2 was excluded. The
chemical model results were generated by solving the
chemical reactions described in section 2.3.1 using the
ode15s solver. To simulate data with model inaccuracies,
we generated the training data using increased rate
constants, deviating from the original reaction kinetics.
This generated data serves as the ground truth for
evaluating the X-TFC model's performance. Details on
model setup, loss functions, and hyperparameters are
provided in Text 4 of the SI.

For CKP2, a more complex kinetic model, the X-TFC
training used only the first 14 of 16 reactions, simulating
incomplete mechanistic knowledge consistent with the state

Fig. 4 CKP1 X-TFC results for out-of-sample pH values compared to
chemical model using ode15s: a) TOTNH, b) TOTCl, c) NH2Cl, and d)
NHCl2. X-TFC (solid lines), chemical model (dashed lines), different pH
values (colored lines).

Fig. 5 CKP2 X-TFC results for out-of-sample pH values compared to
chemical model solved using ode15s: a) TOTNH, b) TOTCl, c) NH2Cl, d)
NHCl2 e) I, f) DOC2, g) NCl3, and h) DOC1. X-TFC (solid lines), chemical
model (dashed lines), different pH values (colored lines). Note that
DOC1 does not vary with pH, hence the lines for different pH values
overlap.
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of understanding prior to 2005.46 The full 16-reaction system
(section 2.3.2, Table S1) was used to generate ground truth
data via ode15s. Training data were limited to TOTNH,
TOTCl, and NH2Cl at in-sample pH values (7, 8, 9, and 10),
with all other species treated as hold-out. Species DOC1 and
DOC2 were omitted entirely, as they are products of the
excluded reactions. Implementation details are provided in
Text 5 of the SI.

3.2.2. CKP1 results. The X-TFC model accurately predicts
chemical concentrations across both in-sample and out-of-
sample pH values, even for species excluded from training,
demonstrating its ability to generalize beyond both data and
model limitations. Fig. 6a, c and e show X-TFC predictions for
in-sample pH values (7 and 8), while Fig. 6b, d and f show
predictions for out-of-sample pH values (7.5 and 8.5). Results
for pH 9, 9.5, and 10 are omitted for clarity. Solid lines
represent X-TFC predictions; dotted lines indicate training data
(black) and hold-out data (color), which serve as ground truth;
and dashed lines represent the inaccurate chemical model.

For TOTNH and TOTCl, the X-TFC predictions match the
training data for in-sample pH, demonstrating successful
learning despite inaccuracies in the reaction model.
Remarkably, X-TFC also accurately predicts concentrations of
the hold-out species NH2Cl, even though no training data for
this species were used. This underscores the model's ability
to leverage partial data and mechanistic structure to infer

missing species behavior. If X-TFC were purely data-driven, it
could not predict NH2Cl concentrations. Conversely, relying
solely on the inaccurate chemical model yields poor
predictions for all species. The X-TFC model succeeds by
integrating both imperfect chemical equations and partial
data, correcting for model deficiencies and aligning closely
with the ground truth. For out-of-sample pH, TOTNH and
TOTCl predictions remain accurate, though a slight offset is
observed for TOTCl, consistent with trends noted in section
3.1.2. Additional insights into NHCl2 predictions are
discussed in section 4.

3.2.3. CKP2 results. Consistent with previous results, the
X-TFC model accurately predicts the concentrations of a
hold-out species in a more complex chemical system, even
without access to its training data. Fig. 7 illustrates this
performance for the unidentified intermediate species I,
which we include in the analysis since it is hypothesized
to be HNO, a precursor to NDMA formation.11 This
species was excluded from training but predicted
accurately by the model for both in-sample and out-of-
sample pH values. Solid lines indicate X-TFC predictions,
dotted lines show hold-out data, and dashed lines
represent the incomplete chemical model. Results for all
other species in this system show similar accuracy and
are included in Fig. S1–S5 of the SI.

Fig. 6 CKP1 X-TFC results compared to chemical model, training data,
hold-out data, and hold-out species. In-sample pH results: a) TOTNH,
c) TOTCl and e) NH2Cl. Out-of-sample pH results: b) TOTNH, d) TOTCl
and f) NH2Cl. X-TFC (solid lines), chemical model (dashed lines) training
data (dotted, black), hold-out data and hold-out species (colored
dotted lines), different pH values (colored lines).

Fig. 7 CKP2 X-TFC results compared to chemical model and hold-out
species I (unidentified intermediate): a) in-sample pH, b) out-of-sample
pH. X-TFC (solid lines), chemical model (dashed lines), hold-out data
(dotted lines), and different pH values (colored lines).
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3.3. Phase 3: application to experimental data and a complex
chemical system

To demonstrate the applicability of the X-TFC method to
experimental data and a larger, more complex chemical
system, we use the chemical reaction scheme and data from
ref. 11. We trained two separate X-TFC models, each
incorporating a different type of data. The first X-TFC model
used experimental measurements from ref. 11, which
reported concentrations for five species: NH2Cl, NHCl2,
NDMA, N2O, and O2, at pH 7, 8, 9, and 10. While this dataset
provides real kinetic observations, it lacks measurements for
several species, limiting our ability to evaluate model
performance on unmeasured (hold-out) species. Therefore, to
overcome this limitation, a second X-TFC model was trained
using simulated data generated from the same chemical
model but with deliberately altered rate constants (reduced
from those in ref. 11) to introduce model-data mismatch.
This approach mirrors that used in CKP1 phase 2 and
provides data for all species, enabling evaluation of model
performance on hold-out species. Because X-TFC training
requires extremely fine time intervals (on the order of 10−5

seconds), we interpolated the experimental measurements
using cubic splines and regression methods51,52 to align
them with the X-TFC grid. The interpolated curves used for
training are shown in Fig. S6 of the SI.

In both models, X-TFC accurately reproduces the training
data for the five measured species. Fig. 8 focuses on a hold-
out species, TOTONOO (total peroxynitrite and peroxynitrous
acid). In Fig. 8a, where simulated data was used, the X-TFC
predictions closely match the hold-out data, outperforming
the standalone chemical model (dashed line). In Fig. 8b,
where experimental data was used, no hold-out data exists
for TOTONOO. However, the model's success in the
simulated case provides confidence in its predictions under
the experimental setup as well. Additional analysis shows
similarly strong performance for other hold-out species (e.g.,
HNO and NO−) in the simulated case, further supporting the
ability of X-TFC to make reliable predictions even for species
not included in training.

4. Discussion
4.1. Future directions

This study demonstrates the potential of the X-TFC
framework for advancing PINNs in water quality modeling,
experimental design, and public health protection, with key
findings and future directions summarized below.

(i) Toward interpretability of PINN predictions. In general,
PINNs include some species with training data and others
without. For species with data, predictions are shaped by
both the data loss and the gradient loss, while for species
without data, concentrations are inferred from the governing
reactions and constrained species for which data is available.
This framework shows not only which species are well
constrained by data, but also how constraints propagate
through reactions to unmeasured species, providing
interpretability beyond simple curve fitting. Fig. 9 illustrates
this for CKP1. X-TFC accurately predicts TOTNH and TOTCl,
which are constrained by the data (Fig. 9a and b). The hold-
out species NH2Cl follows the expected depletion trend
(Fig. 9c), while NHCl2 is predicted lower than the chemical
model (Fig. 9d). This is because NHCl2 depends on NH2Cl
through the third reaction in CKP1 (Table S1 in the SI), and
since X-TFC underpredicts NH2Cl relative to the chemical
model, the resulting NHCl2 concentration is also
underestimated. In this way, the X-TFC model demonstrates
how including data for some species can propagate through
the reactions, pointing to which processes and
measurements most strongly affect the accuracy of others.
Future work should build on this by developing systematic
interpretability analyses, such as residual or gradient-based
analysis, that can guide experimental design and identify the
most critical species to measure.

(ii) Integrating with hydraulic models for system-wide
water quality estimation. When coupled with a calibrated

Fig. 8 CKP3 X-TFC results for TOTONOO species compared to
chemical model and hold-out data at pH 8 using training data for NH2-
Cl, NHCl2, NDMA, O2 and N2O, species. a) Training and hold-out data
generated by simulation and b) training data generated by laboratory
experiments, no hold-out data exists for TOTONOO.

Fig. 9 X-TFC results for CKP1 compared to chemical model, training
data, and hold-out species for pH 7. a) TOTNH, b) TOTCl, c) NH2Cl,
and d) NHCl2. X-TFC (solid lines), chemical model (dashed lines)
training data (dotted, black), hold-out species (colored dotted line).
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hydraulic model, the X-TFC framework can support water
quality estimation across drinking water distribution
systems, capturing both bulk and wall reactions. Hydraulic
models can estimate water age and pipe-specific conditions
throughout the network.64 X-TFC models, trained to relate
chemical concentrations to time and combined with pipe-
specific conditions for wall reactions, can then use this
information to estimate concentrations at any location.
Although this integration introduces additional complexity, it
enables more precise spatial and temporal mapping of water
quality, particularly when X-TFC is trained on location-
specific data.

(iii) Real-time application through digital twin integration.
The extremely short training time of X-TFC model
(ranging from 5 to 70 seconds, depending on the model
complexity), makes it well-suited for real-time
applications.65 Utilizing near-real-time data from water
quality sensors within the water distribution network, the
X-TFC model could be continuously re-trained to obtain
accurate predictions of water quality. This approach would
complement other data assimilation techniques, such as a
Kalman filters.66

(iv) Incorporating multiple parameters. By including pH
as an input variable, the X-TFC model supports predictions
across a range of water quality conditions. This flexibility
can be extended to incorporate other variables such as
alkalinity or oxidation–reduction potential (ORP). As real-
time sensors become increasingly widespread in distribution
systems and premise plumbing,67,68 the ability to train
PINNs on multiple input parameters will be essential. Due
to the model's fast evaluation time, sensor outputs for pH,
ORP, or other variables could be used in real time to
continuously estimate concentrations of unmeasured
chemical species.

(v) Improving predictions for emerging contaminants. As
water quality concerns intensify and chemical models
continue to evolve, the X-TFC framework offers a promising
path to correct model inaccuracies and improve predictions
of key chemical species. For example, a chemical kinetics
model was previously developed to describe the formation of
brominated haloamines and other toxic brominated
disinfection byproducts.69 Although the model generally
aligned with experimental data, notable discrepancies
remained. Given the expected growth in desalinated seawater
use and the resulting risks of DBP formation,70 integrating
the X-TFC PINN framework could substantially improve
predictions of brominated species, informing the design and
operation of drinking water infrastructure in regions with
high bromine levels in source water.

4.2. Limitations and future work

There are several promising directions to advance the
proposed X-TFC modeling framework, both in terms of
algorithmic development and chemical modeling: (i)
Hyperparameter tuning: the X-TFC model includes several

hyperparameters (e.g., learning rate, loss weights, neurons,
subintervals). In this study, tuning was manual but guided by
chemical understanding, for example, giving higher weights
to low-concentration species to better capture their dynamics.
A more systematic sensitivity analysis (e.g., using KKT
conditions or error propagation via MLE39,40) could improve
both performance and reproducibility. (ii) Data adequacy and
uncertainty quantification: as with any data-driven approach,
performance depends on the quality and availability of data,
and the method is not guaranteed to work under all
conditions. A key advantage of PINNs is that they require
substantially less data than purely data-driven methods
because they combine process-based modeling with
observations. For example, in section 3.4 (CKP3), when
working with experimental data, interpolation (via regression
or cubic splines) was a necessary first step to address sparsity
and irregular sampling. Future work should explicitly
quantify different sources of uncertainty, such as
measurement noise, limited data, and process, and assess
their relative contribution to overall PINN performance.71 (iii)
Random seed dependence: model performance showed
sensitivity to the random seed, likely due to the initialization
of weights and biases. Prior work72 demonstrated that
initializing weights to enhance variability across the
activation domain improves model robustness. However,
their method is limited to single-input models. Future
research should explore initialization strategies that promote
activation diversity in multi-input settings. (iv) Optimization
strategy: we employed a Gauss–Newton based method for
minimizing the X-TFC loss functions. Future work could
explore alternative optimizers, including Adam,73 L-BFGS,74

and second-order methods,75 to improve convergence speed
and predictive performance. (iv) Gradient computation: this
study manually derived and applied analytical gradients to
ensure transparency and reduce overhead. Future
implementations could benefit from automatic
differentiation tools provided by frameworks such as
Autograd41 and JAX,42 which offer greater flexibility and ease
of use. (v) Dynamic pH conditions: we assumed a well-buffered
system with constant pH, but in real applications, pH may
vary over time. Future implementations could allow time-
varying pH either by adjusting it across time subintervals or
by modeling hydrogen ion dynamics explicitly within the
reaction network. (vi) Application to other chemical systems:
while this study focused on monochloramine decay and
NDMA formation, the X-TFC framework should also be
evaluated on other chemical processes, such as free
chlorine,76 trihalomethane formation,3 nitrification in
distribution systems,77 and bromine haloamine formation,69

to assess its generalizability across diverse water quality
contexts.

5. Conclusions

Chemical kinetic models are essential tools for simulating
the formation and decay of chemical species in drinking
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water distribution systems. However, their accuracy is often
limited by incomplete knowledge of reaction dynamics. This
study presents a PINN framework based on the X-TFC
methodology that integrates partial empirical data with
imperfect chemical models, enabling improved modeling of
stiff chemical kinetics. We demonstrated the effectiveness of
this approach across three chemical reaction schemes of
increasing complexity, all relevant to monochloramine decay
and the formation of NDMA, a carcinogenic byproduct of
water disinfection. Our results show that the X-TFC model
can accurately predict chemical concentrations, even for
species excluded from training, with computation times on
the order of seconds to minutes. This makes the approach
especially promising for real-time or system-wide water
quality assessments. Beyond water systems, the framework
offers potential for other domains characterized by stiff ODEs
and partial observations, such as atmospheric chemistry78

and systems biology,79 highlighting its broad applicability
across environmental and biological sciences.
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