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Living organisms carry out a wide range of remarkable functions, including the synthesis of thousands of
simple and complex chemical structures for cellular growth and maintenance. The manipulation of this
reaction network has allowed for the genetic engineering of cells for targeted chemical synthesis, but it
remains challenging to alter the program underlying their fundamental chemical behavior. By taking

advantage of the unique ability of living systems to use evolution to find solutions to complex problems,
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Accepted 21st September 2023 we have achieved yields of up to ~95% for three C4, commodity chemicals, n-butanol, 1,3-butanediol,

and 4-hydroxy-2-butanone. Genomic sequencing of the evolved strains identified pcnB and rpoBC as

DOI: 10.1039/d35c02773b two gene loci that are able to alter carbon flow by remodeling the transcriptional landscape of the cell,
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Introduction

Living systems rely on a dynamic and complex network of
chemical reactions to carry out the tasks needed to coordinate
cellular growth and maintenance, allowing transformation of
simple carbon sources into the thousands of molecules needed
for life. As such, cells possess an enormous synthetic potential
that can be engineered for targeted chemical synthesis,
enabling the reduction of traditionally multi-step synthetic
routes into a single fermentation step that can be carried out in
water and under ambient temperature and pressure. Their
ability to utilize building blocks including sugars from renew-
able plant biomass, CO,, and CH, for biosynthesis opens
a route to shifting industrial chemical production away from its
traditional reliance on petrochemical feedstocks towards
a universal fermentation platform.

A major challenge in the development of cell-based chemical
synthesis is that the reaction network used to produce target
compounds is also used to carry out basic cell functions. These
reactions are thus subject to many levels of regulation in order
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highlighting the potential of synthetic pathways as a tool to identify metabolic control points.

to maintain the necessary coordination between parts of the
metabolic network.”® In particular, key hubs of the metabolic
map, such as the central carbon pathways of glycolysis and the
tricarboxylic acid (TCA) cycle, form many connections with the
rest of the network and are difficult to manipulate as their
behavior is affected by multiple inputs and outputs.* As a result,
the construction of high-yielding pathways can be difficult to
achieve as evolution drives the cell to direct carbon flux to cell
growth and biomass in competition with engineered
biosynthesis.

Since these central carbon pathways are closely tied to cell
state, they are correspondingly subject to homeostatic mecha-
nisms to ensure robustness to change. Therefore, many simul-
taneous alterations are needed to rationally engineer carbon
flow to insufficiently active nodes.”® However, an advantage
that living systems provide is that evolution can be used to solve
this multi-dimensional problem if product titers can be tied to
cell growth.®* In this work, we demonstrate the design and
evolution of synthetic pathways to selectively produce three
industrially-relevant C, compounds: 1,3-butanediol (butylene
glycol, BDO), 4-hydroxy-2-butanone (HB), and n-butanol
(Fig. 1A). These three compounds are used for various purposes,
ranging from pharmaceutical precursors (BDO and HB) to
a drop-in gasoline replacement (n-butanol).”™** In particular,
BDO can be used as a humectant or solvent for a variety of
different high-value products, as well as a co-monomer for
production of various polymers. These three compounds can
also be further dehydrated to produce the C, monomers 1,3-
butadiene (from BDO),"* methyl vinyl ketone (from HB),"” and 1-
butene (from n-butanol).’® Using a genetic selection, the yields
of these pathways were improved from 11-20% to near

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Synthetic pathways for production of C4 monomers. (A) Design of a platform for production of C4 monomers based on n-butanol
formation. Identification of selective aldehyde and alcohol dehydrogenases enables the formation of three different C4 products from glucose:
n-butanol, 1,3-butanediol, and 4-hydroxy-2-butanone via engineered microbes. Chemical dehydration of these compounds produces the
industrially-relevant C4 monomers 1-butene, butadiene, and methyl vinyl ketone, respectively. phaA, acetoacetyl-CoA synthase; phaB, R-
specific NAD(P)H-dependent acetoacetyl-CoA dehydrogenase; hbd, S-specific NADH-dependent acetoacetyl-CoA dehydrogenase; crt, cro-
tonase; ter, trans-enoyl-CoA reductase; adhE2, bifunctional aldehyde/alcohol dehydrogenase; aldh, aldehyde dehydrogenase; adh, alcohol
dehydrogenase. Genes derived from the poly(hydroxy)alkanote pathway of Ralstonia eutrophus are labeled in red. Genes derived from the
acetone—butanol-ethanol pathway of Clostridium acetobutylicum are labeled in royal blue. Gene from Treponema denticola is labeled in black.
(Light blue aldh and adh genes denote their general function.) (B) Anaerobic fermentation pathways can operate at near quantitative yields in the
absence of O,. Under these conditions, substrate-level phosphorylation pathways such as glycolysis serve as the only route to ATP synthesis but
require the use of NAD™. In Baker's yeast (Saccharomyces cerevisiae), decarboxylation of pyruvate and subsequent reduction to ethanol allow for
the stoichiometric regeneration of NAD* and is required for cell survival. Because of the low ATP yield under anaerobic growth, cell growth as
well as flux to anabolic pathways utilizing the key building block, acetyl-CoA, are greatly reduced. As a result, acetyl-CoA is not readily available
for the downstream biosynthesis of a broad range of target compounds during anaerobic growth. (C) Production of n-butanol and biomass in E.
coli DH1 containing a synthetic butanol pathway (pBT33-Bul pCWori-ter.adhE2 pBBR1-aceEF.lpd) under aerobic and anaerobic conditions. Data
are mean =+ s.d. of biological replicates (n = 3).

quantitative yields. Genome sequencing of the evolved strains
showed that two gene loci, pcnB and rpoBC, were mutated in the
most successful daughter cells. Subsequent characterization
demonstrated that mutations at these two loci are sufficient to
capture the majority of the evolved phenotype and likely operate
by large-scale shifts in the transcriptome. Taken together, these
results highlight the possibility of synthetic pathways to be used
not only for scalable chemical production but also as a platform
for discovery and study of cellular function.

Results and discussion
Implementation of a genetic selection for C, production

Anaerobic cell culture is often preferred for industrial fermen-
tations because limitations in culture oxygenation on large-
scale can be eliminated and theoretical product yields can be
increased."” Under anaerobic conditions, carbon assimilation

© 2023 The Author(s). Published by the Royal Society of Chemistry

pathways like glycolysis serve as the primary route for cellular
ATP synthesis since the lack of oxygen as a terminal electron
acceptor makes aerobic respiration unavailable (Fig. 1B).>** The
relatively low ATP yield from substrate-level phosphorylation
then results in a minimal loss of carbon to competing cell
growth or biomass accumulation.*® In addition to 2 mol of ATP,
2 mol of NADH is also generated from 1 mol of glucose through
glycolysis. Fermentative pathways provide a mechanism to
oxidize NADH to NAD", which is needed for glycolysis to remain
operational. High flux through fermentation pathways is thus
driven by cell survival. Lactate and ethanol production provide
the paradigms for this process, resulting in rapid and near-
quantitative yield from sugar via pyruvate (Fig. 1B).

Like ethanol and lactate, the C, alcohol, n-butanol, can serve
to balance glucose fermentation because its biosynthesis recy-
cles the four NADH produced per molecule of glucose. However,
a major challenge for production of longer-chain target
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compounds is that they typically require building blocks from
pathways downstream of glycolysis and whose intracellular
concentrations are regulated at many levels. One of the most
important of these building blocks is acetyl coenzyme A (CoA),
which is a two-carbon intermediate that serves as a central point
of many metabolic decision points.**** Acetyl-CoA synthesis and
usage are tightly controlled with flux dropping under anaerobic
conditions as both biosynthesis and cell growth are greatly
reduced during fermentative growth (Fig. 1B). Indeed, n-
butanol titers are greatly lowered when our first-generation
Escherichia coli production strain was cultured anaerobically
(Fig. 1C)." In order to reduce carbon flow to competing native
pathways, the major fermentation pathways were knocked out
of E. coli DH1 to generate DH1 A4ldhA AadhE AfrdBC ApoxB
AackA-pta (DH1A5),'**> a selection strain that would require
production of n-butanol for growth under anaerobic conditions
(Fig. 2A, ESI Table S1 and Fig. S11)."* In order to provide
a means to increase flux to acetyl-CoA, the pyruvate
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dehydrogenase complex (PDHc, aceEF-Ipd) was overexpressed
for the oxidative decarboxylation of pyruvate to produce acetyl-
CoA and NADH to stoichiometrically balance n-butanol
production from glucose.

The fermentation knockout strain DH1A5 was found
competent to grow under anaerobic conditions when the
synthetic n-butanol pathway consisting of phad, hbd, crt, ter,
and adhE2 was expressed (Fig. 1). However, increased ethanol
production, rather than n-butanol, was observed (Fig. S27). The
most likely source of ethanol was the promiscuity of AdhE2,
which is a bifunctional aldehyde-alcohol dehydrogenase that
produces both n-butanol and ethanol from the respective two-
step reduction of butyryl-CoA and acetyl-CoA in its native host
(Fig. 2A).>*** In this case, direct reduction of two equivalents of
acetyl-CoA to ethanol would also regenerate the necessary four
NAD" per glucose and creates a short circuit in the pathway to
circumvent n-butanol production (Fig. 2A). Biochemical anal-
ysis of different AdhE2 constructs was carried out in order to

W n-Butanol @ Ethanol
6
5L e
4 + -
5 .
2 L

AdhE2 ALDH46 ALDH46.ADH Trc
| BDO @ HB
2.5
2.0 +
1.5
1.0
0.5
PhaA PhaAB PhaAB
ALDH7.ADH2 ALDH7.ADH2 ALDH7.ADH2
sADH1

Fig.2 Production of C, monomer precursors in engineered E. coli. (A) Design of a host for the anaerobic production of target compounds from
acetyl-CoA. Deletion of the major fermentation pathways of E. coli in DH1A5 allows the synthetic n-butanol pathway to be the major mechanism
for balanced NAD* regeneration via the acetyl-CoA intermediate. However, the promiscuity of AdhE2 towards acetyl-CoA and butyryl-CoA leads
to ethanol fermentation as a pathway short-circuit that also maintains stoichiometric redox balance. (PDHc, pyruvate dehydrogenase complex;
PFL, pyruvate formate lyase). (B) Screening of AdhE, ALDH, and ADH candidates in E. coli DH1A5 pBBR1-aceEF.lpd pBT33-Bu?2 yields a C4-
selective fermentation pathway under anaerobic conditions. When AdhE2 is included, high levels of ethanol are produced along with the target
n-butanol product. Replacement with ALDH46 reduces ethanol production to background levels but concomitantly drops n-butanol titers.
Addition of the ADH domain from AdhE2 and tuning the promoter for expression allows for high n-butanol yields with very little ethanol being
formed. All strains were grown anaerobically in TB with 2.5% (w/v) glucose media for 3 days post induction. (AdhE2, pCWori-ter-adhE2; ALDH46,
pCWori-ter.aldh46; ALDH46.ADH, pCWori-ter-aldh46.ADHAdNEZ2; Trc, pCWori.trc-ter-aldh46. ADHAdhE?2). (C) Screening of ALDH, ADH, and
SADH candidates in E. coli pT533-phaA/phaAB pCWori.trc-ter-ALDH.ADH led to identification of the ALDH7.ADH2 pair for production of HB and
BDO under anaerobic conditions. In the absence of PhaB, HB is selectively produced. Addition of PhaB leads to a1 : 1 ratio of both products being
formed. The inclusion of SADH then allows for HB to be converted to BDO. All strains were grown anaerobically in TB with 2.5% (w/v) glucose
media for 5 days post induction. Data are mean + s.d. of biological replicates (n = 3).
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assess the selectivity of each domain for the C; and C,
substrates (Fig. S31). Although there is a ten-fold preference for
butyryl-CoA over acetyl-CoA, the higher k../Ky for the C,
substrate arises directly from a 10-fold lower Ky, (10 £ 1 uM)
with no change in k., within error. Given that the Ky, for acetyl-
CoA (100 + 10 pM) is well within the expected physiological
range (0.5-1.0 mM), it is likely that AdhE2 is capable of
producing both n-butanol and ethanol at competitive rates
under intracellular conditions. Although the mechanism of
substrate channeling between the aldehyde dehydrogenase
(ALDH) and alcohol dehydrogenase (ADH) domains is not yet
fully understand, the high Kys (4.0-4.5 mM) measured for the
aldehyde intermediate imply that substrate selection is
controlled by the ALDH domain. Thus, we set out to identify
enzymes that could efficiently carry out the reduction of butyryl-
CoA while excluding acetyl-CoA.

Identifying C,-selective dehydrogenases

Enzymes that tailor acyl-CoA substrates are typically permissive
to a broad range of chain lengths, making the exclusion of
a smaller substrate, like acetyl-CoA, challenging.>®** We there-
fore initiated a search for acylating ALDH candidates with
characterized substrate selectivity and found three C,-specific
bifunctional AdhE2 homologs, four C,-specific monofunctional
ALDHs, and one atypical C,-specific ALDH (Fig. S47). These
sequences were arranged in a biased phylogenetic tree with
branching guided by characterized substrate preference
(Fig. S4t). Next, the entire ALDH gene family from the Pfam
database was assembled into a second phylogenetic tree based
on the first tree (Fig. S47) to generate a full family tree of <1200
sequences.” This tree was dominated by monofunctional ALDH
sequences (67%) as the majority of ALDH domains found in the
Pfam database are derived from standalone enzymes. Approxi-
mately 40 mutations were selected from the natural sequence
diversity in the C, branch and used to design 95 AdhE2 variants
(Table S17). Each variant contained 3-5 mutations, and every
mutation was present in multiple variants, ensuring that each
mutation can be evaluated in multiple contexts. These AdhE2
variants were synthesized, cloned into expression vectors, and
co-transformed into DH1A5 with the appropriate butanol
production plasmids for in vivo screening (Fig. S5t). Around
two-thirds of the variants (66 variants, 69%) remained active;
however, only mild improvements in the n-butanol: ethanol
ratio were observed.

Given the modest gains using this approach, we turned our
attention to screening wild-type ALDH sequences falling within
the C,4-selective branch since it seemed likely that the sequence
information derived mostly from monofunctional ALDHs did
not accurately predict the selectivity of their bifunctional
counterparts. The C, branch of the tree was widely sampled to
incorporate the full diversity of this branch in a small number of
sequences comprising 15 bifunctional AdhE2 homologs and 18
monofunctional ALDHs (Table S17). We found that all bifunc-
tional enzymes except one yielded lower n-butanol:ethanol
ratios compared to AdhE2 (Fig. S57), possibly because a large
majority of sequenced AdhE2 homologs are thought to be

© 2023 The Author(s). Published by the Royal Society of Chemistry
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involved in ethanol generation and likely display a natural
preference for acetyl-CoA. In contrast, 15 out of 16 monofunc-
tional ALDHs produced more n-butanol than ethanol, possibly
because the natural substrate range is larger with this enzyme
family (Fig. S6T). Out of these monofunctional ALDHs, ALDH46
was selected as the final candidate for butyryl-CoA reduction.
We next sought to improve overall n-butanol production to the
levels observed using AdhE2 (Fig. 2B). We reasoned that the
bottleneck was the reduction of butyraldehyde to n-butanol due
to the absence of the ADH domain. In our biochemical studies
of AdhE2, we characterized a truncation mutant consisting of
solely the ADH domain of AdhE2 (ADHaqng,) that surprisingly
showed an order of magnitude decrease in Ky for butyraldehyde
to 300 £ 50 uM. We thus supplemented our pathway containing
ALDH46 with the ADHpgpg, domain, which more than doubled
n-butanol titers. Increasing the promoter strength for expres-
sion of ALDH46-ADH sgnk, then improved n-butanol titers in the
two-protein system beyond that observed in the original
bifunctional AdhE2-dependent pathway, with no ethanol
production above background (Fig. 2B).

Developing a platform for the production of C, commodity
chemicals

With a family of C,-selective monofunctional ALDHs in hand,
we set out to explore the possibility of producing other impor-
tant C, commodity chemicals from our n-butanol pathway. In
particular, reduction of 3-hydroxybutyryl-CoA, an intermediate
in the n-butanol production pathway, yields BDO (Fig. 1A).>®
Upon chemical dehydration, BDOs can be used to produce
butadiene for synthetic rubber production, which is currently
produced from fossil fuel sources at the level of >10 million
metric tonnes per year.”>** We therefore set out to screen our 16-
member ALDH library for potential candidate enzymes to
construct a BDO pathway that can reduce either stereoisomer,
(R)-3- or (S)-3-hydroxybutyryl-CoA (Fig. S7t). In this screen, we
found that all candidates were competent to produce 1,3-buta-
nediol at levels from 150-700 mg L. Interestingly, we found
very little sensitivity to the stereochemistry of the substrate,
although  preferences between butyryl-CoA and 3-
hydroxybutyryl-CoA reduction were observed.

We hypothesized that the differences in n-butanol compared
to BDO production might arise from limitations in ADH activity
for reduction of 3-hydroxybutyraldehyde. As such, we generated
an ADH sequence similarity network with the goal of identifying
a subfamily with the desired substrate selectivity within the
larger superfamily (Fig. S87).>"** A list of candidates within the
subfamilies defined by the known C,-selective ADHs (bdhA,
bdhB, dhaT, and yghD) was then generated and screened by co-
expression with ALDH46, which showed no stereochemical
preference for reduction of 3-hydroxybutyryl-CoA. While several
hits were found, it was interesting to note that these ADHs
appeared to all be highly specific for the (R)-isomer.

During this analysis, we identified HB as a side-product that
appears to arise from the reduction of an earlier pathway
intermediate, acetoacetyl-CoA (Fig. 1A). HB is also an inter-
esting product as its dehydration produces methyl vinyl ketone,

Chem. Sci., 2023, 14, 1718-11726 | 11721
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a reagent used in the production of fine chemicals.*® Addi-
tionally, methyl vinyl ketone is a monomer unit used polymer
synthesis.** We therefore set out to characterize the selectivity of
ALDH-ADH pairs by examining partitioning between BDO and
HB (Fig. S91). This screen indicated HB production is highly
specific to the ALDH7-ADH2 pair, providing an even distribu-
tion of products at high titer (3.4 + 0.1 g L™ '). On the other end,
the ALDH3-ADH22 pair was found to capture a large fraction of
the C, product pool as BDO (81%), producing 2.9 + 0.1 g L * of
total products under screening conditions.

A selective pathway for production of HB over BDO was
engineered by simply removing the PhaB ketoreductase, form-
ing a truncated pathway by eliminating production of 3-
hydroxybutyryl-CoA required for BDO formation (Fig. 1A). With
this change, the PhaA-ALDH7-ADH?2 pathway generated 2.0 +
0.2 g L~ " HB (Fig. 2C). To selectively produce BDO over HB, we
pursued an approach to redirect HB to BDO production by
adding a secondary alcohol dehydrogenase (SADH). Specifically,
we set out to find a SADH that would catalyze the reduction of
HB, resulting from promiscuous ALDH activity on acetoacetyl-
CoA, directly to BDO (Fig. S107).
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A number of SADHs have been reported to reduce 4-hydroxy-
2-butanone or similar substrates.** Several of these SADHs were
co-expressed with the ALDH7-ADH2 pair, which consistently
produced an even mixture of butanediol and hydroxybutanone.
Several of the sADHs enabled a shift in the product profile,
producing high levels of BDO (>2 g L") and minimal amounts
of HB (<250 mg L™ ") (Fig. S101). With these sSADHs in hand, we
could now control the product profile between HB, BDO, or
a mixture of the two (Fig. 2C).

Adaptive evolution of C, pathways

With highly specific pathways established for production of n-
butanol, HB, and BDO in place, we next set out to develop
a genetic selection for increasing titers under anaerobic
conditions with the long-term goal of gaining new insight into
the manipulation of central carbon homeostasis. In contrast to
our results with the promiscuous n-butanol pathway containing
the ethanol short-circuit (Fig. 3A), growth of the fermentation-
deficient strain, DH1A5, depends solely on n-butanol produc-
tion. Using a set of control plasmids with low, medium, and

C

n-Butanol (g/L)
O - W A OO N ®

Product (g/L)

BDO

HB

Fig.3 Development of a genetic selection for evolving C4 monomer synthesis in E. coli. (A) The n-butanol pathway complements the deletion of
the native fermentation pathways of E. coli under anaerobic conditions. n-Butanol pathway variants displaying a range of yields were transformed
into DH1A5 and cultured anaerobically. Growth was monitored by ODgog and n-butanol production was quantified at the end of the experiment.
All strains were grown in TB with 2.5% (w/v) glucose media. All strains contained pCDF3-ter.aldh46 and one of the following variants of the pBT-
Bu2 plasmid in order of increasing butanol production: pBT-0.03HBD, pBT-0.3crt, pTT-Bu2, pBT-Bu2. (B) Enrichment of a medium-producing
n-butanol strain, DH1A5 pCDF3-ter.aldn46 pBT-0.3crt, was observed when mixed (0.1%) with a low-producing strain DH1A5 pCDF3-ter.aldh46
pBT-0.03HBD (99.9%). The mixed culture was grown anaerobically in TB with 2.5% (w/v) glucose media. Changes in the genetic population were
monitored using qPCR. (C) A representative adaptive evolution for n-butanol production. E. coli BW25113A5 pBBR1-aceEF.lpd pT5T33-Bu?2
containing either pCWOri.trc-ter-ALDH46.ADH2 [A], pCWOri.trc-ter-ALDH46.ADH8 [B], or pCWOrri.trc-ter-ALDH21. ADH2 [C] was subjected to
multiple rounds of dilution in M9 containing 10% (v/v) LB and 2.5% (w/v) glucose under anaerobic conditions. Individual clones were then isolated
and characterized for their n-butanol titers compared to the parent strain. (D) Characterization of BDO and HB strains after adaptive evolution.
Data are mean + s.d. of biological replicates (n = 3).
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high n-butanol productivity, we observe that rescue of DH1A5
growth under anaerobic conditions is directly correlated to
product titer and thus the capacity of the synthetic pathway to
recycle NADH. Indeed, strains complemented with a very low-
flux pathway do not grow significantly, if at all, while strains
complemented with high flux pathway variants grow similarly to
wild-type.

Given the dependence of growth rate on pathway titer, we
then tested our ability to enrich cell cultures for high producing
variants. To do so, cultures of the low-production strain were
seeded with either 0.1% or 1% of the medium-production
inoculated strain. Throughout the course of extended anaer-
obic growth, we observed a significant lag phase dependent on
the seeding level (Fig. S11%). In this simulated selection, we
tracked n-butanol production as well as the abundance of the
two different strains using qPCR. In agreement with the growth
curves, the abundance of the low-production strain was largely
static while the abundance of the medium-production strain
was enriched >40-fold as n-butanol production initiated
(Fig. 3B).

In order to select for variants with improved n-butanol
productivity under anaerobic conditions, we turned to adaptive
evolution after efforts using synthetic mutagenesis methods
such as chemical mutagens or UV irradiation appeared to find
only local minima in the evolutionary trajectory (Fig. S127). In
this approach, the natural mutation frequency is utilized, which
requires longer evolution times but selects for more advanta-
geous mutations and minimizes the occurrence of neutral
mutations.>**” Since every evolutionary trajectory has the
potential to yield different results, we evolved two different host
strains, DH1A5 and BW25113A5, using media ranging in rich-
ness from M9, 10% (v/v) LB in M9, and LB, by diluting the
culture every 24 h over the course of 4-70 days (Fig. S137). Using
this approach, we obtained evolved strains capable of
producing n-butanol at levels up to 75% theoretical yield, rep-
resenting a six-fold improvement over the 12% theoretical yield
achieved in the parent strain (Fig. 3C). Although the redox
balance is not stoichiometric as it is with n-butanol, we were
also able to evolve BDO and HB production in DH1A5 from 9%

A

Gene _Annotation Pathways

pcnB  Poly(A) polymerase n-Butanol, BDO, HB
rpoB  RNA polymerase B subunit n-Butanol

moC  RNA polymerase B’ subunit n-Butanol, BDO

me Ribonuclease E n-Butanol

pnp Polyribonucleotide nucleotidyltransferase n-Butanol, BDO
cadB Cadaverine/Lys antiporter n-Butanol
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to 81% and from 4% to 68% theoretical yield, respectively, in TB
(Fig. 3D and S14f1). Isolation of pathway plasmids from the
evolved strains and transformation into a clean background
showed no improvement in product titers, indicating that the
relevant mutations were generated on the chromosome
(Fig. S147). Cultures of the evolved strains in rich media in
shake-flasks with an oleyl alcohol overlay further yielded titers
of up to 47 + 6 g L " and >95% yield due to increased n-butanol
solubility (Fig. S15f). Taken together, the evolved strains
demonstrate robust production of a range of C, products from
acetyl-CoA under anaerobic conditions.

Identifying players in transcriptional re-programming

We took a genome scale approach to explore key factors
responsible for the evolution of this large shift in central carbon
flow. A total of 31 isolated strains from three independent
selections for n-butanol (21 strains), BDO (8 strains), and HB (2
strains) production carried out under different growth condi-
tions were sequenced to identify the changes between the
genomes of the parental and evolved strains. Interestingly, we
found mutations only in a handful of genes, which consistently
appeared regardless of selection conditions (Fig. 4A and Table
S21). In addition, a few mutations mapped to the non-coding
portions of the genome (0-1 mutation per strain with a total
number of 6 distinct mutations from all 31 strains that were
sequenced) along with rearrangements that appeared to be
mostly associated with mobile elements. Of the mutations in
coding regions, the most striking is the finding that poly(A)
polymerase (pcnB) and/or the RNA polymerase B and B’ subunits
(rpoBC) were mutated in nearly all of the most successful
evolved strains. These two gene loci are involved in regulating
the transcriptional landscape of the cell by forming part of the
transcription complex (rpoBC)***° as well as by controlling the
lifetime of mRNAs by polyadenylation (pcnB).*° Mutations in rne
(ribonuclease E) also occurred frequently (12%) in the evolved n-
butanol strains.

The discovery that genes involved in RNA metabolism appear
to drive metabolic network evolution led us to the hypothesis

B10

= BDO .
H n-butanol *
8t
-
36 .
©
=
g4t
n‘: .
2 L

Parent

penB R149L rpoC M466L pcnB R149L
poC M466L

Evolved
strain

Fig. 4 Characterization of evolved E. coli strains for C4, monomer synthesis. (A) List of genes that were found to be mutated in more than one
evolved strain carrying the n-butanol, BDO, or HB pathways. (B) Generating the pcnB and rpoC mutations found in DH1A5.2406 in a clean
genetic background (DH1A5 parent) captures the majority of the improvement observed in the evolved strain, indicating that these two gene loci
play an important role in enabling the increases in BDO production. Introduction of the n-butanol pathway into
DH1A5.pcnB(R149L).rpoC(M466L) shows that some aspects of this phenotype can be transferred to other pathways.

© 2023 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2023, 14, 11718-11726 | 11723


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc02773b

Open Access Article. Published on 09 oktober 2023. Downloaded on 28-01-2026 18:25:02.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

that the phenotypic changes were largely being controlled by
alterations in the global transcriptional program. This model is
consistent with pathway enzymatic activity measurements in
cell lysates, which showed no significant increase between
parent and evolved strains at the end of a production growth
(Fig. S16t). This result suggests that yield increases were not
derived from overexpression of heterologous pathway genes. To
further characterize this phenomenon, we performed an RNA-
Seq experiment on the evolved BDO strain with the largest
improvement in production titer (DH1A5.2406) containing
point mutations in pcnB and rpoC. We found 126 differentially-
expressed genes (8 value > 2) between the parental and evolved
strain falling into a broad range of categories, including energy
production and conversion, amino acid transport and metab-
olism, cell envelope biogenesis, and carbohydrate transport and
metabolism (Fig. S17 and S18%). This large shift in the tran-
scriptome indicates that alterations in acetyl-CoA and central
carbon homeostasis may require changes at many metabolic
nodes. This data is supported by metabolomics experiment that
suggest that acetyl-CoA levels are higher in the evolved strains
(Fig. S19f). Genes upregulated in the evolved strain were
enriched for the transport GO term, likely to support metabolite
uptake and export of BDO (Fig. S201). Downregulated genes
were enriched for the translation, cellular o-amino acid
metabolism, nucleotide metabolism, and response to stress GO
terms, representing a return to normal carbon homeostasis in
the evolved strain (Fig. S207).

In order to validate the impact of the pcnB and rpoC mutations,
the two mutations observed in this BDO strain (pcnB R149L/rpoC
M466L) were introduced into a clean genetic background. These
experiments show that these mutations in rpoC and pcnB are
synergistic, as both are required to achieve a substantive increase
in BDO titer compared to the parent (Fig. 4C). Indeed, the double
mutant demonstrates a 2.75-fold increase in BDO titers (parent,
2.1 4+ 0.1 g L% double mutant, 5.8 + 0.2 g L"), which recapit-
ulates 73% of the improvement observed in the fully evolved
strain (8.1 £ 0.1 g L™ "). We were also interested in the generality
of these mutations and thus tested their ability to increase the
yields of other synthetic pathways. When the n-butanol pathway is
introduced into the double mutant, we observe a 3.2-fold increase
in product titer from 2.3 + 0.6 to 7.3 & 1.1 g L™ " (Fig. 4C). Alto-
gether, these data show mutations in only two genes, pcnB and
rpoC, are capable of driving a large shift in central carbon
metabolism that can be generalized to related pathways utilizing
the acetyl-CoA building block.

Conclusions

In this work we have demonstrated the anaerobic production of
three industrially relevant C, chemicals BDO, HB, and n-
butanol, at up to >95% of theoretical yield. Furthermore, BDO,
HB and n-butanol serve as bioproduct precursors to 1,3-buta-
diene, methyl vinyl ketone, and 1-butene respectively via dehy-
dration. Overall, six C, chemicals can be accessed from glucose
using this single platform. Notably, the production of advanced
products from acetyl-CoA can be difficult when switching to
anaerobic metabolism. Indeed, acetyl-CoA represents

M724 | Chem. Sci, 2023, 14, 1718-11726
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a metabolic checkpoint where carbon is differentiated from
pyruvate towards different cell fates, including lowered cell
growth and TCA flux, which is one of the major consumers of
acetyl-CoA. As such, rational engineering of central carbon
pathways for the purpose of re-routing flux to a synthetic
product can be quite challenging as it opposes the cell's
evolutionary impetus to direct carbon towards biomass.
However, using a selection design in which fitness is driven by
product titer, strains were identified with up to 5-fold
improvements in yield and near quantitative production from
the acetyl-CoA building block.

In our system, we found that use of natural adaptive evolu-
tion allowed us to rapidly reach high production strains
compared to the use of mutagens that increase the mutation
rate but appeared to only find local minima in the evolutionary
trajectory. Genome-level characterization of these strains
revealed that mutations in two gene loci, pcnB and rpoBC, were
sufficient to enable the needed shifts in carbon flow. Interest-
ingly, these mutations have been previously observed in studies
of E. coli evolution for both growth in M9 (rpoBC)** and
production of n-butanol (pcnB).** Physiological studies suggest
that this effect may rely on remodeling the transcriptome by
influencing RNA metabolism along with rne. Interestingly,
a wide range of mutations were identified within these three
genes, some of which have been found to be important for
activity in biochemical studies.”” This finding suggests that
these four genes could be used for diversity generation at the
phenotypic level by inducing pleiotropic changes in the tran-
scriptional landscape. Furthermore, mutations found in the
evolved BDO strain could be translated to significant increases
in n-butanol yields, indicating that these strains could be rele-
vant to the production of other acetyl-CoA-derived products
such as fatty acids, polyketides, and isoprenoids.

In conclusion, living systems offer a unique advantage for
chemical synthesis to increase product yields through evolu-
tion. In particular, central carbon metabolism plays an essential
role in cell fitness and thus represents a key regulator and
reporter of cellular state.** These pathways are subject to tight
homeostasis with multiple mechanisms to ensure robustness
and reduce sensitivity to change.*® In this regard, engineered
pathways provide an interesting platform where product titer
can be treated as a synthetic phenotype or marker for quanti-
tative assessment of genetic traits that lead to large shifts in the
regulatory and metabolic network.** By using evolution to solve
difficult design challenges, we can take advantage of synthetic
pathways to identify new strategies to alter behaviours that are
hard-wired into the systems-level organization of the host.
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