Issue 5, 1993

Pulse-radiolysis studies on the oxidised form of the multicopper enzyme ascorbate oxidase: evidence for two intramolecular electron-transfer steps

Abstract

Two intramolecular electron-transfer steps have been identified in pulse-radiolysis studies on the multicopper enzyme ascorbate oxidase, which has four Cu atoms in the catalytically active monomer form. The enzyme was initially in the fully oxidised CuII4 state. Pulse radiolysis was carried out at 19 °C, pH 7.0 (40 mM phosphate), l= 0.100 M, in the first instance with formate to generate CO2˙ as the only (reducing) radical present. When in addition appropriate amounts of methyl viologen (1,1′-dimethyl-4,4′-bipyridinium, dmbipy2+), deazaflavin, or lumiflavin were present the CO2˙ was rapidly converted into CO2 with concomitant formation of the corresponding radical form (e.g. dmbipy˙+) as the only reactive species. Reactions of all four radicals with ascorbate oxidase (reactant in excess) give a metastable type 1 copper reduced product. Contrary to earlier reports two intramolecular electron-transfer steps k1 and k2 follow in which the colour of the type 1 site is restored. Both are independent of the radical type used. Thus the first stage is assigned as electron transfer from the type 1 CuI to the trinuclear combined type 3/type 2 site. Rate constants k1 and k2/s–1 are for CO2˙(120, 2.0), dmbipy˙+(127, 2.3), deazaflavin (121, 2.5) and lumiflavin (97, 2.4). Mechanistic assignments for the two stages are considered, and an apparent disagreement with a previous study is explained.

Article information

Article type
Paper

J. Chem. Soc., Dalton Trans., 1993, 731-735

Pulse-radiolysis studies on the oxidised form of the multicopper enzyme ascorbate oxidase: evidence for two intramolecular electron-transfer steps

P. Kyritsis, A. Messerschmidt, R. Huber, G. A. Salmon and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 731 DOI: 10.1039/DT9930000731

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements