All-inorganic perovskite film photodetectors with tailored deposition techniques and component engineering
Abstract
The burgeoning demand for perovskite-based photodetectors (PDs) in leading sectors can be attributed to their extraordinary stability and superior optoelectronic properties. All-inorganic halide perovskites, in particular, have emerged as the preferred choice for photoactive layers. However, significant obstacles hinder their widespread adoption, such as inadequate crystal quality, inconsistent manufacturing reproducibility, and environmental concerns. This review offers a comprehensive summary of the latest advancements in PD devices utilizing both lead-based and lead-free all-inorganic perovskite films. Special attention is given to material composition, structural and electronic dimensions, and lead-free perovskites (e.g., tin-based, bismuth-based, and copper-based perovskites). Subsequently, we explore various preparation strategies for thin films of inorganic halide perovskites, shedding light on their respective strengths and limitations. Different preparation techniques cater specifically to diverse application requirements, reflecting their unique functional attributes in optoelectronic applications. In conclusion, the review describes the current state and highlights key challenges faced by PD devices based on all-inorganic perovskite films. The comprehensive overview aims to provide researchers with deep insights into the intricacies of these complex devices and the advantages and disadvantages of various preparation methods, thereby guiding future research towards the development of sustainable, low-carbon PD devices.
- This article is part of the themed collections: Journal of Materials Chemistry C Recent Review Articles and Advanced Functional Inorganic Materials for Information Technology and Applications