Zeolite catalysts for non-oxidative ethane dehydrogenation to ethylene
Abstract
The conversion of ethane to ethylene is crucial for deriving platform chemicals from non-petroleum feedstock. However, it currently relies on steam cracking technology, which involves high temperatures and large reactors. The catalytic dehydrogenation of ethane (EDH) could resolve these issues, but its efficiency is often limited due to thermodynamics, leading to low conversion and coke formation. These challenges make it difficult for catalytic EDH to compete economically with steam cracking. Recent studies show that rational design of catalysts, such as fixing metal nanoclusters within zeolite micropores or isolated metal sites on the zeolite framework, can enhance catalytic performances. These designs lower energy barriers for carbon–hydrogen bond activation, hinder deep dehydrogenation to coke, and provide sinter-resistant metal sites for durability. This review discusses the pivotal role of zeolite structures in catalysis and sums up the principles of catalyst design for efficient non-oxidative EDH. It aims to help in the development of more efficient zeolite catalysts and enhance the viability of catalytic EDH for potential industrialization.
- This article is part of the themed collections: EES Catalysis Recent Review Articles and Dehydrogenation and oxidation catalysis