

Cite this: *Chem. Commun.*, 2022, 58, 13019

Received 12th August 2022,
Accepted 28th October 2022

DOI: 10.1039/d2cc04497h

rsc.li/chemcomm

The HETPYNE (HETeroleptic Phenanthroline and alkYNE metal) and DABCO-(zinc porphyrin)₂ interactions were used to assemble the four-component nanorotor ROT-1 that exhibited a highly dynamic alkyne → copper(I) dissociation ($k_{298} = 240$ kHz) at 298 K. Quantitative click reaction transformed ROT-1 into the new rotor ROT-2 ($k_{298} = 77$ kHz) with a triazole → copper(I) linkage thus opening perspectives for bioorthogonal click strategies to biohybrid machinery.

Inspired by nanomechanical motions¹ in biological machines,^{2–4} scientists have developed an enormous interest in the development of artificial molecular devices.^{5–8} Among them, molecular motors,^{9–11} rotors,¹² shuttles,^{13–15} tweezers,^{16–18} turnstiles,¹⁹ muscles,²⁰ elevators,²¹ pumps,¹⁰ walkers²² etc.^{5–8} are well studied. Though numerous examples of artificial covalent molecular devices are known in the literature,^{5–8} evolution toward multi-component artificial machineries still represents a major challenge due to the limited amount of dynamic orthogonality in hetero-assemblies.^{23,24}

For designing artificial multicomponent rotors, orthogonal dynamic interactions are a key requirement.²⁵ To the best of our knowledge, all literature known dynamic interactions that have been used to construct artificial multicomponent rotors are derived from H-bonding or *N,O*-donor¹⁹ metal interactions.^{26–30} Clearly, development of any new dynamic interaction will open further opportunities. Here, we demonstrate for the first time a supramolecular assembly and a rotor built on the dynamic alkyne → copper(I) interaction.^{31,32} Specifically, we designed a four-component supramolecular assembly and nanorotor based

Dynamics of the alkyne → copper(I) interaction and its use in a heteroleptic four-component catalytic rotor†

Suchismita Saha,^a Sohom Kundu,^a Pronay Kumar Biswas,^a Michael Bolte^b and Michael Schmittel^a

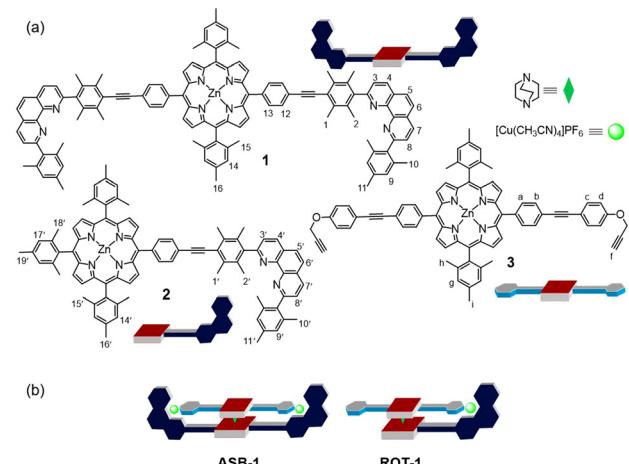


Fig. 1 (a) Chemical structure and cartoon representation of the ligands **1**, **2**, **3** and DABCO. (b) Cartoon representation of the four-component assembly **ASB-1** and nanorotor **ROT-1**.

on the heteroleptic Cu^+ -phenanthroline alkyne (HETPYNE: HETeroleptic Phenanthroline and alkYNE metal) complexation (Fig. 1). Addition of stoichiometric quantities of azide to the rotor afforded the new class of a Cu^+ -triazole rotor through an *in situ* copper(I) catalysed click reaction.

For our study, we decided to use the phenanthroline-appended zinc(II) porphyrin ligands **1** or **2** as stator. Bulky aryl groups³³ at the 2,9-position of the phenanthroline phenAr₂ are essential to avoid the unwanted formation of the corresponding homoleptic Cu^+ complexes.^{34–36} In order to design rotator **3**, we performed a few model experiments to evaluate the binding of a terminal ethynyl group to $[\text{Cu}(\text{phenAr}_2)]^+$. Mixing of **4**, **5** and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{PF}_6$ in 1:1:1 ratio (2.5 mM each) in CD_2Cl_2 accomplished quantitative formation of **C1** = $[\text{Cu}(4)(5)]^+$ (Fig. 2a). In the ¹H NMR, a downfield shift of all phenanthroline protons indicated binding of **5** to $[\text{Cu}(4)]^+$, for instance, proton 4''-H shifted from 8.67 to 8.74 ppm and 5''-H from

^a Center of Micro and Nanochemistry and (bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.

E-mail: schmittel@chemie.uni-siegen.de; Tel: +49(0) 2717404356

^b Institut für Organische Chemie und Chemische Biologie, Johann Wolfgang Goethe-Universität, Max-von-Laue Strasse 7, Frankfurt am Main D-60438, Germany

† Electronic supplementary information (ESI) available: Experimental procedures, compound characterizations, spectral data, NMR titration, and VT-¹H-NMR kinetics. CCDC 2199510. For ESI and crystallographic data in CIF or other electronic format see DOI: <https://doi.org/10.1039/d2cc04497h>

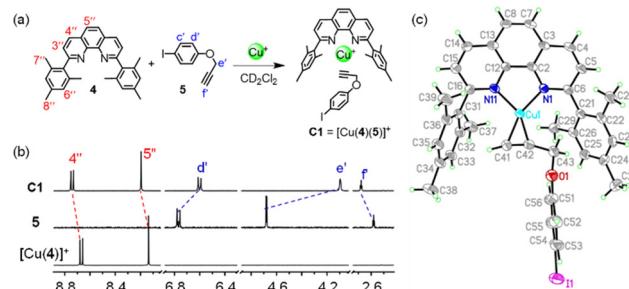


Fig. 2 (a) Formation of model complex **C1**. (b) Partial ^1H NMR (400 MHz, 298 K) of $[\text{Cu}(4)]^+$, **5** and **C1** in CD_2Cl_2 (2.5 mM). (c) X-ray crystal structure of complex **C1**. Carbons are shown in light grey; H, light green; N, blue; O, red; Cu^+ , cyan and I, violet.

8.14 to 8.20 ppm (Fig. 2b). In contrast, protons $\text{d}'\text{-H}$ (from 6.77 to 6.60 ppm) and $\text{e}'\text{-H}$ (from 4.68 to 4.09 ppm) of the ethynyl ligand **5** shifted upfield upon its complexation to $[\text{Cu}(4)]^+$, due to the shielding of these protons by the π -ring current of the mesityl groups. On the other hand, despite being in the shielding region of a strong π -electron cloud, the downfield shift of proton $\text{f}'\text{-H}$ (from **5** to **C1**: 2.58 to 2.68 ppm) validated the ethynyl binding to the Cu^+ center. Single crystal X-ray analysis of **C1** revealed a triclinic crystal system with the space group $\bar{P}1$ (ESI,† Fig. S27). Importantly, it clearly demonstrated the side-on binding of Cu^+ to both ethynyl carbons whereas there was no binding visible between oxygen and Cu^+ center (Fig. 2c). The solid state structure disclosed the bond lengths of $\text{Cu}(1)\text{-C}(41)$, $\text{Cu}(1)\text{-C}(42)$, $\text{Cu}(1)\text{-N}(11)$ and $\text{Cu}(1)\text{-N}(1)$ to be 1.958(5) Å, 1.969(4) Å, 2.002(3) Å and 2.013(3) Å, respectively. The angle between the planes defined by $\text{N}(1)\text{-Cu}(1)\text{-N}(11)$ and $\text{C}(41)\text{-Cu}(1)\text{-C}(42)$ was determined as 16° . This geometry around the copper(I) center is not very common. From an NMR titration, the binding constant of **5** to $[\text{Cu}(4)]^+$ was determined as $\log K = 2.81 \pm 0.16$ (ESI,† Fig. S26). We propose to denote the heteroleptic complexation motif between a $[\text{Cu}(\text{phenAr}_2)]^+$ and an alkyne as HETPYNE interaction (*vide supra*).

After establishing the HETPYNE motif, the zinc(II) porphyrin **3** with two ethynyl terminals was designed. To synthesize ligand **3**, we first reacted 5,15-di(4-iodophenyl)-10,20-dimesityl zinc(II) porphyrin and 4-ethynylphenol under Sonogashira coupling conditions providing the corresponding diphenol. In the final step, a Williamson ether synthesis between the phenol-substituted zinc(II) porphyrin and propargyl bromide in presence of base furnished ligand **3** in 85% yield. Protons $\text{e}\text{-H}$ of **3** appear in the ^1H NMR well separated from other proton signals and should serve as good indicator of any binding.

As expected from the model studies, the four-component self-assembly **ASB-1** was quantitatively afforded by mixing DABCO, ligands **1** & **3**, and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{PF}_6$ in a 1:1:1:2 ratio in CD_2Cl_2 (Fig. 3a). Two characteristic multiplets for the CH_2 -units of DABCO in the negative region of the ^1H NMR indicated quantitative formation of the hetero-sandwich complex (Fig. 3b).³⁷ Significant changes at all phenanthroline protons in the ^1H NMR upon moving from $[\text{Cu}_2(\text{1})]^{2+}$ to **ASB-1** supported the binding of **3** to the copper(I)-loaded phenanthroline stations (Fig. 3c and d).

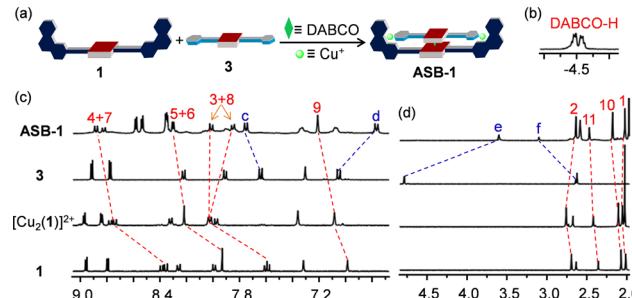


Fig. 3 (a) Cartoon representation of the four-component self-assembly leading to the formation of **ASB-1**. (b) DABCO-H signal of **ASB-1** in ^1H NMR (CD_2Cl_2 , 400 MHz, 298 K). Partial ^1H NMR (CD_2Cl_2 , 400 MHz, 298 K) of **1**, $[\text{Cu}_2(\text{1})]^{2+}$, **3** and **ASB-1** showing the (c) aromatic and (d) aliphatic region.

Downfield shift of proton $\text{f}\text{-H}$ from 2.64 to 3.10 ppm in **ASB-1** attested the terminal ethynyl binding of **3** at the Cu^+ center of **1** (Fig. 3d). Drastic upfield shifts of proton signal $\text{e}\text{-H}$ from 4.79 to 3.60 ppm and of $\text{d}\text{-H}$ from 7.05 to 6.77 ppm along with a downfield shift of proton signal $\text{c}\text{-H}$ from 7.64 to 7.75 ppm validated the formation of the HETPYNE complex. Furthermore, a single peak in the ESI-MS at $m/z = 1489.1$ confirmed formation of the hetero-assembly (ESI,† Fig. S23) and a single diffusion trace in the ^1H -DOSY NMR representing structure **ASB-1** excluded the presence of other undesired assemblies (ESI,† Fig. S20).

The clean formation of the heteroleptic sandwich complex encouraged us to test the HETPYNE motif as a dynamic interaction in a multicomponent rotor. To assemble the rotor, we selected zinc(II) porphyrin **2** containing just one phenanthroline station as stator and ligand **3** as rotator. Dissolving the ligands **2**, **3**, DABCO and $[\text{Cu}(\text{CH}_3\text{CN})_4]\text{PF}_6$ in a 1:1:1:1 ratio in CD_2Cl_2 quantitatively furnished rotor **ROT-1** irrespective of the sequence of addition (Fig. 4a). As in **ASB-1**, two broad signals in the negative region corresponding to DABCO and significant shifts of all phenanthroline protons in the ^1H NMR validated formation of the heteroassembly (Fig. 4b-d). Upfield shifts of rotator proton signals $\text{e}\text{-H}$ from 4.79 to 4.19 ppm along with downfield shift of $\text{f}\text{-H}$ from 2.64 to 2.88 ppm authenticated the rotor structure (Fig. 4c and d). Its formation was further confirmed by DOSY NMR and ESI-MS data (ESI,† Fig. S21 and S24).

A single set of ^1H NMR signals for protons $\text{c}\text{-H}$, $\text{d}\text{-H}$, $\text{e}\text{-H}$ and $\text{f}\text{-H}$ of **ROT-1** suggested fast rotation of the rotor on the NMR

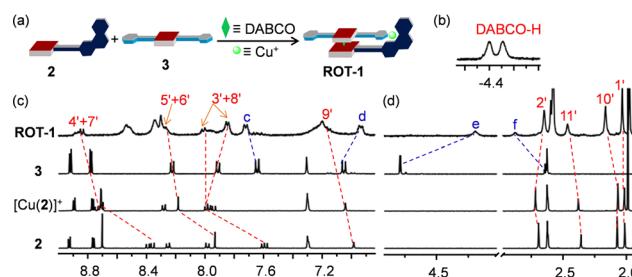


Fig. 4 (a) Cartoon representation of the self-assembly of rotor **ROT-1** from four components. (b) $(\text{CH}_2)_{\text{DABCO}}$ signal of **ROT-1** in the ^1H NMR (CD_2Cl_2 , 400 MHz). Partial ^1H NMR (CD_2Cl_2 , 400 MHz, 298 K) of **2**, $[\text{Cu}(2)]^+$, **3** and **ROT-1** in the (c) aromatic and (d) aliphatic region.

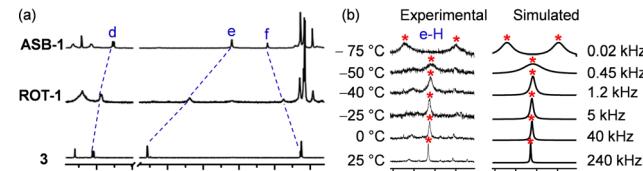


Fig. 5 (a) Partial ^1H NMR (CD_2Cl_2 , 400 MHz, 298 K) of **3**, **ROT-1** and **ASB-1**. (b) VT- ^1H NMR (CD_2Cl_2 , 600 MHz) of **ROT-1** exhibiting the splitting of proton signal e-H into a 1:1 set and the corresponding rotational frequency at different temperatures.

time scale (Fig. 4c and d). Comparison of the ^1H NMR spectra of the free rotator **3**, **ROT-1** and **ASB-1** showed that the proton signals d-H, e-H and f-H of rotor **ROT-1** appeared approximately in the averaged position of those of free **3** and **ASB-1** (Fig. 5a). Variable temperature (VT) ^1H NMR of **ROT-1** was thus performed to evaluate its dynamic behavior. Upon lowering the temperature, the sharp singlet at 4.19 ppm corresponding to proton e-H broadened and split into two singlets in a 1:1 ratio at $-75\text{ }^\circ\text{C}$ with a coalescence temperature around $-50\text{ }^\circ\text{C}$ (Fig. 5b). The upfield signal at 3.50 ppm was assigned to the HETPYNE-complexed proton e-H and the downfield signal at 4.71 ppm is ascribed to proton e-H at the uncomplexed arm. The rotational frequency of the rotor at different temperatures was evaluated using winDNMR-based spectral simulations.³⁸ The activation data for the rotation was derived from the Eyring plot (Table 1 and ESI,† Fig. S18). The rotational frequency turned out to be 240 kHz at $25\text{ }^\circ\text{C}$ and $\Delta G_{298}^\ddagger = 42.5\text{ kJ mol}^{-1}$.

After the clean formation of rotor **ROT-1**, our next target was the *in situ* rotor-to-rotor transformation. The presence of a copper(i) ion and terminal alkynes in the rotor suggested a conversion of **ROT-1** to a triazole rotor through an *in situ* click reaction. For this purpose, 2.0 equiv. of benzyl azide was added to **ROT-1** in CD_2Cl_2 (Fig. 6a). To accelerate the reaction, 1 μL of Et_3N was added. After 24 h of heating at $40\text{ }^\circ\text{C}$, the solvent was evaporated to remove NEt_3 and the residue was redissolved in CD_2Cl_2 . ^1H NMR showed quantitative formation of **ROT-2** and a disappearance of the proton signal f-H (Fig. 6b). Upon moving from **ROT-1** to **ROT-2**, characteristic shifts for all phenanthroline protons were observed. The downfield shift of proton signal e-H (from 4.19 to 4.81 ppm), upfield shifts of proton signals d-H (from 6.93 to 6.78 ppm) and c-H (from 7.72 ppm to 7.61 ppm) along with the appearance of a new singlet at 5.52 ppm (j-H) corroborated the formation of **ROT-2**. The broad signal of the DABCO protons at -4.39 ppm confirmed the

Table 1 Exchange frequencies of **ROT-1** and **ROT-2** along with their activation parameters^a

Rotor	k_{298}/kHz	$\Delta H^\ddagger/\text{kJ mol}^{-1}$	$\Delta S^\ddagger/\text{J K}^{-1}\text{ mol}^{-1}$	$\Delta G_{298}^\ddagger/\text{kJ mol}^{-1}$
ROT-1	240	44.0 ± 0.2	5.0 ± 0.7	42.5
ROT-2	77	50.1 ± 0.4	16.7 ± 0.6	45.2

^a The higher ΔH^\ddagger for **ROT-2** than **ROT-1** reflects the stronger binding constant of a triazole to $[\text{Cu}(4)]^+$ (see triazole **6** in ESI, Fig. S27). As often seen in enthalpy–entropy compensation, strong binding leads to higher positive activation entropy.

Fig. 6 (a) *In situ* transformation of **ROT-1** to **ROT-2** upon addition of 2.0 equiv. of benzyl azide. (b) Partial ^1H NMR (CD_2Cl_2 , 400 MHz, 298 K) of **ROT-1** and **ROT-2**. (c) VT- ^1H NMR (CD_2Cl_2 , 600 MHz) of **ROT-2** showing splitting of the proton signal j-H (1:1 ratio) and the corresponding rotational frequency at different temperatures.

intactness of the assembly (ESI,† Fig. S15). **ROT-2** was further characterized by ESI-MS and DOSY NMR data (ESI,† Fig. S25 and S22).

A single set of ^1H NMR signals for protons c-H, d-H, e-H and j-H of **ROT-2** indicated a fast rotation on the NMR time scale. Upon performing the VT ^1H NMR the proton signal for j-H split into two singlets in 1:1 ratio at $-75\text{ }^\circ\text{C}$ (Fig. 6c). Rotational frequencies at different temperature along with activation parameters were calculated (Fig. 6c and Table 1). The facile transformation of the self-catalyzing rotor **ROT-1** to rotor **ROT-2** opens interesting perspectives to generate biohybrid materials *via* bioorthogonal click reactions.³⁹

In conclusion, we have synthesized a four-component hetero-sandwich complex and a four-component rotor based on the dynamic $[\text{Cu}(\text{phenAr}_2)(\text{alkyne})]^+$ motif. Though alkyne \rightarrow copper(i) interactions are well known in the literature,⁴⁰ for the first time its high dynamics has been determined and used to assemble a high-speed multicomponent rotor. The utility of this dynamic orthogonal motif in supramolecular rotors opens new venues for molecular machines. Furthermore, a successful quantitative transformation of the Cu^+ -alkyne rotor to a new Cu^+ -triazole rotor was achieved through *in situ* click reaction. It is expected that thermal self-catalyzing rotors will find their way into diverse applications, *e.g.*, in catalysis,^{35,41} biohybrid materials *via* bioorthogonal functionalization⁴² and elsewhere.⁴³

We are indebted to the Deutsche Forschungsgemeinschaft for continued support under Schm 647/22-1 (No 491092614). We thank Dr Paululat for measuring the VT- ^1H NMR.

Conflicts of interest

There are no conflicts to declare.

Notes and references

- M. Dutta and B. Jana, *Chem. Commun.*, 2021, **57**, 272–283.
- J. E. Walker, *Biochem. Soc. Trans.*, 2013, **41**, 1–16.
- R. D. Vale and R. A. Milligan, *Science*, 2000, **288**, 88–95.

4 H. Noji, R. Yasuda, M. Yoshida and K. Kinosita, Jr, *Nature*, 1997, **386**, 299–302.

5 A. Goswami, S. Saha, P. Biswas and M. Schmittel, *Chem. Rev.*, 2020, **120**, 125–199.

6 S. Kassem, T. van Leeuwen, A. S. Lubbe, M. R. Wilson, B. L. Feringa and D. A. Leigh, *Chem. Soc. Rev.*, 2017, **46**, 2592–2621.

7 S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan and A. L. Nussbaumer, *Chem. Rev.*, 2015, **115**, 10081–10206.

8 A. J. McConnell, C. S. Wood, P. P. Neelakandan and J. R. Nitschke, *Chem. Rev.*, 2015, **115**, 7729–7793.

9 S. Kassem, T. van Leeuwen, A. S. Lubbe, M. R. Wilson, B. L. Feringa and D. A. Leigh, *Chem. Soc. Rev.*, 2017, **46**, 2592–2621.

10 Y. Feng, M. Ovalle, J. S. W. Seale, C. K. Lee, D. J. Kim, R. D. Astumian and J. F. Stoddart, *J. Am. Chem. Soc.*, 2021, **143**, 5569–5591.

11 M. Baroncini, S. Silvi and A. Credi, *Chem. Rev.*, 2020, **120**, 200–268.

12 B. Lin, I. Karki, P. J. Pellechia and K. D. Shimizu, *Chem. Commun.*, 2022, **58**, 5869–5872.

13 T. Kumpulainen, M. R. Panman, B. H. Bakker, M. Hilbers, S. Woutersen and A. M. Brouwer, *J. Am. Chem. Soc.*, 2019, **141**, 19118–19129.

14 H. V. Schröder, F. Stein, J. M. Wollschläger, S. Sobottka, M. Gaedke, B. Sarkar and C. A. Schalley, *Angew. Chem., Int. Ed.*, 2019, **58**, 3496–3500.

15 J. E. M. Lewis, R. J. Bordoli, M. Denis, C. J. Fletcher, M. Galli, E. A. Neal, E. M. Rochette and S. M. Goldup, *Chem. Sci.*, 2016, **7**, 3154–3161.

16 B. Doistau, L. Benda, J.-L. Cantin, L.-M. Chamoreau, E. Ruiz, V. Marvaud, B. Hasenknopf and G. Vives, *J. Am. Chem. Soc.*, 2017, **139**, 9213–9220.

17 H. Yoon, J. M. Lim, H.-C. Gee, C.-H. Lee, Y.-H. Jeong, D. Kim and W.-D. Jang, *J. Am. Chem. Soc.*, 2014, **136**, 1672–1679.

18 A. Petitjean, R. G. Khoury, N. Kyritsakas and J.-M. Lehn, *J. Am. Chem. Soc.*, 2004, **126**, 6637–6647.

19 B. Godde, A. Jouaiti, A. Fluck, N. Kyritsakas, M. Mauro and M. W. Hosseini, *Dalton Trans.*, 2017, **46**, 14897–14906.

20 M. C. Jimenez, C. O. Dietrich-Buchecker and J.-P. Sauvage, *Angew. Chem., Int. Ed.*, 2000, **39**, 3284–3287.

21 J. D. Badić, V. Balzani, A. Credi, S. Silvi and J. F. Stoddart, *Science*, 2004, **303**, 1845–1849.

22 M. von Delius, E. M. Geertsema and D. A. Leigh, *Nat. Chem.*, 2010, **2**, 96–101.

23 M. Schmittel, *Chem. Commun.*, 2015, **51**, 14956–14968.

24 M. Schmittel, *Isr. J. Chem.*, 2018, **59**, 197–208.

25 P. K. Biswas, S. Saha, Y. Nanaji, A. Rana and M. Schmittel, *Inorg. Chem.*, 2017, **56**, 6662–6670.

26 B. E. Dial, P. J. Pellechia, M. D. Smith and K. D. Shimizu, *J. Am. Chem. Soc.*, 2012, **134**, 3675–3678.

27 S. Saha, P. K. Biswas and M. Schmittel, *Inorg. Chem.*, 2019, **58**, 3466–3472.

28 P. K. Biswas, A. Goswami, S. Saha and M. Schmittel, *Chem. – Eur. J.*, 2020, **26**, 14095–14099.

29 I. Paul, A. Goswami, N. Mittal and M. Schmittel, *Angew. Chem., Int. Ed.*, 2018, **57**, 354–358.

30 S. Hiraoka, M. Shiro and M. Shionoya, *J. Am. Chem. Soc.*, 2004, **126**, 1214–1218.

31 D. Parasar, T. T. Ponduru, A. Noonikara-Poyil, N. B. Jayaratna and H. V. R. Dias, *Dalton Trans.*, 2019, **48**, 15782–15794.

32 H. V. R. Dias, J. A. Flores, J. Wu and P. Kroll, *J. Am. Chem. Soc.*, 2009, **131**, 11249–11255.

33 S. K. Samanta and M. Schmittel, *J. Am. Chem. Soc.*, 2013, **135**, 18794–18797.

34 B. Ralahy, U. Hahn, E. Wasieleski and J.-F. Nierengarten, *Eur. J. Inorg. Chem.*, 2021, 2625–2635.

35 S. Saha, A. Ghosh, T. Paululat and M. Schmittel, *Dalton Trans.*, 2020, **49**, 8693–8700.

36 S. De, S. Pramanik and M. Schmittel, *Angew. Chem., Int. Ed.*, 2014, **53**, 14255–14259.

37 S. K. Samanta, D. Samanta, J. W. Bats and M. Schmittel, *J. Org. Chem.*, 2011, **76**, 7466–7473.

38 H. J. Reich, *NMR Spectrum Calculations: WinDNMR, Version 7.1.13*, Department of Chemistry, University of Wisconsin, 2008.

39 C. G. Parker and M. R. Pratt, *Cell*, 2020, **180**, 605–632.

40 M. Meldal and C. W. Tornøe, *Chem. Rev.*, 2008, **108**, 2952–3015.

41 A. Goswami, T. Paululat and M. Schmittel, *J. Am. Chem. Soc.*, 2019, **141**, 15656–15663.

42 https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize_2022.pdf.

43 K. T. Fam, L. Saladin, A. S. Klymchenko and M. Collot, *Chem. Commun.*, 2021, **57**, 4807–4810.

