Issue 5, 2020

Ammonia-etching-assisted nanotailoring of manganese silicate boosts faradaic capacity for high-performance hybrid supercapacitors

Abstract

Nanotailoring of active faradaic electrode materials with enhanced surface chemical reactivity is among the most efficient strategies of securing fast reaction kinetics in the hybrid supercapacitor application. Herein, an ammonia-etching-assisted nanotailoring of α-phase manganese silicate (nt-MnSiO3) with an average particle size of about 20 nm is purposely developed to disruptively promote its electrochemical faradaic reaction kinetics. The as-synthesized nt-MnSiO3 exhibits a 3.55-times higher faradaic capacitance than the common yolk–shell counterpart at 0.5 A g−1. After being wrapped with reduced graphene oxide (rGO), the electrochemical performance of nt-MnSiO3/rGO is further enhanced with a specific capacitance of 860 F g−1 at 0.5 A g−1 and a capacitance retention of 80% after 5000 cycles. Integrating them with activated carbon into a hybrid supercapacitor device (nt-MnSiO3/rGO//AC) demonstrates an impressive areal capacitance of 816 mF cm−2 at 1 mA cm−2, and an ultrahigh energy density of 1.633 W h m−2 (40.8 W h kg−1) at a large power density of 1.5 W m−2 (37.5 W kg−1) even under bending conditions. The present work provides a guideline to disruptively improve the faradaic capacity of electrode materials for high-performance supercapacitors.

Graphical abstract: Ammonia-etching-assisted nanotailoring of manganese silicate boosts faradaic capacity for high-performance hybrid supercapacitors

Supplementary files

Article information

Article type
Paper
Submitted
09 jan 2020
Accepted
03 mar 2020
First published
03 mar 2020

Sustainable Energy Fuels, 2020,4, 2220-2228

Ammonia-etching-assisted nanotailoring of manganese silicate boosts faradaic capacity for high-performance hybrid supercapacitors

X. Dong, Y. Zhang, Q. Chen, H. Jiang, Q. Wang, C. Meng and Z. Kou, Sustainable Energy Fuels, 2020, 4, 2220 DOI: 10.1039/D0SE00042F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements