Core–shell structured S@CuO/δ-MnO2 composites as cathodes for lithium–sulfur batteries
Abstract
The dissolution of polysulfides (LiPSs) always leads to low coulombic efficiency, dramatic capacity decay, and short cycle life, which hinder the practical application of lithium–sulfur (Li–S) batteries. In this study, we designed a CuO/δ-MnO2 shell to mechanically confine and chemically adsorb the soluble LiPSs, besides, δ-MnO2 may effectively catalyze the conversion of soluble LiPSs to insoluble Li2S2/Li2S, shortening the retention time of LiPSs and thus reduce their dissolution and shuttle. The core–shell structured S@CuO/δ-MnO2 composites have been successfully prepared by doping Cu2+ in the process of coating PDA on the surface of sulfur spheres, and then in situ generating δ-MnO2 on the surface of sulfur spheres through the redox reaction between KMnO4 and PDA. Finally, the as-prepared S@CuO/δ-MnO2 composites were used as cathodes for the Li–S battery and realized an improved electrochemical performance with an initial specific capacity of 848.1 mAh g−1 at a current density of 0.1 C.
- This article is part of the themed collection: Nanomaterials