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Industrially applied and relevant transformations
of 1,3-butadiene using homogeneous catalysts

Ji Yang,†* Peng Wang,† Helfried Neumann, Ralf Jackstell and Matthias Beller *

In recent decades, the use of 1,3-butadiene as a comparably cheap and abundant raw material for new

applications has attracted more and more interest, specifically in the chemical industry. The present review

covers several of the most important homogeneously catalyzed processes and technologies which are

currently used or have the potential to produce fine and bulk chemicals from 1,3-butadiene. As an

example, palladium-catalyzed telomerizations provide valuable chemicals through the selective

dimerization of 1,3-dienes with the simultaneous addition of various nucleophiles, which can be used for

the synthesis of 1-octene, 1-octanol, and various lactones. On the other hand, direct carbonylation allows

the selective introduction of functional groups onto 1,3-dienes, such as carbonyl, carboxyl or ester groups.

The key to success in achieving these industrially relevant conversions of 1,3-butadiene was mainly the

development of innovative efficient catalysts. We hope this review will make readers familiar with the

industrially applied and relevant transformations of 1,3-butadiene and inspire them to further explore new

and advanced systems.

Keywords: 1,3-Butadiene; Industrial chemistry; Carbonylation reaction; Bulk chemicals; Telomerization.

1 Introduction
1.1 General properties of 1,3-butadiene

In the chemical industry, the term butadiene (BD) generally
refers to 1,3-butadiene with CAS number 106-99-0, which can
be regarded as the most simple conjugated 1,3-diene with the

chemical structure H2CCH–CHCH2.
1 As a comparison,

the thermodynamically less stable 1,2-butadiene with CAS
number 590-19-2, which has two cumulated double bonds
with the formula H2CCCH–CH3, has only minor
importance.2 Considering the physical properties, its flash
point (85 °C) and ignition temperature (415 °C) are relatively
low. When mixed with atmospheric oxygen at 101.3 kPa and
20 °C, unstable 1,3-butadiene tends to form explosive
peroxides between the concentrations of 1.1 and 16.3 vol%.

Regarding its special structure and configurations, the
planar σ-trans conformer of 1,3-butadiene is more stable, in
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which case the two pairs of double bonds are facing opposite
directions.3 This configuration not only minimizes the steric
hindrance but also maximizes the orbital overlap between
double bonds. In contrast, the σ-cis configuration with a 0°
dihedral angle is approximately 3.9 kcal mol−1 higher in
energy than the σ-trans conformation with a C2–C3 dihedral
angle of 180°.4 However, 1,3-butadiene needs to adopt this s-
cis configuration to participate in concerted addition
reactions. Similarly, a collaborative study combined with
experiments and DFT calculation has revealed that the
double bond length of σ-trans-butadiene is 133.8 pm.
Compared to the bond length of 133.0 pm in ethylene, the
slight change in bond length is taken as evidence of a
delocalized π structure and a modest degree of partial double
bond quality in the middle C2–C3 single bond, in consensus
with the resonance theory. A comparison of bond energies
also reveals that 1,3-butadiene is stabilized
thermodynamically. When comparing the hydrogenation
energy, 57.1 kcal mol−1 released by 1,3-butadiene is slightly

less than 60.6 kcal mol−1 of twice isolated CC bond energy,
which can be taken as a resonance stabilization energy of 3.5
kcal mol−1.5,6

1.2 Discovery and history of 1,3-butadiene

In 1863, 1,3-butadiene was first isolated by the French
chemist Joseph-Bienaimé Caventou from the pyrolysis of
pentanol. Then, in 1886, the structural formula was
identified with conjugated double bonds.7 1,3-Butadiene was
also obtained and analyzed by Henry Edward Armstrong
when he investigated the pyrolysis of petroleum.8 An
important milestone of butadiene chemistry was the
discovery of the Russian chemist Sergei Lebedev in 1910, who
found that 1,3-butadiene could be polymerized to obtain an
elastic material with properties similar to those of natural
rubber. This discovery opened the door for the use of
1,3-butadiene in the chemical industry.9 Following in 1929,
chemists Walter Bock and Eduard Tschunker at IG Farben in
Germany invented a novel material by copolymerizing styrene
and 1,3-butadiene that can be used as automobile tires.10,11

The widespread convenience of this material led to a flow in
demand for 1,3-butadiene, so processes of manufacturing
1,3-butadiene were developed rapidly at that time, including
catalytic processes through alcohols developed in Russia and
the USA, and acetylene synthesis routes developed in
Germany.

1.3 Today's industrial production

Despite the delicate structure of 1,3-butadiene, especially the
easily converted unsaturated double bonds, it is the 36th
highest industrially produced chemical and economically the
most important unsaturated C4 hydrocarbon. The production
capacity of 1,3-butadiene is expected to increase from 14.2
million metric tons in 2020 to almost 16 million metric tons
worldwide by 2025 (Fig. 1).12–16

Currently, 1,3-butadiene is favorably produced from C4
fractions isolated by cracking of naphtha and crude oil.
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When heated to a high temperature of 900 °C, these
feedstocks are dehydrogenated to obtain unsaturated
hydrocarbons containing 1,3-butadiene.17 In addition,
1,3-butadiene can also be prepared by heterogeneous
dehydrogenation of n-butane. As a representative example,
the first such industrialized plant, manufacturing 65 000 tons
of 1,3-butadiene annually, began operations in Houston in
1957.18,19 This plant commercially used the Houdry
Catadiene process (HCP), which involves treating butane at
high temperatures with an aluminum and chromium
catalyst.1 Additionally, 1,3-butadiene is also produced from
ethanol in some parts of the world including China, Eastern
Europe and India. In this latter process, 1,3-butadiene is
manufactured at 400–450 °C by utilizing various metal oxide
catalysts, and alternatively at 325–350 °C using tantalum
catalyst supported on porous silica.20 It is noteworthy that

significant development studies are currently underway to
produce 1,3-butadiene from renewable resources via not only
classical chemocatalytic but also biocatalytic transformations.

1.4 Main uses and applications

Nowadays, 1,3-butadiene is one of the most important bulk
chemicals, which has a wide range of applications and has
penetrated all aspects of our daily life. There are 16 211
publications/patents from 2010 to 2022 published with the
key word 1,3-butadiene in the Web of Science Core Database
(Fig. 2, search time on November 1, 2022). These publications
show a trend that research on 1,3-butadiene is becoming
more and more emphasized. Also, after analyzing these data
it is obvious that the main applications of 1,3-butadiene lie
in the field of polymer materials. As a representative product,
polybutadiene rubber (PBR) has adjustable tough or elastic
properties depending on the proportions of raw materials
used in its preparation.21,22 Meanwhile, styrene–butadiene
rubber (SBR) is the most common material for making
automobile tires.23–25 The powerful properties of these rubber
polymers bring tires with performance-enhancing
components in terms of rolling resistance and traction. With
the rapid development of the electronic industry,
acrylonitrile–butadiene–styrene (ABS) has become the largest
engineering thermoplastic resin, widely used in mobile
phones, household appliances, computers, and office
products.26,27 Simultaneously, numerous chemicals produced
from 1,3-butadiene are also widely used to manufacture
paper coatings, turf, carpets, gloves, wetsuits, toys and other
consumer products. Considering that there are already

Fig. 1 Production volume and market size of 1.3-butadiene.

Fig. 2 Number of publications from 2010 to 2021 with the key word butadiene.
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various reviews/books on industrial polymers based on
1,3-butadiene for readers to refer to,21–27 this review will not
duplicate this section but center on industrial transformation
examples and some promising progress in recent research to
produce other bulk chemicals. In particular, we will focus on
the development of catalytic systems achieving
transformations of 1,3-BD towards functionalized products
with high atom economy and avoiding environmental
pollution.

2 Selected current applications in
industry
2.1 1-Octene via telomerization with methanol (Dow process)

Dow Chemical developed and patented a commercial route in
1992 to produce 1-octene based on the telomerization of
1,3-butadiene and MeOH as shown in Scheme 1.28 The
process has been in industrial operation in Tarragona since
2008 using crude C4 fractions from cracking furnaces as raw
materials. The key intermediate in this process is 1-methoxy-
2,7-octadiene (1-MOD), which was synthesized in the presence
of a palladium/triarylphosphine catalytic system.29,30 Later
on, Oxeno Ind. (now Evonik Industries) patented and applied
similar processes utilizing palladium salts in the presence of

N-heterocyclic carbenes in 2002 and 2005.31,32 Overall, the
relevant process can be described as follows: the initially
obtained telomerization product 1-MOD is completely
hydrogenated to 1-methoxyoctane with >99% yield.
Subsequently, base-catalyzed cracking at high temperature
leads to 1-octene with 97% yield and methanol for recycling.
According to the information of relevant patents,28–30 great
reaction efficiency and high selectivity were obtained in the
second and third steps, and related products could be
basically obtained by quantitative conversion. Therefore, the
first step, i.e., the telomerization of 1,3-butadiene with
methanol, determines the overall efficiency of the process.

Originally, the telomerization reaction of 1,3-butadiene was
discovered in 1967 by Smutny at Shell and Takahashi at Osaka
University independently.33,34 The name telomerization refers to
the oligomerization of 1,3-dienes with a nucleophile (in terms
of “telogen”). Interestingly, the nucleophile can be of various
proton-containing types such as alcohols,35–51 polyols,52–58

acids,59–62 water,63–77 ammonia,78,79 amines,80–90 and biomass-
based components.91–100 Therefore, this highly efficient and
promising reaction has been intensively studied in many
renowned industrial and academic laboratories.101

2.1.1 Mechanism. In the presence of a suitable catalyst,
the telomerization of 1,3-butadiene and MeOH produces

Scheme 1 Simplified Dow process and mechanism for the telomerization of 1,3-butadiene with methanol.
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initially 1-methoxyocta-2,7-diene (1-MOD) as the main
product. Simultaneous formation of 3-methoxyocta-1,7-diene
(3-MOD) and 1,3,7-octatriene (OCT) as dimerization products
and 4-vinylcyclohexene (VCH) produced by a concerted
pericyclic Diels–Alder reaction are often observed, too.

With the aim of improving the efficiency and selectivity,
the mechanism of this reaction has attracted extensive
attention. Jolly and colleagues first investigated this process,
specifically the η3-allylpalladium intermediate analyzed by
NMR.102 Later on, some of us have also conducted in-depth
research on the mechanism utilizing representative
palladium/phosphine catalysts. Thereby, we not only clearly
revealed the related side reactions but also showed the
multiple roles of phosphine ligands in this catalytic
process.103–105 The extended reaction mechanism is as
follows (Scheme 1).104,105 Initially, two molecules of
1,3-butadiene are oxidatively coupled at a low-coordinated
ligand–palladium(0) center to form ligand–palladium–(η3,η1-
octadiendiyl) active species 1. Selective protonation of species
1 by MeOH at the C6 site results in the ligand–palladium–

(η3,η2-octadiendiyl) complex 2. Subsequent attack of the
methoxy group at the allylic position (site 1 or 3) leads to
linear or branched (1- or 3-substituted) products, respectively.
Both intermediates 1 and 2 were characterized and studied
in detail. More specifically, the linear/branched selectivity of
this reaction was significantly affected by the nature of the
phosphine ligand. The formation of Pd–bimolecular
phosphine or Pd–PPh3–butadiene complex 4 was enhanced
respectively by increased triphenylphosphine/Pd ratio or
increased concentration of 1,3-butadiene, leading to a larger
extent of branched product 3-MOD. At the same time, an
insufficient amount of phosphine makes the system less
stable, resulting in irretrievable phosphine oxidation and
precipitation of palladium metal. Furthermore, some of us
were involved in computational studies on telomerization
intermediates to assist in further understanding of this
process.106

2.1.2 Catalyst developments. The ligand presumably used
in the Dow process is a triarylphosphine, which is available
relatively inexpensively on an industrial scale.107 Simple
triphenylphosphine generally leads only to a moderately
efficient catalyst with unsatisfactory linear/branched
selectivity.94 Therefore, extensive research has been devoted
to the development of novel catalysts with improved
performance.

Several functionalized triaryl phosphines containing
oxygen atoms were employed in this reaction and selected
results are summarized in Fig. 3. By altering the electronic
and steric properties of the ligand as well as the position and
amount of hemilabile coordination groups, the catalytic
efficiency of triaryl phosphine ligands substituted with
methoxy groups was determined. For example, introducing
one methoxy substituent on the aryl ring of the phosphine
could increase the conversion of 1,3-butadiene by 26% and
the selectivity of 1-MOD by 15%.30,42 By using ligands 7 and
8, which possess two or three ortho-MeO groups, respectively,

up to 94% selectivity was obtained. Furthermore, ligand 9
with para-methoxy groups exhibited the best catalytic activity
with a catalyst TON of 22 784. Trialkyl phosphines were also
studied for this process by Carlini and co-workers.41,42 As a
general rule, the tested ligands proved to be more productive
than PPh3 at low reaction temperature (60 °C). Regarding the
selectivity towards 1-MOD, linear triethylphosphine 12 and
tributylphosphine 13 showed higher selectivity than PPh3,
while sterically hindered triisopropylphosphine 14 and
tricyclohexylphosphine 15 preferably formed 1,3,7-octatriene
as the formal dimerization product.

In order to improve catalyst stability and shorten the
induction period for the formation of the active catalyst
species, different palladium complexes were also investigated
as catalyst precursors. Inspired by the easily prepared
monophosphine–Pd(0)–(1,6-diene) catalyst reported by
Pörschke,108 several enhancements were made by some of us
for the telomerization of 1,3-butadiene with methanol. For
example, the reaction can proceed smoothly even at −10 °C
by using a triphenylphosphine–palladium–(η2,η2-allylether)
catalyst 16.40 At the same time, such catalysts, including
1,3-divinyltetramethyldisiloxane (dvds) 17, are stable in air
and easy to handle.

Van Leeuwen and collaborators studied the structure
effects of bulky phosphines 18–20 in detail (see Fig. 4), which
were used for cross-coupling reactions previously.109,110

Ligands with a xanthene backbone exhibited superior
properties, especially regarding selectivity, activity and
stability. Among these phosphines, ligand 18 showed highly
satisfactory results, reaching a TOF of 140 000 h−1 in 5 min at
100 °C with up to 84% selectivity for 1-MOD. Further, the
modified electron-rich ligand 19 showed to be a more
outstanding monoXantphos ligand, increasing 1,3-butadiene
conversion to 95% and selectivity for 1-MOD to 93% at 90 °C.
Under industrial production conditions, monoSPANphos 20
was a very active ligand at low temperature with better
stability at 90 °C for this reaction. Through structural and
activity analysis, the reasonable backbone design and the
coordination properties of oxygen atoms were considered to
be the reason for this better performance.111

Essentially, classical bidentate phosphine ligands with
diverse structures were also studied for the Dow
telomerization reaction (Fig. 4). In the case of diphosphine
ligands, such as dppm, dppe, and dppp (n = 1–3), these
ligands exhibited lower activity compared to PPh3. Yet, the
conversion significantly improved from DPPB 24 to DPPH 25
(n = 4 to 6) as the bite angle of the ligands increased. To
allow for easier catalyst recycling, we further developed
bidentate phosphines 26 and 27 with a binaphthyl backbone
for the reaction of 1,3-butadiene and MeOH under organic or
two-phase conditions.112 So far, the bidentate phosphine
catalysts with the highest selectivity towards 1-MOD were
ligand 28 and 29 (92–96% selectivity at 70 °C).113

N-Heterocyclic carbenes (NHCs) are also very important
ligands for catalysts applied in telomerization reactions due
to their similar properties to phosphine ligands.114–117
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Hence, a series of structurally diverse NHC–Pd catalysts
30–34 were developed and investigated. In these studies,
triphenylphosphine was used as a reference to compare the
activities of different N-heterocyclic carbenes. As presented in
Table 1, at a low temperature of 50 °C, triphenylphosphine
did not catalyze the conversion of 1,3-butadiene (entry 3).
However, in comparison, NHC 30 showed obvious activity
and yielded 57% of the products (entry 7). When the reaction
temperature was further increased to 70–90 °C, catalyst 30
exhibited an amazing activity for complete conversion of
1,3-butadiene with 97% linear selectivity (entries 10 and 6).

To verify the activity and stability of this powerful catalytic
system, even using a very small catalyst dosage (0.00033
mol%) led to complete conversion of the reaction and gave
89% yield of the desired products with high productivity
(entry 8, TON = 267 000, TOF up to 100 000 h−1). Further
reducing the catalyst loading of 30 at 90 °C resulted in an
efficiency of 1 540 000 in 97% linear selectivity.38–40,118,119

Remarkably, the selectivity to the desired linear product
stayed fixed at about 97% even at different temperatures.
Most importantly, this Pd–carbene catalytic system exhibited
excellent activity and stability even when using C4 crack as a

Fig. 3 Performance of selected monophosphine ligands used in the palladium-catalyzed telomerization reaction of 1,3-butadiene with methanol.
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source of 1,3-butadiene (C4 crack = 42% 1,3-BD, 25%
isobutene, 16% 1-butene, 5% 2-butene, 5% isobutane and
7% others). This system has been utilized by Evonik on a
continuous pilot plant scale with a capacity of tons in Marl,
Germany.38,119

In addition to the studies of conditions and catalysts, other
aspects, including catalyst recovery, two-phase production

systems, continuous reaction in loop reactors, ionic liquids as
solvents, etc., have been studied by various research groups in
detail.35,36,120 Similar to the Dow process, several major
companies have also investigated the expansion of
nucleophiles. For instance, Shell developed the telomerization
of 1,3-butadiene with acetic acid.121,122 Evonik reported the
telomerization of 1,3-butadiene with formic acid,123,124 giving a

Fig. 4 Other ligand development for the palladium-catalyzed telomerization of 1,3-butadiene with methanol.
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formate that can be used for the decarboxylation process to
produce octa-1,7-diene as a 1-octene precursor.125

2.2 1-Octanol via telomerization with water (Kuraray
process)

Compared with telomerization with methanol, the
telomerization process with water as a nucleophile is more
challenging. Nevertheless, the production of 2,7-octadien-1-ol
by telomerization of 1,3-butadiene with water is also a very
attractive process. Analogously to the aforementioned Dow
process, 1-octanol as target chemical can be obtained from
1,3-BD via initial telomerization and subsequent
hydrogenation of 2,7-octadien-1-ol. This specific
telomerization reaction was first reported by Atkins in
1970.126 Thereafter, the process has been studied extensively
by industrial companies, such as Kuraray,127–130 BASF,131,132

Arkema133 and Mitsubishi.134,135 Representatively, Kuraray
has implemented this process in production in Japan (>5000
T annually).136 Crucial for the success of this process is the
reaction of 1,3-butadiene with water in a basic (pH >7)
aqueous sulfolane solution, which contains the palladium
catalyst, a phosphonium salt, e.g. 2-(diphenylphosphino)
benzenesulfonic acid sodium, as precursor of the phosphine
ligand, and carbonate or bicarbonate or tertiary amines.137

In contrast to the telomerization of 1,3-butadiene with
methanol, the one with water is positively influenced by the
presence of carbon dioxide.138,139 Surprisingly, carbon
dioxide can effectively inhibit the here unwanted
dimerization process of 1,3-butadiene. Even more, an
effective concentration of carbon dioxide can accelerate the
progress of telomerization and improve the selectivity of the
linear product. Based on these observations, Kuntz and co-
workers developed a reaction protocol that uses carbonate
instead of carbon dioxide to avoid pressure equipment.140,141

Finally, it is worth mentioning that Monflier and co-workers
described a positive effect on related telomerization reactions
using a cationic surfactant instead of organic solvent.70,142

2.3 Production of adiponitrile by double hydrocyanation
reaction of 1,3-butadiene

Another industrially important catalytic conversion of
1,3-butadiene with an annual output of one million tons is the
DuPont adiponitrile (ADN) process.143 ADN is a central chemical
intermediate not only used to manufacture polyamides144,145

but also widely used to produce 1,6-hexanediamine (as shown
in Scheme 2),146 adipic acid, and adipamide as well as several
pharmaceutical and agricultural products. Originally in
industry, 1,4-dichloro-2-butene derived from the chlorination of
1,3-butadiene was used as a precursor for the synthesis of
adiponitrile, which was then further reacted with cyanide salts
to produce adiponitrile. Considering the strong corrosiveness of
chlorine and the high waste contamination of the process,
simpler processes with better atom economy were extremely
desired.147,148 In 1954, Arthur and co-workers first discovered
the Co2(CO)8-catalyzed hydrocyanation of olefins with HCN as
an economical source of nitriles.149 Further, Drinkard presented
a tailored Ni((ArO)3P)4 catalyst system for the hydrocyanation
reaction with higher activity.150 Researchers therefore shifted
their interest to the double hydrocyanation of 1,3-butadiene,
which in principle allows for 100% atom economy. The
hydrocyanation of 1,3-butadiene proceeds through relatively
stable π-allyl nickel cyanide intermediates. The isolation of the
16-electron complex [Ni(P(O-tolyl)3)] containing a bulky
monophosphite provided a rational beginning to study how
various aspects of the catalytic system interact with nickel.149

The formation and decomposition of nickel hydrides and
specifically [HNi(CN)L3] in solution was investigated in detail by
Tolman by 1H and 31P NMR spectroscopy.151 It should be noted
at this point that the research performed in this route has led to
several important discoveries in organometallic chemistry.149,150

At the same time, DuPont put this process into production for
the first time in 1971.151 The DuPont process can be basically
described as follows: in the presence of Ni catalyst,
1,3-butadiene and HCN are quickly converted to a mixture of
pentenenitriles (linear to branched isomers in a 2 : 1 ratio). It is

Table 1 Comparison between N-heterocyclic carbene and phosphines for the telomerization of 1,3-BD with MeOH

Entry Ligand Pd(OAc)2 (mol%) T (°C) MOD yield (%) Chemoselectivityb (%) Linear : branched TON

1a PPh3 0.001 90 79 90 12 : 1 78 700
2c PPh3 0.001 70 26 87 24 : 1 26 000
3a PPh3 0.001 50 2 — 13 : 1 2000
4a PnBu3 0.001 90 57 90 10 : 1 57 000
5a 17 0.001 90 60 77 10 : 1 60 000
6a 30 0.001 90 ≥98 99 36 : 1 98 000
7a 30 0.001 50 57 >99 82 : 1 57 000
8a 30 0.00033 90 89 98 41 : 1 267 000
9a 30 0.00005 90 77 99 49 : 1 1 540 000
10c 30 0.001 70 96 >99 49 : 1 96 000
11c 31 0.001 70 93 99 49 : 1 93 000
12c 32 0.001 70 96 >99 49 : 1 96 000
13c 33 0.001 70 90 97 12 : 1 90 000
14c 34 0.001 70 2 — 10 : 1 2000

a Conditions: 1.0 mol% NaOH, methanol/1,3-butadiene = 2, 16 h. b Chemoselectivity = MOD/product mixture × 100%. c Conditions: Pd loading
= 0.001 mol%, 16 h, 1.0 mol% NaOMe, methanol/1,3-butadiene = 2.
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worth noting that experiments showed that electronic effects
play only a minor role compared to steric effects in determining
the catalytic activity and selectivity of the Ni complexes
investigated. Therefore, monodentate phosphites were replaced
by bulky bidentate ligands, which create catalysts superior in
terms of activity and efficiency. Subsequently, various biphenol-
based diphosphate Ni0 complexes were synthesized and applied
in butadiene hydrocyanation. Such Ni catalysts, although less
selective, showed a catalyst turnover at least four times higher
than that of the industrially applied DuPont system [Ni(P(O-
tolyl)3)]. In order to obtain the selective product, it is important
to carry out the fast isomerization of different intermediates. In
this respect, the addition of Lewis acids, such as ZnCl2,
facilitates the isomerization of 2M3BN. The kinetic preference
for the isomerization of an internal alkene to a terminal alkene
contrast with the thermodynamic preference for the conjugated
isomer 2PN. The isomerization of the internal alkene 3PN to
the terminal alkene 4-pentenenitrile (4PN) is a decisive step in
the hydrocyanation of 3PN. With the help of an additional Lewis
acid, the branched by-products can be reversibly isomerized
into the terminal olefin isomer. In general, through the above
processes, first, the hydrocyanation reaction of 1,3-butadiene
led to the desired 4-pentenenitrile with >90% selectivity.152

Next, 4-pentenenitrile reacted at a second stage with HCN at
lower temperature (about 50 °C) to produce adiponitrile,
typically in 50% yield and 92% linear selectivity.153

3 Potential uses of 1,3-buatdiene in
the future
3.1 Adipates via catalytic carbonylation of 1,3-butadiene

Adipates and adipic acid are core intermediates of the
polymer industry. About 75% of the total adipate production
is consumed by nylon manufacturing.154 The current global
annual output of adipates exceeds 5 000 000 tons with an

average growth rate of 4%, whose market size is expected to
exceed USD 11 billion by 2025.155,156 A main problem in
adipate manufacture is the environmental pollution by waste
acid exhaust and nitrous oxide gases. For example, in 2016,
the production of adipic acid alone released 20% of the 37.3
million metric tons of all gas emissions (CO2, CH4 and NO2)
by the chemical industry in the U.S.157 Notably, the global
warming potential of the major nitrous oxide emissions is
300 times higher than that of carbon dioxide.158 In order to
balance the growing demand for adipates and reduce the
negative impact on the environment, greener and atom-
economical chemical processes need to be implemented
urgently.159

In this regard, metal-catalyzed carbonylation reactions of
1,3-butadiene to adipates are promising alternative ways for
manufacturing versatile adipates, among which the linear
selective dihydroformylation of 1,3-butadiene is of great
interest to industry and academic laboratories.160–162

However, this double hydroformylation reaction is extremely
challenging due to slow reaction rate, regioselectivity
problems, and low product stability, especially in basic or
acidic media, inevitably forming a large number of unwanted
by-products. Simultaneously, the aldol addition reactivity of
aldehyde intermediates leads to incompatibility between this
process and typical industrial distillation techniques.163

Therefore, in 2016 Hofmann and co-workers developed an
isomerizing hydroformylation process in which pentenal
intermediates were converted to acetates in situ to avoid side
products.164 Fundamental insights into the reaction pathways
of this rhodium-catalyzed dihydroformylation were obtained;
the adipaldehyde selectivity was found to be strongly
dependent on the bite angle and the backbone structure of
the ligand used in the reaction.165 Regarding state-of-the-art
catalysts, ligand 35 provided 50% yield of adipic aldehyde
from 1,3-butadiene, or 93% yield starting from 4-pentenal

Scheme 2 Simplified scheme for the synthesis of adiponitrile from 1,3-butadiene.
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(Fig. 5).166 Recently, QIBEBT-phosphite 38 developed by Yang
and co-workers exhibited a slightly improved yield of 54% to
adipic dialdehyde from 1,3-butadiene.167 However,
unfortunately these results seem to be still insufficient for
industrial applications.168

Besides the dihydroformylation process, carbonylation
reactions of 1,3-butadiene utilizing alcohol/water as nucleophiles
to synthesize adipates directly constitute also highly attractive
reactions to both academia and industry. Clearly, these 100%
atom-economic reactions would make the production of adipate/
acid more environmentally friendly (Fig. 6). However, again such
catalytic processes also face various challenges: (i) the catalyst
should mediate two diverse carbonylation processes
continuously, which places elevated demands on the activity and
stability of the catalyst; (ii) in order to obtain a linear
dicarbonylation product, the reaction intermediates must
undergo a particularly thermodynamically unfavorable
isomerization; and (iii) various side conversions such as
telomerization, hydroalkoxylation, carboxytelomerization and

(co)polymerization must be suppressed to improve the yield of
adipates.183

Back in 2002, some of us uncovered a suitable
alkoxycarbonylation of 1,3-dienes using a palladium-based
catalyst in combination with the ligand DPPB 24, resulting in
3-methyl pentanoate with a yield of 69% (Fig. 7a).169 By 2014, it
was found that under similar conditions, the yield of 3-methyl
pentanoate could be increased to 85% under acid-free
conditions when Xantphos was used as the ligand.170

Afterwards, diverse site-selective monocarbonylation reactions
through the regulation of ligands were described in 2015.
Detailed experimental studies have shown that different
catalysts induce various reaction pathways. As an example,
Xantphos selectively catalyzed the production of β,γ-unsaturated
esters, while 2-pyridyl-diphenylphosphine 40 preferably led to
α,β-unsaturated ester products (Fig. 7b). The above-described
processes realized the conversion of 1,3-butadiene to methyl-3-
penetenoate in good yields. In addition, chemical procedures
for the conversion of methyl-3-pentenoate to adipic acid/esters

Fig. 5 Representative ligands for linear selective dihydroformylation of 1,3-butadiene.

Fig. 6 The complex reaction network for the synthesis of adipates from 1,3-butadienes.

Industrial Chemistry & MaterialsMini review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
ap

ri
l 2

02
3.

 D
ow

nl
oa

de
d 

on
 2

8-
01

-2
02

6 
16

:0
0:

51
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3im00009e


Ind. Chem. Mater., 2023, 1, 155–174 | 165© 2023 The Author(s). Co‐published by the Institute of Process Engineering,
Chinese Academy of Sciences and the Royal Society of Chemistry

have also been established in >90% yield and about 80%
selectivity, but the most prominent disadvantage is that the
related processes are very complicated and involve multi-step
processing.171–174 Earlier in 1987, Drent and co-workers showed
elegantly that the use of the ligand 2-pyridyl-diphenylphosphine
40 allows for exceptional activity in the carbonylation of
propylene. It was speculated that the active catalytic species was
stabilized by the hemilabile P–N coordination of the ligand.175

Inspired by Drent's work, some of us introduced the 2-pyridyl
unit into various bidentate phosphines. Among these obtained
ligands, 1,2-bis((tert-butyl(pyridinyl)phosphanyl)methyl)benzene
(pytbpx, 41) exhibited superior activity in carbonylation of
ethylene (Lucite α-process). DFT calculations on the elementary
steps showed that the pyridyl group is immediately protonated,
which promoted the formation of the active [Pd–H] species
(Fig. 7c). After the insertion of alkene and carbon monoxide, the
corresponding Pd–acyl species was reversibly formed. Notably,
the formed intermediate is stabilized by hemilabile
coordination of the pyridyl group. Then, metal–ligand
cooperation significantly increases the rate of alcoholysis of the
acyl palladium complex.176 This finding greatly improved the
efficiency of the overall catalyst system, which allowed a general
alkoxycarbonylation of olefins including demanding
tetrasubstituted ones. As an example, the efficient carbonylation

of ethylene exhibited a TON of >1425000 and selectivity of
>99%.177

From 2000 to 2008, Drent and co-workers at Shell
developed interesting two-step processes for the synthesis of
adipic acid. Here, pentenoic acids were produced in the first
step and then distilled out from the reaction system and
exposed to a second carbonylation stage with a higher
concentration of water as nucleophile. This second step
involved an induction period of more than 5 hours. Although
such a continuous process simplified the relevant steps and
operations, due to the altered conditions of both steps, the
overall process still has some limitations such as adjustment
of reaction medium, charging/discharging of carbon
monoxide gas and adding additional water.178–181 In this
respect, the direct conversion of 1,3-butadiene to adipates
would be advantageous. For this purpose, the multifunctional
catalyst HeMaRaphos 43 was designed, which integrated two
basic backbones controlling reactivity and selectivity: the
steric and electron-rich di-tert-butylphosphino portion could
assist fast isomerization of CC bonds, while the tert-butyl-2-
pyridyl phosphino group enabled the generation of the active
Pd–hydride complex and enhanced the key alcoholysis step.
Indeed, by utilizing the Pd–HeMaRaphos catalyst, an excellent
yield of 95% and linear selectivity of 97% was obtained for

Fig. 7 Ligand advancements and reaction development for palladium-catalyzed carbonylation of 1,3-butadiene.
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the synthesis of adipates by dicarbonylation of 1,3-butadiene
(Fig. 7d). In addition, the catalytic system was also effective
for the conversion of numerous other nucleophiles.177,182–185

With respect to the industrial realization of such a process, it
is important to note that apart from the technical success, the
implementation of such a methodology will strongly depend
on the development of the different feedstock prices (e.g.
benzene versus 1,3-butadiene).

3.2 Telomerization of 1,3-butadiene with CO2 to EVP

Since the beginning of the industrial revolution, the
continuously increasing emissions of carbon dioxide have been
a major contributor to global warming. The resulting problems
urge a need to develop more sustainable technologies to realize
a circular economy for human society. Clearly, reducing CO2

releases are a core issue requiring many efforts. In this regard,
using carbon dioxide as an eco-friendly and available reagent
for chemical transformations provides the possibility to
synthesize a variety of useful chemical products. However, due
to its most oxidized state and its inertness, the utilization of
carbon dioxide usually requires a large amount of energy
input.186–188 This energy input can be provided externally, e.g.
by heating, or intrinsically by using “energy-rich” substrates. As
an example for the latter case, here we present the
telomerization of 1,3-butadiene with CO2 as a straightforward

route towards interesting fine chemical building blocks (e.g.,
3-ethyl-6-vinyltetrahydro-2H-pyran-2-one, EVP). This reaction
was first explored by Inoue and Musco in the 1970s.189,190 After
that, to improve the reaction efficiency, a large number of
palladium-based catalytic systems have been developed.191–195

As a more recent representative, some of us presented a Pd2-
dba3/TOMPP system requiring no complex reaction systems or
expensive additives and catalyzed the formation of the desired
EVP in 67% yield (Scheme 3).191 Recently, Dong and co-workers
developed the triphenylphosphine-based ligand 44 as a
promoter-free telomerization system, which achieved
remarkable improvements of both activity (TON up to 4540) and
selectivity (EVP and δ-lactone isomers up to 97%) by simply
introducing a hydroxyl group into the PPh3 ligand.195

Specifically, the activity depends on the position of the hydroxyl
group. In contrast to the inactivity of catalysts with o-hydroxyl-
substituted triphenylphosphine, catalysts with p-hydroxyl-
substituted ligands manifested high activity with good
selectivity towards the CO2-incorporated δ-lactone. These results
validated that embedding one weak coordination phenolic
hydroxyl group into the parent PPh3 ligand could dramatically
improve the activity of the resulting Pd catalyst. In addition, Bay
reported a very efficient and selective system in 2018 by using
Pd(OAc)2 and tris(p-methoxyphenyl)phosphine 9 as catalysts in
the presence of p-hydroquinone and N,N-diisopropylethylamine
as additives. A high catalyst turnover number of 4500 and

Scheme 3 Telomerization of 1,3-butadiene with CO2 and representative catalytic systems.
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excellent selectivity of 96% for EVP were achieved after 5 hours
at 70 °C.196 Currently, EVP is being synthesized on a mini-plant
scale,197 which indicates the potential of further upscaling to
realize industrialization, especially with the current emphasis
on carbon neutrality.

Since EVP has multiple functional groups, it can be
transformed into a variety of interesting fine chemicals and
monomers for polymers.198,199 For example, hydrogenation to
2-ethylheptanoic acid, which is used widely not only in
lubricants but also as a stabilizer for PVC, has been
described.200 In addition, the transformation to synthesize
high-performance polymers using EVP as a monomer has
received attention in recent years.201–205 For example, Nozaki
reported the first homopolymerization of EVP in 2014 via
radical polymerization.206 A novel polymer with lactone
repeating units was obtained (Mn = 5.7 kg mol−1, Đ = 1.3),
which was later used for post-polymerization modifications by
hydrolysis or aminolysis to obtain multifunctional materials.

3.3 Other chemical transformations

In addition to the aforementioned processes, 1,3-butadiene
undergoes numerous other interesting transformations. For
example, cyclodimerization of 1,3-butadiene is highly attractive
from an industrial point of view.207 The current process makes
use of a nickel(0)/phosphine catalyst system.208 The obtained
cyclooctadiene (COD) can react with ethylene via olefin
metathesis to produce 1,5-hexadiene, which is a valuable
intermediate, e.g. to produce suberaldehyde by
hydroformylation. On the other hand, COD can undergo
selective hydrogenation to produce the important chemical
cyclooctene or direct hydrogenation to cyclooctane, which is
further oxidized to suberic acid that is used as a nylon 6/8
precursor.209 Similarly, vinylcyclohexene (VCH) can also be
obtained by Diels–Alder reaction from two molecules of
1,3-butadiene. VCH has been further converted into
ethylbenzene or styrene. Interestingly, in contrast to the
synthesis of COD under Ni(0) catalysts, two molecules of
1,3-butadiene can produce also divinyl cyclobutane in
significant yields when a Ti-bipyridyl catalyst is used.210

Epoxidation of 1,3-butadiene has been developed by
Eastman Chemical as an efficient route to synthesize 3,4-epoxy-
1-butene under mild conditions using a silver-based catalyst
and air as oxidant.211,212 The resulting epoxide has been directly
converted to 1,4-butanediol further on, or thermally rearranged
to 2,5-dihydrofuran. In addition, numerous academically
interesting functionalizations of 1,3-butadiene have been
reported in recent years, including hydroboration,213–215

hydrosilylation,216–218 hydroamination,219–222 etc. The
exploration of these novel methodologies might provide more
possibilities of converting 1,3-butadiene into industrially
relevant chemicals in the future.

4 Summary and outlook

1,3-Butadiene is a major aliphatic feedstock for the chemical
industry and the most important 1,3-diene. Its efficient and

selective conversion towards a variety of products continues
to attract significant attention from many researchers in
both the chemical industry and academia. Its specific
chemical structure allows for many unique and efficient
transformations, which laid the foundation for its
irreplaceable chemical value. In this review, we summarize
currently used catalytic transformations of 1,3-butadiene
from the perspective of industrial production apart from
polymerization. Specifically, we focus on the application of
homogeneous catalysts and provide representative examples
for the readers. For example, palladium-catalyzed
telomerization of 1,3-butadiene offers versatile platform
chemicals for the production of 1-octene, 1-octanol, and
higher-value EVP lactones through the participation of
diverse nucleophiles. Meanwhile, efficient difunctionalization
of 1,3-butadiene provides a straightforward access for the
synthesis of various polymer precursors, including
adiponitrile, adipaldehyde, and adipic diesters. For all these
chemical processes, the development of efficient catalytic
systems plays a key role to enable atom-economic and
selective processes. Although significant progress has been
made in various conversions of 1,3-butadiene, further
advancements are needed in many areas to come up with
new practical applications. In this respect, artificial
intelligence technologies to predict the performance of a
ligand in an efficient way can help to develop improved
systems more efficiently. Indeed, currently machine learning
and artificial intelligence applications are receiving a boost
in performance and information from both academic
research and industry. Machine learning might become an
outstanding tool to accelerate catalyst discovery by enabling
extensive prediction of immeasurable compositions, driving
exploration to quickly discover the performance optima, and
quantitatively considering the structure and activity–
structure–property relationships. Therefore, instead of a
traditional synthesis–structure–property relationship based
on sometimes a not clear image of the catalytic mechanism,
data-focused mathematical models may progressively
understand and facilitate property prediction, guided
optimization, and fundamental understanding of catalysts.
In the context of a sustainable chemical industry a key issue
for the future use of 1,3-butadiene will be its origin. Cleary,
at present the vast majority of 1,3-butadienes is fossil based
as a by-product of naphtha cracking. However, there is
increasing interest in producing this feedstock from
biobased ethanol with lower environmental impact. If this
will be realized, we believe that 1,3-butadiene will be even
more widely employed in the chemical industry of the future
to produce a variety of intermediates for daily life products.
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