Visualisation and characterisation of voids in crystalline materials†
Abstract
We present a simple and more realistic alternative to the conventional approach of mapping void space by rolling a probe sphere of variable radius over a fused-sphere representation of a molecular crystal. Based on isosurfaces of the procrystal electron density, this approach can be used to locate and visualise the void space in crystalline materials, as well as readily compute surface areas and volumes of the voids. The method is quite general, computationally rapid, and capable of locating and characterising all “empty” space, and not just the larger cavities and channels, in molecular crystals, organic, metal–organic and inorganic
- This article is part of the themed collection: A celebration of 25 volumes of CrystEngComm