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Progress in the nanotechnology field has led to the development of a new class of materials capable of

producing a temperature increase triggered by near infrared light. These photothermal nanostructures

have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the lit-

erature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity,

hindering their full therapeutic potential. This paradigm shift has propelled the development of new

injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These

hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel–sol–

gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nano-

structures, these injectable hydrogels can also incorporate or be combined with other agents, paving the

way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for

the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination

with photodynamic-, chemo-, immuno- and radio-therapies.

1. Introduction

Cancer is one of the leading causes of death worldwide, hence
engaging much effort from the scientific community and
industry.1,2 To date, the intravenous administration of
chemotherapeutic drugs (chemotherapy) has been the most
widely applied therapeutic strategy for this disease.3 However,
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this route has some severe side effects associated with its non-
specificity towards cancer cells, ultimately leading to systemic
toxicity.3 To overcome such constraints, the cancer research
community has been focused on developing new therapeutic
weapons.4–7

A more up-to-date anticancer strategy that is currently
under investigation relies on the use of nanomaterials-
mediated photothermal therapy (PTT).8–11 In this approach,
nanostructures with photoresponsiveness are administered
intravenously, accumulate at the tumor site and, upon
irradiation with near infrared (NIR, 750–1000 nm) light,
produce a local temperature increase, resulting in the death of
cancer cells.12–14 Considering that NIR radiation minimally
interacts with biological components (e.g., water, melanin), its
use is crucial for achieving a high penetration depth and negli-
gible off-target heating.12 Hence, PTT mediated by nano-
materials may allow accurate spatio-temporally controlled
treatment.15 Inorganic nanostructures such as anisotropic
gold nanoparticles (e.g., gold nanorods,16 gold nanostars17),
carbon-based nanomaterials (e.g., carbon nanotubes,18

graphene oxide (GO),19 reduced graphene oxide (rGO)20), or
transition metal dichalcogenides (e.g., MoS2

21 and WS2
nanosheets22) have been employed for cancer PTT due to their
high NIR absorption and photothermal capacity. In turn, NIR-
absorbing small molecules (e.g., indocyanine green (ICG),23

IR780,24 IR82025) have been loaded into nanostructures due to
their multimodal character and biodegradability, being prom-
ising nanoagents for cancer PTT. Such small molecule-based
photothermal agents may also be covalently modified (e.g.,
with polymers, amino acids) to generate self-assembling nano-
structures intended for cancer PTT.26,27

Notwithstanding the nanoparticles’ anticancer potential,
their translation to the clinic has been slow. Nanomaterials
administered systemically (i.e., by intravenous injection) rely
heavily on the differently sized fenestrae of tumor vasculature
to passively accumulate at the tumor zone (enhanced per-

meability and retention (EPR) effect).28,29 However, only a very
small portion of the intravenously administered nanoparticles
reaches the tumor site (less than 1% (median)).30 Besides this,
the models currently available for the pre-clinical screening of
nanomaterials also show an exaggerated EPR effect.31 In fact,
the EPR effect is not ubiquitously present on human solid
tumors, which further hinders nanomaterials’ translation.31,32

In order to benefit from the potential of nanomaterials-
mediated PTT, it is crucial to overcome their systemic adminis-
tration-related issues. In this regard, the incorporation of
nanomaterials into macroscale systems (e.g., microneedles,
injectable hydrogels, scaffolds) has been receiving great
attention.33–35 These macroscale systems can be locally
injected/implanted into the tumor zone, thus sustaining the
delivery of the nanoparticles into the diseased site.36

Moreover, this approach can maximize the accumulation of
nanoparticles in the tumor as well as reduce their leakage to
adjacent tissues, avoiding possible side effects.36 Among the
different types of macroscale systems, injectable hydrogels
have received great interest due to their unique set of
properties.37,38

These injectable hydrogels have a straightforward formu-
lation and can be assembled at the tumor site (in situ-forming
hydrogels) or can undergo a gel–sol–gel transition during
injection (shear-thinning/self-healing hydrogels).37,39,40 In this
way, these can be administered through a minimally invasive
procedure and can reach deeper tumors when compared with
microneedle patches.41,42 Besides coordinating the delivery of
the NIR light-responsive nanoparticles directly into the tumor
site, the hydrophilic network of the hydrogels can also incor-
porate other agents (e.g., drugs, immunostimulants), opening
a venue for combinatorial PTT approaches.43,44 For instance,
Huang et al. compared the biodistribution of doxorubicin
(DOX) and DOX-loaded nanoparticles (both administered by
intravenous injection) with that attained using an injectable
hydrogel containing DOX-loaded nanoparticles (by peritu-
moral injection).45 The free DOX and DOX-loaded nano-
particles achieved tumor uptake, but their concentration at
this site decreased after 1 day. In turn, the injectable hydrogel
containing the DOX-loaded nanoparticles promoted a higher
tumor accumulation of this agent (at least for 21 days) with
minimal distribution to off-target organs (e.g., liver, spleen,
lungs). In fact, several studies have demonstrated that the
delivery of nanostructures (or drugs) using injectable hydrogels
results in a prolonged tumor uptake and/or minimal off-target
accumulation.46,47 Depending on the components used for
their production, the injectable hydrogels also display good
physical and chemical properties, biodegradability, and
biocompatibility.34

In this review, the application of injectable hydrogels for
the local delivery of nanoparticles aimed at cancer PTT as well
as their potential for combinatorial PTT is analyzed. Firstly, an
overview of the properties and capabilities of injectable hydro-
gels designed for tumor-confined delivery of nanomaterials
will be provided (section 2). Afterwards, the application of
injectable hydrogels for guiding nanomaterials-mediated PTT
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will be analyzed (section 3). Then, the use of injectable hydro-
gels for nanomaterials-mediated PTT in synergy with other
therapeutic modalities (photodynamic-, chemo-, immuno- and
radio-therapies) will be discussed (section 4). Finally, an
outlook regarding the state-of-the-art and future directions is
provided (section 5). For the sake of brevity, this review will be
focused on hydrogels for cancer combinatorial-PTT that are
locally administered by intratumoral/peritumoral injections.

2. Overview of injectable hydrogels
for the delivery of nanomaterials for
cancer PTT

Injectable hydrogels allow local nanoparticle delivery in a rela-
tively non-invasive manner (i.e., through injection) when com-
pared with their implantable equivalents.48–50 This can greatly
reduce discomfort and risk of infection.49,50

In general, two main types of injectable hydrogels have
been used for the delivery of nanoparticles aimed at cancer
PTT: injectable in situ-forming hydrogels and shear-thinning/
self-healing hydrogels.37,39,40 Regarding the former, as their
name states, these are formed in situ (i.e., at the tumor site). In
brief, the procedure for injectable in situ-forming hydrogel
administration is based on the loading of precursor solutions
(polymeric solutions and/or crosslinking agents) and NIR-
responsive nanoparticles into a syringe.43,44,48,51 This mixture
is then administered at the tumor site, allowing the hydrogel
formation in situ by a crosslinking reaction, the nanoparticles
being entrapped within the polymeric structure.6 Thus, the
hydrogel should have a fast gelation time to prevent premature
leakage of the therapeutic nano-agents.52 At the same time,
the hydrogel must also allow the sustained release of the
entrapped molecules.53 Then, the tumor area is irradiated with
a NIR light, and an on-demand temperature increase occurs
after the nanomaterials’ interaction with this radiation.

In the case of shear-thinning/self-healing hydrogels, these
are pre-formed in the syringe.54 Upon injection at the tumor
site, the generated shear force allows the dissociation of the
crosslinking bonds, and the hydrogel extravasates through the
needle due to a decrease in its viscosity.54,55 When this force is
no longer applied, the crosslinking interactions are rebuilt
(self-healing) and the hydrogel network is restored at the
tumor site.54,55 Afterwards, the nanomaterials’ PTT can be
initiated with the irradiation of the tumor zone with NIR light.
This type of hydrogel allows for a more homogeneous encapsu-
lation of the nanomaterials, injection without clogging and
controlled release of the payload.55

2.1. Crosslinking mechanisms

Injectable hydrogels can be classified according to their cross-
linking mechanism.48,53 Chemically crosslinked hydrogels are
formed by covalent bonds between the polymeric components
and are characterized by higher mechanical strength and
physical stability, giving them a prolonged degradation time.6

It should be noted that some chemical reactions may require
the assistance of additional agents such as photoinitiators, cat-
alyzers, or organic solvents, demanding special attention to
ensure the hydrogel’s biocompatibility.6,56 The typical reac-
tions in chemically crosslinked injectable hydrogels are (i)
Schiff base reactions between an amine and carbonyl-contain-
ing aldehyde/ketone; (ii) Michael addition reactions where
there is a nucleophilic addition to an unsaturated carbonyl
compound, like α,β-unsaturated carbonyl; (iii) disulfide bond
formation between peripheral thiol groups; (iv) Diels–Alder
“click” reaction between a conjugated diene and an alkene/
alkyne; (v) polymerization in the presence of a photoinitiator;
and (vi) azide–alkyne cycloaddition between these two func-
tional groups, with Cu(I) as a catalyst (Fig. 1).6,48,57–63

Physically crosslinked hydrogels are formed by non-covalent
interactions, displaying excellent injectability and biocompat-
ibility.6 However, these types of hydrogels tend to have a rela-
tively low mechanical strength.40,48 The typical reactions in
physically crosslinked hydrogels are (i) hydrophobic inter-
actions between hydrophobic segments that result in aggrega-
tion in aqueous solutions; (ii) hydrogen bonding between
hydrogen atoms in highly electronegative groups and other
electronegative atoms; (iii) ionic crosslinking formed by
electrostatic forces between two oppositely charged molecules;
(iv) host–guest interactions between a host molecule that
includes/complexes a guest molecule in their structure; and (v)
π–π interactions between the aromatic ring of two molecules
rich and short of electrons (Fig. 1).6,48,51,64–69

2.2. Stimuli-responsiveness

Injectable hydrogels can also be engineered to be sensitive to
external or internal (i.e., endogenous) stimuli.70–72 This
responsiveness can be applied in triggering the hydrogels’
assembly/disassembly at the tumor site, their degradation, and
in the release of the incorporated nanomaterials.71,73

Regarding external stimuli, injectable hydrogels can, for
example, be light-responsive (e.g., UV or NIR light).74–76 The
application of light may (i) induce the photopolymerization or
photooxidation of crosslinking bonds mediated by the
initiator; (ii) cause photoisomerization; or (iii) generate a
temperature increase (mediated by the loaded photothermal
agents) that alters the hydrogel’s solid form.71,77,78 This photo-
induced heat can also be used to induce a controlled release of
nanotherapeutic agents.51 For instance, Wang and co-workers
prepared a light-responsive hydrogel using methacrylic anhy-
dride-modified chitosan and poly(N-isopropylacrylamide)
(PNIPAM) that incorporated carbon-based nanostructures and
DOX.79 The combination of irgacure 2959 (photoinitiator) and
UV light triggered a photocrosslinking process between the
methacrylic groups that led to the hydrogel’s assembly. In
turn, the photothermal effect induced by the carbon-based
nanostructures after NIR irradiation induced the shrinking of
the hydrogel (behavior attributed to PNIPAM) and triggered
the DOX release.79

Moreover, by incorporating superparamagnetic nano-
structures (e.g., Fe3O4 nanoparticles) into the injectable hydro-
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gels, it is possible to attain responsiveness to magnetic
fields.56,80 The interaction of these nanostructures with the
magnetic field can also produce a local temperature increase
that can change the hydrogel’s properties (e.g., increasing the
drug release).80

Concerning internal/endogenous stimuli, injectable hydro-
gels can be engineered to be responsive to body
temperature.81,82 Moreover, the tumor microenvironment also
displays a set of characteristics that can be used as internal/
endogenous stimuli (lower pH or overexpression of specific
enzymes (e.g., matrix metalloproteinases (MMPs)).70

There can be two types of temperature-responsiveness:
injectable hydrogels’ viscosity can decrease or augment with
the temperature increase.44,72,83 The former can be helpful in
terms of release of loaded therapeutic agents, whereas the
latter is more advantageous for efficient gelation in the tumor
area. One popular strategy explores the use of polymeric for-
mulations that present a low viscosity at room temperature (to
make injection easier) and then, after injection in the tumor
zone, undergo a sol-to-gel transition at body
temperature.66,83,84 The best-known polymers with thermal
responsiveness include the Pluronic family, cellulose, chito-
san, or agarose derivatives.84 For example, Zheng et al. devel-

oped a temperature-responsive hydrogel composed of chitosan
and β-glycerophosphate incorporating DOX and poly(ethylene
glycol) (PEG)-functionalized MoS2/Bi2S3 nanosheets for cancer
therapy.85 Upon mixing, these components could be loaded
into a syringe and easily extruded. This formulation gellified at
37 °C due to a combination of hydrogen bonding and electro-
static and hydrophobic interactions between chitosan and
β-glycerophosphate.85

Regarding pH-responsive injectable hydrogels, one possible
approach explores crosslinking bonds that are stable at physio-
logical pH but suffer rapid breakdown in the acidic conditions
found within the tumor extracellular fluid.34,86 Qu and col-
leagues developed an injectable hydrogel based on the
covalent and pH-sensitive Schiff base bond between
N-carboxyethyl chitosan (CEC) and dibenzaldehyde-terminated
PEG (PEG-DA) for the intratumoral delivery of DOX.87 At the
mildly acidic tumor pH, the primary amine groups of CEC
become positively charged, weakening the Schiff base cross-
linking. Such change promoted the hydrogel’s degradation
and accelerated the release of the loaded cargo.87

Enzyme-responsive hydrogels aim to take advantage of
enzymes overexpressed at the tumor site.53 For instance, the
tumor microenvironment has high amounts of MMPs that

Fig. 1 Schematic illustration of the chemical and physical crosslinking methods used for the assembly of injectable hydrogels.
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degrade the basement membrane and extracellular matrix,
playing an important role in several cancer processes.88

Generally, the preparation of enzyme-responsive hydrogels is
based on the incorporation of enzyme-cleavable crosslinkers
(e.g., short peptides89) and enzyme-cleavable polysaccharides
(e.g., hyaluronic acid (HA) since it is degraded by hyaluroni-
dase90). Li et al. developed an enzyme-responsive injectable
hydrogel formulated through Michael addition reactions
between acrylated-HA and cysteine-modified peptides contain-
ing an MMP-2-cleavable sequence (GPQGIWGQ), that also
incorporated DOX-loaded micelles.91 In the presence of
MMP-2, this hydrogel promoted a 1.45-times greater DOX
release than in the absence of MMP-2.

3. Injectable hydrogels for cancer
PTT

Injectable hydrogels can incorporate NIR-responsive nano-
materials into their hydrophilic structure, protecting them
from degradation and sustaining their tumor-confined deliv-
ery.43 In this way, injectable hydrogels have been explored for
the local delivery of nanomaterials aimed at cancer PTT
(Table 1) (Fig. 2A–D).

When the radiation interacts with the photothermal nano-
agent incorporated into the tumor-confined hydrogel, it is
absorbed, and the energy is released as heat.43 If the final
temperature at the tumor site is around 41–45 °C there can be
(i) changes in cells’ metabolic functions, (ii) inhibition of the
DNA repair mechanisms, (iii) increase in the blood flow at the
tumor site, (iv) increase in the oxidative stress and formation
of reactive oxygen species (ROS), (v) a rise in the infiltrated
immune cells, and (vi) sensitization of cells to the action of
other therapies.8,92–95 However, these effects are sublethal and
can be reversible. On the other hand, local temperature
increases to about 50 °C (or above) induce permanent damage:
(i) the cell membrane collapses, (ii) the proteins denature, and
(iii) the enzymatic and mitochondrial functions are rendered
dysfunctional.13,94,96 Such effects are non-reversible and ulti-
mately lead to cell death by necrosis.97,98 The cellular and
molecular mechanisms prompted by these photothermally
induced events have been extensively reviewed elsewhere.99–103

Additionally, the temperature increase that occurs during
irradiation can also affect the structure of thermosensitive
hydrogels (discussed in section 2). CuS nanodots, polydopa-
mine (PDA) nanostructures, gold-based nano-systems, GO
derivatives, ICG and IR820 are some NIR-responsive agents
that have been incorporated into injectable hydrogels intended
for cancer PTT.104–110

He and co-workers developed an injectable hydrogel com-
posed of silk fibroin that incorporated GO complexed with
upconversion nanoparticles (UCNP).111 This hydrogel was
formed through hydrophobic interactions that changed the
silk fibroin from a random coil structure to the more stable
β-sheet conformation.112 In this system, UCNP were used as
imaging agents (upon excitation with 980 nm light) while GO

acted as photothermal agent (upon exposure to 808 nm radi-
ation).111 After administration of the macroscale formulation
into the breast tumor of mice and in situ gelation, this area
was irradiated with 808 nm light (1 W cm−2, 5 min), reaching
a temperature increase to about 57 °C that resulted in potent
tumor regression.111

In another work, Cao et al. developed a poly (D,L-lactic acid-
co-glycolic acid)-b-PEG-b-poly(D,L-lactic acid-co-glycolic acid)-
based injectable hydrogel incorporating ancient ink nano-
particles as the PTT agent for colon cancer therapy.113 This
injectable hydrogel displayed a thermo-responsive assembly,
achieving gelation when the temperature increased from 25 °C
to 37 °C (physiological temperature). When the administered
injectable hydrogel was subjected to NIR light (1064 nm, 0.5
W cm−2, 15 min), it could produce a temperature increase to
approximately 48.7 °C, resulting in a tumor growth reduction
of about 84%.113

4. Injectable hydrogels for cancer
combinatorial therapy

Injectable hydrogels can also be used for the local co-delivery
of photothermal nanostructures and other therapeutic
agents.37,56 This combinatorial approach opens a venue for
exploring the strong aspects of each therapeutic regimen, poss-
ibly leading to synergistic effects (Table 2).72,127 This can also
lead to a reduction of the required NIR laser and nanoparticle
doses. This type of combinatorial therapy mediated by the
injectable hydrogels is also important to achieve a greater
therapeutic outcome, especially when the standalone PTT is
not capable of destroying the residual cancer cells.

4.1. Injectable hydrogels for cancer photodynamic-PTT

Injectable hydrogels that incorporate photothermal nano-
agents and photosensitizers have triggered the interest of
researchers (Table 2). Upon interaction with laser light, the
photosensitizers are able to create ROS such as singlet oxygen,
hydrogen peroxide, superoxide anion and hydroxyl radicals
(photodynamic therapy (PDT)) (Fig. 2E–H).128 At suitable
levels, these ROS are extremely toxic to cancer cells since these
can (i) affect the DNA and the permeabilization of the mito-
chondria’s outer membrane, (ii) cause damage to the tumor
vasculature, and (iii) induce an inflammatory response.129–131

Interestingly, the ROS produced during PDT can also act as
initiators in the photopolymerization/photocrosslinking of
some injectable hydrogels.132 To date, different photosensiti-
zers (e.g., IR780,51 ICG,133 Ce6134) have been incorporated into
injectable hydrogels aimed at cancer therapy, either dispersed
in the gels’ hydrophilic network or encapsulated within the
nanomaterials.

Besides the standalone effects of the nanomaterials’ PTT
(described in section 3) and those from PDT (described above),
each regimen can potentiate the other, making injectable
hydrogels for combinatorial photodynamic-PTT very appealing.
On one hand, photothermal heating can increase the blood
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Fig. 2 Schematic representation of therapeutic strategies based on injectable hydrogels incorporating nanomaterials aimed at cancer PTT and
respective combinatorial-PTT approaches. (A–D) Main mechanism involved in injectable hydrogel PTT. (A) Inhibition of the DNA repair mechanisms
induced by temperature increase. (B) ROS formation after the photothermally triggered tumor oxygenation. (C) Protein denaturation and mitochon-
dria dysfunction caused by the photothermal heating. (D) Collapse of the cell membrane due to the local hyperthermia. (E–H) Key effects in inject-
able hydrogel photodynamic-PTT. (E) PDT-induced inflammatory response. (F) Improved tumor oxygenation (consequence of PTT) and production
of ROS. Modified mitochondrial permeability prompted by ROS. (G) Affected DNA repair mechanism by the PDT-created ROS. (H) Hindered heat
shock protein function by ROS. (I–L) Main events occurring in injectable hydrogel chemo-PTT. (I) Alteration of the hydrogel structure by photother-
mal heating and increased therapeutic agent release from the hydrogel. (J) Disruption of the extracellular matrix (as a consequence of the tempera-
ture increase), resulting in enhanced penetration of nanomaterials/drugs. (K) Photothermally triggered permeabilization of cell membrane leading to
an enhanced internalization of the enrolled agents. (L) Affected DNA synthesis and repair mechanisms by chemotherapeutic action. (M–P) Main
mechanism involved in injectable hydrogel immuno-PTT. (M) Macrophage polarization from a pro- to an anti-tumoral state due to the photother-
mally triggered hypoxia relief. Production of a pro-inflammatory response. (N) Photothermally induced release of tumor-associated antigens (TAAs)
and damage-associated molecular patterns (DAMPs). (O) The released TAAs are processed by immature dendritic cells (DCs), leading to their matu-
ration (aided by DAMPs) and subsequent priming and activation of cytotoxic T cells. (P) Enhanced DC maturation by the immunostimulants encapsu-
lated in the hydrogels. CTLA-4, PD-L1 and PD-1 blockade by the immune checkpoint inhibitors encapsulated in the hydrogels. (Q–T) Key events
taking place in injectable hydrogel radio-PTT. (Q) DNA breakage by ionizing radiation. (R) DNA breakage by the ROS produced after exposure to
ionizing radiation. (S) Weakened DNA repair mechanisms (consequence of PTT) favor DNA breakage by ionizing radiation. (T) Photoinduced heat
increases tumor oxygenation and improves radiotherapy efficacy.
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flow in the irradiated area, improving tumor oxygenation and
hence boosting the production of ROS by the
photosensitizers.179,180 On the other hand, the ROS produced
during PDT can hinder the function of heat shock proteins
which are overexpressed by cancer cells and protect them
against the heat-induced damage generated in PTT.13,181 In an
ideal situation, both the photothermal nano-agent and the
photosensitizer would be responsive to the same wavelength of
NIR light, enabling a straightforward single-irradiation
treatment.12,13 When these agents have very distinct optical
properties (i.e., the wavelengths of their maximum absorption
are distinct), sequential irradiation with lasers emitting light
at different wavelengths is required.12,13,182

Sun et al. prepared an injectable hydrogel by mixing col-
lagen and AuCl4

− that achieved gelation through electrostatic
interactions.136 In this process, Au nanoparticles (AuNPs) are
simultaneously formed in the hydrogel’s matrix. In addition,
the water-soluble photosensitizer meso-tetra(N-methyl-4-
pyridyl) porphine tetrachloride (TMPyP) was also included in
the hydrogel matrix.136 By using 635 nm laser light (0.17 W
cm−2, 10 min; at 4 h and 12 h after the injection), the intratu-
morally injected hydrogel incorporating AuNPs and TMPyP
(combinatorial photodynamic-PTT) could eradicate the breast
tumors in 3 out of 4 mice (Fig. 3). On the other hand, the
stand-alone PTT could only promote the elimination of the
breast tumor in 1 mouse, while the stand-alone PDT only
reduced the tumor’s growth.136

4.2. Injectable hydrogels for cancer chemo-PTT

The use of injectable hydrogels for the co-delivery of nano-
photothermal agents and chemotherapeutics has also been
extensively researched (Table 2). Depending on the water solu-
bility of the chemotherapeutic agents, these can either be
incorporated into the hydrogel’s hydrophilic network or
loaded in the hydrophobic regions of the photothermal nano-
agents.56 Another strategy for loading hydrophobic chemother-
apeutics in injectable hydrogels relies on the introduction of
hydrophobic moieties (e.g., amphiphilic polymers183) or mole-
cules capable of forming complexes (e.g., cyclodextrins183) in
the hydrogel matrix.56

The local delivery of chemotherapeutic drugs using injectable
hydrogels is more controlled/sustained and shields healthy
tissues from possible side effects.53,72 Furthermore, the photo-
thermal heating of nanomaterials can (i) disrupt the extracellular
matrix and cell membrane, boosting the penetration and intern-
alization of chemotherapeutic drugs, and (ii) interfere with the
structural network of some hydrogels (thermo-responsive), stimu-
lating the chemotherapeutics’ release (Fig. 2I–L).10,184

Zhou and co-workers prepared AuNPs coated with a meso-
porous silica shell that were loaded with DOX and functiona-
lized with triphenylphosphine.144 Upon injection, the phenolic
groups of this nanostructure could react covalently with tyro-
sine-HA (reaction catalyzed by horseradish peroxidase), creat-
ing an in situ-forming hydrogel.144 The release of DOX from
this hydrogel was responsive to hyaluronidase-mediated degra-
dation and to NIR light-induced photothermal heating. WhenT

ab
le

2
(C
o
n
td
.)

H
yd

ro
ge
lc

om
po

n
en

ts
M
od

al
it
y

Tu
m
or

m
od

el
A
dm

in
is
tr
at
io
n

ro
ut
e

H
yd

ro
ge
l

vo
lu
m
e

La
se
r
pa

ra
m
et
er
s

T
h
er
ap

eu
ti
c
ou

tc
om

e
of

th
e
co
m
bi
n
at
or
ia
l

th
er
ap

y
T
h
er
ap

eu
ti
c
ou

tc
om

e
of

th
e
si
n
gl
e
th
er
ap

y
R
ef
.

A
u
n
an

op
ar
ti
cl
es

ag
gr
eg
at
es

an
d
D
O
X
in
co
rp
or
at
ed

in
to

1
3
1
I-
la
be

lle
d
PE

G
-P
(T
yr
os
in
e)

8
h
yd

ro
ge
l

PT
T

M
C
F-
7
tu
m
or
-

be
ar
in
g
m
ic
e

p.
t.

10
0
μL

80
8
n
m
,2

W
cm

−
2
,1

0
m
in

(a
t
da

y
1,

3,
an

d
5)

Tu
m
or

gr
ow

th
re
du

ct
io
n

Tu
m
or

gr
ow

th
re
d
u
ct
io
n
(c
h
em

o
+

ra
di
o)

17
8

Tu
m
or

gr
ow

th
re
d
u
ct
io
n
(c
h
em

o
+

PT
T
)

C
h
em

ot
h
er
ap

y
Tu

m
or

gr
ow

th
re
d
u
ct
io
n
(r
ad

io
+

PT
T
)

Tu
m
or

gr
ow

th
re
du

ct
io
n
(c
h
em

o)
R
ad

io
th
er
ap

y
Tu

m
or

gr
ow

th
re
du

ct
io
n
(r
ad

io
)

Tu
m
or

gr
ow

th
re
du

ct
io
n
(P
T
T
)

a
M
es
o-
te
tr
a
(N

-m
et
h
yl
-4
-p
yr
id
yl
)
po

rp
h
in
e
te
tr
ac
h
lo
ri
de

.
b
Po

ly
(N
-p
h
en

yl
gl
yc
in
e)
.
c
B
ov
in
e
se
ru
m

al
bu

m
in
.
d
Pa

cl
it
ax
el
.
e
N
-O
ct
yl
-N
,
O
-s
uc

ci
n
yl
-O
-p
h
os
ph

or
yl

ch
it
os
an

.
f
Tr
ip
h
en

yl
ph

os
ph

in
e.

g
A
u
-c
or
e
m
es
op

or
ou

s
si
li
ca

n
an

op
ar
ti
cl
es
.

h
H
or
se
ra
di
sh

pe
ro
xi
da

se
.

i
Po

ly
st
yr
en

e-
g-
PE

G
.

j
Po

ly
([
4,
4,
9,
9-
te
tr
ak

is
(4
-h
ex
yl
ph

en
yl
)-
4,
9-
di
h
yd

ro
-s
in
da

ce
n
o

[1
,2
-b
:5
,6
-b
′]

di
th
io
ph

en
e-
2,
7-
di
yl
]-c
o-
[6
-(
2-
et
h
yl
h
ex
yl
)-
[1
,2
,5
]t
h
ia
di
az
ol
o[
3,
4-
f]
be

n
zo
tr
ia
zo
le
-4
,8
-

di
yl
])
.
k
Po

ly
(N
-p
h
en

yl
gl
yc
in
e)
.
l
Po

ly
(a
cr
yl
ic

ac
id
-b
-N
-is

op
ro
py

la
m
id
e-
b-
ac
ry
li
c
ac
id
.
m
D
oc
et
ax
el
.
n
PN

IP
A
M
-p
ol
y(
su

lf
ob

et
ai
n
e
m
et
h
ac
ry
la
te
)
cr
os
sl
in
ke

d
w
it
h
N
,N
-m

et
h
yl
en

eb
is
ac
ry
la
m
id
e.

o
O
xi
di
ze
d
-k
on

ja
c
gl
u
co
m
an

n
an

.
p
O
xi
di
ze
d

so
di
um

al
gi
n
at
e.

q
Pe

ry
le
n
e
di
im

id
e
zw

it
te
ri
on

ic
po

ly
m
er
.
r
Fr
uc

to
se
-b
as
ed

gl
yc
op

ol
ym

er
.
s
7-
E
th
yl
-1
0-
h
yd

ro
xy
ca
m
pt
ot
h
ec
in
.
t
M
et
h
ox
y
PE

G
.
u
Po

ly
(ε
-c
ap

ro
la
ct
on

e-
co
-1
,4
,8
-t
ri
ox
a[
4.
6]
sp

ir
o-
9-
u
n
d
ec
an

on
e)
.
v
D
-

α-
To

co
ph

er
ol

PE
G
10

00
su

cc
in
at
e.

w
St
ar
-s
h
ap

ed
po

ly
(2
-(
di
m
et
h
yl
am

in
o)
et
h
yl

m
et
h
ac
ry
la
te
-c
o-
2-
h
yd

ro
xy
et
h
yl

m
et
h
ac
ry
la
te
)
m
od

if
ie
d
w
it
h
te
rt
bu

ty
l
ac
et
oa

ce
ta
te

(t
-B
A
A
).

x
N
-I
so
pr
op

yl
ac
ry
la
m
id
e.

y
A
d
am

an
ta
n
e-
m
od

if
ie
d

D
O
X
.

z
M
et
h
ac
ry
la
te
d

β-
cy
cl
od

ex
tr
in
-b
as
ed

m
ac
ro
m
er
.

a
a
A
m
m
on

iu
m

pe
rs
ul
fa
te
.

a
b
Po

ly
-L
-ly
si
n
e.

ac
N
-F
lo
re
n
yl
m
et
h
ox
yc
ar
bo

n
yl

di
ph

en
yl
al
an

in
e.

a
d
Po

ly
(D
,L
-la

ct
id
e)
-b
lo
ck
-p
ol
y(
et
h
yl
en

e
gl
yc
ol
)-
bl
oc
k-
po

ly
(D
,L
-la

ct
id
e)
.

a
e
M
ul
ti
-w
al
le
d
ca
rb
on

n
an

ot
ub

e.
af
PE

G
di
ac
ry
la
te
.

Biomaterials Science Review

This journal is © The Royal Society of Chemistry 2023 Biomater. Sci., 2023, 11, 6082–6108 | 6093

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
ju

li 
20

23
. D

ow
nl

oa
de

d 
on

 2
9-

01
-2

02
6 

13
:0

4:
09

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3bm00845b


tested in vivo, the chemo-PTT mediated by this hydrogel
prompted tumor eradication, while the stand-alone therapies
(hydrogel PTT or hydrogel chemotherapy) only induced tumor
regression (Fig. 4).144

In another work, Jiang et al. developed an injectable hydro-
gel based on the chemical crosslinking occurring between palla-
dium nanosheets (PTT agent) and the thiol pendant groups of
branched 4-arm PEG, that also incorporated DOX.141 This hydro-
gel mediated a sustained delivery of DOX, the amount of released
drug being augmented upon NIR laser irradiation. When tested
in vivo, the DOX-loaded palladium nanosheets-PEG hydrogel in
combination with NIR light (808 nm, 0.6 W cm−2, 10 min)
induced breast tumor eradication. In contrast, the stand-alone
PTT (palladium nanosheets-PEG hydrogel plus NIR light) could
reduce tumors’ growth, while the stand-alone chemotherapy
(DOX-loaded palladium nanosheets-PEG hydrogel) had a weak
therapeutic outcome, being very similar to the control.141

4.3. Injectable hydrogels for cancer immuno-PTT

In general, therapeutic approaches based on the use of inject-
able hydrogels incorporating nanomaterials aimed at cancer
PTT are not effective towards metastases nor prevent tumor’s
recurrence.185 However, the photothermal heating triggers
some events which, aided by immunotherapeutic agents (e.g.,

immunostimulants, immune checkpoint inhibitors), can lead
to the establishment of anti-metastatic cytotoxic T-cell
responses and the creation of immune memory.186–188

In fact, the local photothermal heating per se can (i) induce
the release of tumor-associated antigens (TAA) and damage-
associated molecular patterns (DAMPs) from cancer cells, (ii)
enhance the blood flow into the tumor zone, relieving tumor
hypoxia and thus driving macrophages’ polarization from a pro-
to an anti-tumoral state, and (iii) generate a pro-inflammatory
response.187,189–191 Subsequently, the released TAA can be pro-
cessed by antigen-presenting cells (e.g., dendritic cells), paving
the way for the priming and activation of cytotoxic T cells.192

The TAA-primed cytotoxic T cells can then potentially mediate
the elimination of local and metastasized tumors. In this
process, immune memory may also be established, being
crucial for the prevention of a tumor’s recurrence.193 To further
boost these processes, the injectable hydrogels can be loaded
with (i) immunostimulants (e.g., toll-like receptors agonists) to
enhance dendritic cell maturation, and (ii) immune checkpoint
inhibitors (e.g., CTLA-4 and PD-1/PD-L1 blockers, IDO1 inhibi-
tors) to abolish the immunosuppressive interactions occurring
in the tumor microenvironment (Fig. 2M–P).194

In a recent study, Revuri et al. developed an injectable
hydrogel using Pluronic F127 and HA that incorporated bovine

Fig. 3 In vivo combinatorial PTT–PDT mediated by collagen-based injectable hydrogels incorporating AuNPs and TMPyP. Tumor volume (A), tumor
mass (B), tumor recurrence (C) and body weight (D) after the various treatments. Control: collagen solution and laser irradiation (635 nm, 0.17 W
cm−2, 10 min at 4 h and 12 h after injection); PDT: TMPyP solution and laser irradiation; PTT: collagen and AUNPs hydrogel with laser irradiation;
PDT&PTT (dark): collagen and AUNPs hydrogel incorporating TMPyP; PDT&PTT (laser): collagen and AUNPs hydrogel incorporating TMPyP with
laser irradiation. Reprinted with permission from ref. 136. Copyright 2016, Elsevier B.V.
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serum albumin modified-MnO2 nanoparticles (BSA-MnO2

nanoparticles) and resiquimod as photothermal and immuno-
stimulating agents, respectively.169 The assembly of this
injectable hydrogel was based on the thermo-responsive behav-
ior of Pluronic F127, which upon heating to body temperature
underwent a sol–gel transition (HA was used to improve the

hydrogel’s mechanical strength).169 This formulation was then
injected into primary tumors in mice, followed by NIR
irradiation (808 nm, 2 W cm−2, 10 min), while the secondary
tumors were not directly treated (Fig. 5). The immuno-PTT
mediated by this injectable hydrogel could inhibit the growth
of the primary tumor and reduce the growth of the secondary

Fig. 4 In vivo combinatorial chemo-PTT mediated by an injectable hydrogel based on tyrosine-HA and DOX loaded TPP-AuMSN. Thermographic
images of mice after intratumoral administration of the formulations and exposure to NIR irradiation (808 nm, 1 W cm−2) (A). Body weight of the
mice after each treatment (B). Relative tumor volume (C) and representative images of the tumors (D) after the different treatments. Au@MPP@HA:
tyrosine-HA and TPP-AuMSN hydrogel; Au@MPPD@HA: tyrosine-HA and DOX-loaded TPP-AuMSN hydrogel; Au@MPP@HA + NIR tyrosine-HA and
TPP-AuMSN hydrogel with NIR irradiation (808 nm, 1 W cm−2, 10 min); Au@MPPD@HA + NIR: tyrosine-HA and DOX-loaded TPP-AuMSN hydrogel
with NIR irradiation. Reprinted with permission from ref. 144. Copyright 2020, American Chemical Society.
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tumor. Such effects were correlated with the ability of this
treatment to prompt higher levels of matured dendritic cells
and activated cytotoxic T cells at the secondary tumor sites.169

In another work, Zhang et al. produced an injectable hydro-
gel using N-fluorenylmethoxycarbonyl diphenylalanine and
poly-L-lysine grafted with thiol-groups, that incorporated bili-

Fig. 5 In vivo immuno-PTT mediated by an injectable hydrogel of HA-Pluronic F127 incorporating BSA-MnO2 nanoparticles and resiquimod. Volume
of the primary and secondary tumors (A). Percentage of CD80+, CD86+ and MHCII+ dendritic cells (B) and CD4+, CD8+ and CD8+IFNγ T cells (C). Gel
R848: HA-Pluronic F127 hydrogel incorporating resiquimod; BAGEL: HA-Pluronic F127 hydrogel incorporating BSA-MnO2 nanoparticles; BAGEL +
LASER: HA-Pluronic F127 hydrogel incorporating BSA-MnO2 nanoparticles with NIR irradiation (808 nm, 2 W cm−2, 10 min); BAGEL R848: HA-Pluronic
F127 hydrogel incorporating BSA-MnO2 nanoparticles and resiquimod; BAGEL R848 + LASER: HA-Pluronic F127 hydrogel incorporating BSA-MnO2

nanoparticles and resiquimod with NIR irradiation. Reprinted with permission from ref. 169. Copyright 2021, Wiley–VCH GmbH.
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verdin (photothermal agent) and thymopentin (immunomodu-
latory peptide).171 This hydrogel system presented a shear-thin-
ning/self-healing behavior, being assembled through electro-
static and hydrophobic interactions, π–π stacking and disulfide
bonds. In vivo, the immuno-PTT mediated by this injectable
hydrogel led to tumor regression, while the stand-alone thera-
pies (hydrogel PTT or hydrogel immunotherapy) only
prompted a reduction of the tumor’s growth. The hypoxia
relief, improved dendritic cell maturation, and enhanced T-cell
recruitment mediated by the combinatorial treatment contrib-
uted to this therapeutic outcome.171

4.4. Injectable hydrogels for cancer radio-PTT

Injectable hydrogels aimed at cancer PTT can also be com-
bined with high-frequency radiation (e.g., X-rays, gamma rays)
with the intent to achieve a greater therapeutic outcome.13

Such radio-photothermic application can also be performed by
incorporating photothermal nano-agents and radionuclides
(e.g., 131I) into the injectable hydrogels.195 In this process,
radiosensitizers (e.g., SmacN7) may also be included to further
boost the therapeutic outcome.178,195

On one hand, the delivery of radionuclides/radiosensitizers
using injectable hydrogels into the tumor tissue can contrib-
ute to protecting healthy cells from the ionizing

radiation.196,197 The ability of the produced photoinduced heat
to improve tumor oxygenation also plays an important role in
improving the therapeutic outcome (radiotherapy displays
lower efficacy in hypoxic environments).13,198 Moreover, such
temperature increase can also weaken the DNA repair mecha-
nism, being crucial to prevent the repair of the DNA double-
strand breaks caused by radiotherapy.100 On the other hand,
the higher penetration depth of radiotherapeutic approaches
can counterbalance the limitation of PTT in treating deep-
seated tumors (NIR light has limited penetration depth)
(Fig. 2Q–T).199

Wang and co-workers developed an injectable thermo-
responsive hydrogel composed of agarose incorporating
Prussian blue nanoparticles, which was combined with NIR
and high-frequency radiation, for breast cancer radio-PTT.173

Besides acting as the photothermal nano-agent, the Prussian
blue nanoparticles also decomposed H2O2 to produce O2,
counteracting tumor hypoxia and acting as a radiosensiti-
zer.173 After administration of this formulation, the tumor area
was irradiated with NIR light (808 nm, 1 W cm−2, 5 min) and
high-energy radiation (2 Gy, 5 min, at 6 h post-PTT). This treat-
ment resulted in tumor regression. In contrast, the application
of stand-alone therapies only induced a reduction in tumor
growth (Fig. 6).173

Fig. 6 In vivo radio-PTT mediated by an agarose-based injectable hydrogel incorporating Prussian blue nanoparticles. Thermal images of mice (A)
and temperature of the tumor zone (B) after exposure to phosphate-buffered saline or agarose hydrogel incorporating Prussian blue nanoparticles
and NIR light (808 nm, 1 W cm−2, 5 min). Tumor volume (C), tumor weight (E) and body weight (D) of mice after the different treatments. NIR: NIR
light (808 nm, 1 W cm−2, 5 min); RT (2 Gy): high-energy radiation (2 Gy, 5 min); RT (6 Gy): high-energy radiation (6 Gy, 5 min); NIR + PRC: Prussian
blue NPs-agarose hydrogel and NIR light; NIR + PRC + RT: Prussian blue NPs-agarose hydrogel, NIR light and high-energy radiation (2 Gy). Adapted
with permission from ref. 173. Copyright 2021, Elsevier B.V.
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5. Conclusion and remarks for the
future

In this review, the application of injectable hydrogels for med-
iating nanomaterials’ cancer combinatorial-PTT was analyzed.

The use of injectable hydrogels for the local delivery of
nanomaterials and/or other agents directly into the tumor
ensured appropriate levels of these compounds at the target
site while sparing other tissues from off-target toxicity. This is
crucial to overcome the limitations associated with the sys-
temic administration of anti-cancer therapies. These injectable
hydrogels have been assembled using a myriad of natural (e.g.,
chitosan, alginate, cellulose, HA) and synthetic (e.g., Pluronic
F127, PC10A, PEG) polymers. In this regard, the polymers’
selection was revealed to be of utmost importance since it
affected the properties of the attained injectable hydrogels and
also directed the hydrogel’s crosslinking mechanism (physical,
chemical or hybrid). Just as important, injectable hydrogels
were also designed to be responsive to different external and
internal stimuli (e.g., pH, enzymes, magnetic field, light),
which assisted in the assembly/disassembly process, degra-
dation, and release of the loaded nanomaterials/therapeutic
agents, ultimately providing a path for a more controlled
therapy.

The standalone use of injectable hydrogels incorporating
nanomaterials aimed at cancer PTT has proved to be capable
of good in vivo outcomes. In this regard, some hydrogel formu-
lations were capable of inducing tumor eradication or
regression after NIR laser irradiation. However, the vast
majority of the analyzed injectable hydrogels containing nano-
materials intended for PTT only prompted a reduction of the
tumor’s growth (Table 1). Such outcome is likely multifactorial,
highlighting the limitations of standalone PTT (e.g., pene-
tration limit of NIR light, heterogeneous heat transfer in the
tumor mass).199,200

In order to improve the therapeutic outcome, injectable
hydrogels containing photothermal nano-agents were com-
bined with other modalities: PDT, chemotherapy, immu-
notherapy, radiotherapy. These combinatorial approaches
aimed to overcome the limitations of PTT and of the other
standalone therapies, leading to synergistic outcomes. Among
the different combinatorial strategies analyzed (Table 2),
injectable hydrogels containing nanomaterials for PTT com-
bined with PDT and chemotherapy were by far the most
explored. In fact, the application of injectable hydrogels for
combinatorial-PTT led to an increase in the levels of tumor
eradications and regressions. In these works, the respective
standalone therapies mostly prompted a reduction in the
tumor’s growth, thus emphasizing the enhanced outcome that
arises from the injectable hydrogel combinatorial-PTT.

The number of publications related to injectable hydrogels
for cancer PTT and combinatorial-PTT has clearly been
growing in the last 5 years. So far, several clinical trials using
injectable hydrogels for cancer-related applications have been
proposed/completed (e.g., ClinicalTrials.gov Identifiers:

NCT03713021, NCT01538628, NCT03125226, NCT05224869).
Furthermore, the use of hydrogels in numerous biomedical-
related applications has increased, their market being esti-
mated to generate revenues of 31.4 billion USD by 2027.201,202

Notwithstanding, in order to accelerate the translation of
injectable hydrogels, it is crucial to address the issues related
to their sterilization, scale-up and stability during storage. In
this regard, the incorporation of anti-microbial agents into the
hydrogels (e.g., silver nanoparticles, chitosan) may reduce the
risk of infection after their injection. Additionally, the use of
non-toxic elements in the injectable hydrogels’ assembly may
accelerate the laborious and time-consuming purification
steps. The fabrication of the injectable hydrogels’ precursor
solutions in state-of-the-art equipment may also ease the scale-
up processes. In turn, strictly controlling the handling and
storage conditions (e.g., temperature, moisture, pH, exposure
to radiation) of the injectable hydrogels and respective precur-
sor solutions is fundamental to improving their stability
during storage.

Moreover, the gelation time of some injectable hydrogels
could be improved, since this parameter is crucial to efficiently
confine the therapeutics in the tumor zone. In this context,
the optimization of the polymer’s features (e.g., molecular
weight, polydispersity, viscosity) and crosslinking strategies
(e.g., crosslinking degree, combination of physical and chemi-
cal crosslinking) may endow injectable hydrogels with an even
faster gelling time that will prevent leakage of the therapeutics
to undesired sites. Another challenge is related to the release
kinetics of the loaded therapeutic agents from the injectable
hydrogels. In this regard, the production of hierarchically orga-
nized injectable hydrogel systems with logical and scheduled
release through layered degradation is an appealing strategy.

Finally, appropriate selection of the biological models/
assays for screening the efficacy and safety of the injectable
hydrogels for cancer combinatorial-PTT is also of critical
importance. Besides the classical in vitro models, the adoption
of advanced screening toolsets based on 3D cultures (e.g.,
spheroids203) or organ-on-a-chip204 could enable a better
in vitro evaluation of the injectable hydrogels’ performance.
Such screening using these state-of-the art models could con-
tribute to the discovery of formulations with greater chances of
performing in vivo as well as the ability to discard earlier those
that will yield unsatisfactory results.

On the other hand, the long-term biodegradability of the
injectable hydrogels for combinatorial-PTT is also a parameter
that deserves further investigation and fine-tuning. Firstly,
most studies dedicated to this matter only analyze the short-
term biocompatibility in small animal models (e.g., mice). In
this regard, assessing the long-term biocompatibility of the
injectable hydrogels is of utmost importance for their future
clinical translation. Furthermore, it is also crucial to perform
such analyses in both small- and large-scale animal models
(e.g., non-human primates). In turn, the biocompatibility of
the injectable hydrogels may also be enhanced through the
use of biodegradable materials in their formulation, such as
natural polymers or synthetic polymers engineered with bio-

Review Biomaterials Science

6098 | Biomater. Sci., 2023, 11, 6082–6108 This journal is © The Royal Society of Chemistry 2023

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
ju

li 
20

23
. D

ow
nl

oa
de

d 
on

 2
9-

01
-2

02
6 

13
:0

4:
09

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3bm00845b


logically labile sub-units. On this subject, favoring the use of
photothermal agents that are easily decomposed (e.g., bio-
degradable nanoparticles loading NIR light-absorbing small
molecules) or that are rapidly cleared through renal filtration
(i.e., nanostructures with a size below 5 nm) may also contrib-
ute to the translation of injectable hydrogels for combinator-
ial-PTT.

Overall, the continuous investigation of injectable hydrogels
for nanomaterials-mediated combinatorial-PTT brings forward
the possibility of attaining a multifunctional system for an
improved and selective anti-cancer treatment.
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