Recent progress in the CVD growth of 2D vertical heterostructures based on transition-metal dichalcogenides
Abstract
Two-dimensional (2D) vertical heterostructures (HSs) constructed via vertically stacking two or more 2D transition-metal dichalcogenide (TMDC) materials have been intensively studied over the past several years. However, it is still a great challenge to realize the controllable fabrication of 2D TMDC vertical HSs via the “bottom-up” growth strategy, which is regarded as a crucial step toward further performance study and device applications. So far, chemical vapor deposition (CVD) has been reported to be a feasible approach to achieve high controllability in the growth of various 2D materials, which has promoted the in-depth study of the CVD growth of 2D TMDC vertical HSs. In this review, we first introduce the fundamental properties as well as the diverse preparation strategies of various 2D TMDC-based vertical HSs. Major attention is paid to the controllable CVD growth of multitudinous 2D TMDC vertical HSs. This review highlights recent advances in the controllable growth of 2D TMDC vertical HSs via utilizing four main strategies during the CVD procedure, including the synthesis step, effect of growth temperature, precursor design, and substrate engineering. Finally, we discuss the major challenges and prospects in this rapidly advancing field of research.
- This article is part of the themed collections: 2021 Highlight article collection and Nanomaterials