Construction of a self-supporting Ni2P–WO3 heterostructure for highly efficient hydrogen evolution under both caustic and acidic conditions†
Abstract
The development of low-cost and highly efficient hydrogen evolution reaction (HER) catalysts remains a significant challenge for the advancement of sustainable energy conversion systems. Herein, we have reported the successful preparation of an amorphous WO3 adjusted nickel phosphide (Ni2P–WO3/CC)-based HER catalyst through a facile and scalable method. The optimized Ni2P–WO3/CC catalyst has excellent HER performance under both 1.0 M KOH (105 mV@10 mA cm−2) and 0.5 M H2SO4 (107 mV@10 mA cm−2) conditions, respectively. Moreover, in a simulated industrial two-electrode alkaline system, the developed catalyst can provide current densities of 500 and 1000 mA cm−2 at cell voltages of 1.8 and 1.9 V, respectively. Such excellent HER activity is significantly higher than those of noble-metal-based catalysts. These results indicate that WO3 has an important role in inducing the transformation of the nickel phosphide crystal structure. The remarkable catalytic performance is due to the synergy between WO3 and Ni2P, as well as the unique porous structure, which can enhance electron transfer, supply more active sites, and accelerate electrolyte transfer and gas emission. This study facilitates the development of new design strategies for HER catalysts and the promotion of their industrial applications.
- This article is part of the themed collection: 2019 Sustainable Energy and Fuels HOT Articles