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Microscopic origin of tunable assembly forces in chiral
active environments

Clay H. Batton? and Grant M. Rotskoff*¢

Across a variety of spatial scales, from nanoscale biological systems to micron-scale colloidal sys-
tems, equilibrium self-assembly is entirely dictated by—and therefore limited by—the thermodynamic
properties of the constituent materials. In contrast, nonequilibrium materials, such as self-propelled
active matter, expand the possibilities for driving the assemblies that are inaccessible in equilibrium
conditions. Recently, a number of works have suggested that active matter drives or accelerates self-
organization, but the emergent interactions that arise between solutes immersed in actively driven
environments are complex and poorly understood. Here, we analyze and resolve two crucial ques-
tions concerning actively driven self-assembly: i) How, mechanistically, do active environments drive
self-assembly of passive solutes? ii) Under which conditions is this assembly robust? We employ
the framework of odd hydrodynamics to theoretically explain numerical and experimental observa-
tions that chiral active matter, i.e., particles driven with a directional torque, produces robust and
long-ranged assembly forces. Together, these developments constitute an important step towards a
comprehensive theoretical framework for controlling self-assembly in nonequilibrium environments.

1 Introduction
explains how active matter drives self-assembly; here we

aim to close this theoretical gap. Our theory is built by
understanding the induced interactions between solutes
that arise from the fluctuations of an active bath. The ap-
proach we take yields both physical explanations and nu-

Synthetic and biological systems that consume energy
to produce persistent directed motion have come to be
known as “active matter”. The nonequilibrium dynam-
ics of active matter can lead to dramatic changes in col-

lective behavior, including motility-induced phase separa-
tion in colloidal Janus particles! and flocking in bacterial
swarms 2. The interactions between passive materials im-
mersed in such active matter systems remain poorly un-
derstood. Many recent works have sought to explore 36
and characterize’® the consequences of an active envi-
ronment for self-assembly. Experimental active matter
systems, including Janus particles'® and active dumb-
bells 1112 may provide driving forces that stabilize as-
semblies of passive particles that, in equilibrium condi-
tions, have no propensity to self-assemble 13-1>, This far-
from-equilibrium “actively driven self-assembly” offers a
compelling route to designing and controlling materials
that are not accessible in equilibrium conditions, but the
microscopic driving forces are not well understood.
Currently, there is no complete microscopic theory that
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merical predictions for effective interactions between so-
lutes in an active bath. Our focus is motivated in part by
observations from recent experiments'® suggesting that
active matter with directional, chiral torques can acceler-
ate assembly of passive solutes that otherwise aggregate
slowly.

Our theoretical framework requires analyzing the force
exerted by an active bath on passive solutes—ultimately
the driving force for assembly—which has been studied
in a variety of contexts!”-18, Perhaps most relevant to
our current work, the induced force between two paral-
lel walls that arises from the nonequilibrium fluctuations
of an active bath of active Brownian particles (ABPs) has
been dubbed an active Casimir effect18:19  though this
analogy is misleading. As we show, the oscillatory force
profile for ABPs can be entirely explained by packing ef-
fects related to the finite size of the particles (cf. Sec. A).
This is not a force that can be explained by density fluc-
tuations in a continuous field at these length scales, as,
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for example, occurs in classical hydrophobicity2%:21, To

achieve robust assembly, the forces that arise from an ac-
tive bath must manifest as long-ranged attractive interac-
tions. We show, theoretically and numerically, that such
forces do not arise with ABPs as the solvent.

In the case of chiral active matter, however, the collec-
tive motion of the bath is fundamentally different from
ABPs, creating distinct opportunities for modulating in-
teractions between passive particles. When the particle
dynamics breaks chiral symmetry, the corresponding hy-
drodynamic equations can have diffusivities and viscosi-
ties that are antisymmetric tensors, often called “odd” hy-
drodynamics22. We show that the emergent odd trans-
port properties that arise from actively driven torques can
drive stable and large-scale assembly. Microscopically, ac-
tive particle currents near the passive solutes lead to sta-
ble and robust effective assembly forces.

With straightforward theoretical arguments, a minimal
continuum model of odd diffusivity, and extensive numer-
ical simulations, we comprehensively characterize the mi-
croscopic origins of assembly forces between passive ob-
jects in two and three-dimensional active baths. We show
that for active baths without chiral self-propulsion, at-
tractive forces do not arise except in the true “Casimir”
regime, the limit of extremely low density. Remarkably,
chirality, when appropriately tuned, can manifest long-
ranged and stable assembly forces for passive particles, as
illustrated in Fig. 1. What is more, this attraction appears
to be driven not by collective fluctuations, but rather by
fluxes induced by odd diffusivity.

Prior work on actively driven self-assembly There are
disparate observations in the literature of active mat-
ter driving self-assembly, but no unifying theory has
emerged. While nonequilibrium self-assembly remains a
widely studied topic23, the works mostly closely related
to our investigation here include experiments and sim-
ulations by Grober et al.1® demonstrate that clustering
of sticky passive particles is accelerated by active mat-
ter and the emergent structures are strongly modulated
by a chiral active Brownian particle bath. However, their
work does not examine the microscopic flows of the bath
particles in the vicinity of the passive objects, nor does it
consider purely repulsive passive particles, both of which
are assessed in our present work. Similar observations of
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phase separation induced by chiral active particles were
documented numerically in Ref.24. Also closely related,
a series of works by Mallory et al.1%2526 demonstrate
that nonequilibrium perturbations arising from an active
bath can provide a self-organizing force. They investi-
gate, for example, a setting in which the active particles
are designed with an inherent asymmetry that produces
directional flows and hence kinetically induced aggrega-
tion 4. Asymmetries in the passive particles in an active
bath have also been found to induce long-range interac-
tions that can lead to assembly27-28, These mechanisms
are not as general as those investigated here, where the
passive particles do not have any asymmetric interaction
with the active bath. Yang et al.2? reported assembly of
passive particles driven by a high-density bath of inertial
chiral active particles, though the mechanism is not thor-
oughly characterized. Assembly of passive particles in a
model where the active solvent has a local torque that
causes alignment of the active particle orientation with
the surface of the passive particles, in comparison to a
constant global torque used here, has been observed in
simulations, with similar experimental results involving
active bacteria and passive colloids3%-31, While the model
is similar to the one we consider and sees some similar re-
sults, namely assembly being preferred at large torques
and passive particle sizes, it differs in that assembly oc-
curs in an intermediate regime of active velocities and for
high solvent densities, along with the mechanism behind
the assembly not being fully understood. While together
these results clearly indicate the utility of active matter for
accelerating self-assembly dynamics, without a clear mi-
croscopic understanding of the driving forces, the ability
to design and control assemblies is limited.

2 Robust assembly in a chiral active
Brownian particle bath

In this work we consider solvent and solutes that
evolve under overdamped Langevin dynamics for two-
dimensional and three-dimensional systems. The solvent
is modeled as chiral active Brownian particles, in which
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Fig. 1 Multiple passive squares of length 9 o in a chiral active Brownian particle bath with a passive volume fraction of 0.2. (a,b)
Systems where the passive squares do not and do assemble for ¢4 = 0.2, v = 80, and (a) w =0.3125 and (b) w =5, respectively.
Histograms of local density of the passive particles, pp, for (c) varying ¢4 at w =5 and v = 80, (d) varying w at ¢4 = 0.2 and
v =80, (e) varying v at w =5 and ¢4 =0.2. See Sec. C.2 for further details on how the local density is computed.
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Fig. 2 Multiple passive spheres of radii 6.2 o in a chiral active Brownian particle bath with a passive volume fraction of 0.2 in three
dimensions. (a,b) Systems where the passive spheres do not and do assemble for ¢4 = 0.2, v = 120, and (a) w = 0.625 and (b)
w = b, respectively, where the solvent is not visualized. Histograms of local density of the passive sphere particles in three dimensions,
pp, for ¢p = 0.2 at (c) varying w with ¢4 =0.05, v =120 and r = 6.2 o, (d) varying ¢4 at v =120, w =5, and r = 6.2 o, (e)
varying v at ¢4 =0.05, w =5, and r = 6.2 o, (f) varying r at ¢4 =0.05, v =120, and w = 5.
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Fig. 3 (a) The passive walls in an active Brownian particle bath
system previously considered in Refs. 1819 for walls of length £ =
10, separation r =8, p =0.4, v =80, and w =0. (b,c) The (b)
force F and (c) effective free energy —In g(r) on walls of length
10, p = 0.4, and v = 80 for varying torque w. Vertical dashed
lines in (b) correspond to the lattice spacing b of a hexagonal
lattice 32. Error bars in (c) are computed over twelve independent
simulations. See Sec. C.3 for further details on how the force
and free energy are computed.

the ith solvent particle evolves in two dimensions as33-34
Fi(1) = € [Fi+vbi()] + 2D Ay, €))
b;(1) = [cos 6;(1),sin 6; (1], 2
0i(1) = w+~2D, Ty, 3)
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where r; denotes the position of the ith particle, ¢ is the
translational drag coefficient, F; is the force, b; denotes
the direction of its active velocity, v is the magnitude of
the active force, w is the active torque, and D; and D, are
the translational and rotational diffusion constants that
are related by the formula D, = 3 02D, and D, is related
to & by the Stokes-Einstein relation D; = kgT¢~!. Here,
A; and TI; are independent Gaussian white noises with
zero mean and unit variance. The particles interact with
the Weeks-Chandler-Anderson (WCA) potential 3>, given
by the sum U = Zizjullij), where /;; = \ri —rj| is the
distance between particles i and j. The form of u(l;;) is
given by

12 6
u(l[j):46ij (l—l]) _(i) +Z
L

( 1l )

0125 ——1], 4
where ¢;; and o;; are the energy and length scales set
by the particle types, respectively, and 6 is the Heaviside
function. The corresponding force is F; = _ag_r(_z). We
choose the diffusion constants for the solvent and solutes
to be equal with D; = D, ;, = 1, kgT =1, and ¢;; = 40
and o;; = 1 unless otherwise specified, along with simula-
tions being performed in two dimensions unless otherwise
specified. Further simulation details, including details for
rigid body simulations and three dimensional simulations,
are provided in Sec. C.1.

Chiral active matter drives reliable, dynamical assembly
of passive solutes, but the microscopic mechanism lead-
ing to this phenomenon is utterly distinct from that of the
achiral case in which assembly does not occur. Fig. 1 illus-
trates that self-assembly occurs for an appropriate combi-
nation of the solvent parameters of torque w, activity v,
and active solvent volume fraction ¢,. We quantify the
assembly by constructing histograms of the local density
of passive solutes pp; phase separation corresponds to
the coexistence of a low density and high density region
(see Sec. C.2 for further details). As shown in Figs. 1 (c-
e), a range of parameters support self-assembly when the
torque is sufficiently large (see also Fig. S6), along with
larger square size driving assembly as shown in Fig. S5.
Furthermore, assembly does not depend strongly on the
shape or dimensionality of the object. In Fig. 2, we quan-
tify the propensity of passive spherical objects to assemble
in 3D, which occurs over a range of active torques, activ-
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ities, solvent densities, and passive sphere radii. Simi-
lar trends hold for passive cubes immersed in a bath of
chiral active particles in 3D (Fig. S9). We similarly stud-
ied passive disks (Fig. S7) and triangular passive particles
(Fig. S8) to ensure that observations in 2D were not nar-
rowly tailored to square geometries, where the analysis in
terms of the inter-wall forces is most physically transpar-
ent.

2.1 Force and free energy profiles in a model system

To assess the underlying molecular fluctuations governing
this activity-induced self-assembly, we consider the mini-
mal model depicted in Fig. 3 (a). In this geometry, we
consider two parallel walls of length [ separated by a dis-
tance r in a bath of chiral active particles. We define the
total interaction force as

Fo ()] = Fant [p@)] = FiP [p(x)]

wall wall wall

©)

using the sign convention that if the force applied to the
walls by particles in the interstitial region exceeds the
force applied by particles outside this region, then the
force is positive, and the walls will repel. The force is
computed over a range of torques in Fig. 3 (b). For achiral
ABPs, this force oscillates between attractive and repul-
sive, as previously reported by Ni et al. 18, For sufficiently
large torques, the oscillatory force profile is not main-
tained and a long-ranged attractive force sets in, though
with a much smaller magnitude.

To further assess the propensity for passive solutes to
self-assemble in given nonequilibrium bath conditions, we
compute the effective nonequilibrium free energy profile
for the solute degrees of freedom. To do so, we draw
inspiration from liquid state theory3°, and quantify the
effective interaction by measuring the radial distribution
function, or g(r) for fluctuating passive solutes. Our so-
lutes are non-spherical and hence evolve dynamically as
rigid bodies composed of smaller particles (see Sec. C.1
for further details). The radial distribution function is
computed between the centers of mass of the passive so-
lutes. In Fig. 3 (c), we show the effective interaction for
chiral active particles over a range of torques. We plot
—In g(r) because, in equilibrium, this quantity would cor-
respond to the reversible work required (or gained) when
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bringing two solutes into contact. Away from equilibrium,
this thermodynamic interpretation is no longer valid, but
a positive value of —In g(r) as r — 0 indicates that it is sta-
tistically unlikely for the two solutes to come together. For
ABPs, this is the case, with repulsion at close distances be-
ing observed and holding across densities except for weak
attraction at low density (Fig. S15), leading to assembly
not being dynamically accessible in most conditions. In
contrast, for the chiral case, there is a long-ranged attrac-
tive interaction over a range of torques that drives assem-
bly.

2.2 Local density profile depends strongly on torque

The nature of the force profiles can be understood by ex-
amining the local density and orientation fields of the chi-
ral active particles. In the achiral case, the oscillatory
force profile between two walls results from changes in
the typical local density at differing separation distances.
Microscopically, the enhancement in local density both be-
tween and outside the walls results from the slow orienta-
tional relaxation of achiral active particles. In Fig. 4 (a),
we computed the density and orientation fields for w = 0
at a separation of 3.68 o, a value at which the force is
maximal. The average orientations of the particles in the
region of enhanced density point towards the boundary of
the passive object. This trend is robust across separation
distances and force magnitudes, as shown in Figs. S20-
S29 (a). Mechanistically, the force generation depends
strongly on large local density enhancements. The nature
of the density enhancements rely on entropic packing ef-
fects, and from this a minimal model of the force profile in
the achiral case can be constructed (see Sec. A for further
details).

In comparison, chiral motion does not lead to a long-
lived density enhancement at the boundary of a passive
wall, and, in fact, local microscopic fluctuations are much
more subtle. Due to the nonzero torque, chiral active par-
ticles do not simply aggregate at the boundary of a pas-
sive object, but rather flow parallel to the boundary. This
boundary flux is evident in Fig. 4 (b), where w = 5, but
also for all values of w that we tested (cf. Figs. S20-S29).
For sufficiently small torques relative to the active velocity,
the chiral active particles produce small boundary fluxes
and have a force profile that is similar in magnitude and
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Fig. 4 Density and orientation fields for maximal repulsive force
between two passive walls in a chiral active Brownian particle
bath at (a) w =0 and (b) w = 5. The orientation field is not
scaled by the magnitude of the average local current, but only
indicates its direction.

shape to that of the ABPs, as shown in 3 (b). The similar-
ity in the density and orientation fields for small torques
(w = 0.3125) is evident in Figs. S20-S24 (b) and Figs. S25-
$29 (b).

For large torques, the fluxes at the boundary of a pas-
sive object are sufficiently large that density does not ac-
cumulate proximal to the passive object (Figs. S20-S24
(e)). As a result, force generation is consistently near zero
for w = 20, as shown in Fig. 3 (b). In this regime, no as-
sembly occurs, as shown in Fig. 1 and quantified by the
effective free energy profile in Fig. 3 (c).

In the intermediate regime, the interplay between
boundary fluxes and density accumulation can lead to ro-
bust assembly forces. Fig. 1 demonstrates that assembly
does indeed occur when w = 5. This particular set of con-
ditions for the chiral active Brownian particle bath leads
to a long-ranged attractive interaction, which decays over
roughly 15 particle diameters (Fig. 3 (c)). Microscopi-
cally, it is evident from numerical simulations that the
density accumulates asymmetrically, with more particles
on the outside compared to the region between the two
walls (Figs. 4 (b), S12, and S13). This phenomenon re-
sults in higher applied forces on the outside, driving the
passive objects together.

3 0dd diffusivity drives assembly

To assess the microscopic origins of the asymmetric den-
sity field and hence the attractive assembly forces for this
narrow range of torque values, we construct a minimal
model of the concentration profile. Chiral active liquids
break time-reversal symmetry, due to implicit energy con-
sumption by the particles, and parity with their single par-
ticle torques and lead to “odd” hydrodynamic response
functions?2, These nonequilibrium liquids have anoma-
lous transport properties, including odd diffusion tensors
and stress tensors3”7. Most relevant to our setting, Hargus
et al.38 showed that chiral active particles can be mod-
eled by a simple continuum description of “odd diffusiv-
ity”. The implications of an odd diffusion tensor manifest
only in the presence of a boundary that breaks transla-
tional symmetry for the active bath, such as the presence
of passive particles. In continuum models, this has been
shown to both enhance diffusivity and create directional
particle fluxes3?.
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Fig. 5 Autocorrelation functions computed to determine D, from Eq. (8).

Each passive particle leads to a non-vanishing steady-
state mass current in its proximity. Fig. 4 shows both den-
sity and the average orientation for achiral ABPs (a) and
chiral ABPs (b). In the chiral case, that is, for all w > 0,
there is a net flux parallel to the walls, oriented in oppo-
site y-directions on the —x and +x sides. Because there are
no sources or sinks in our periodic system, the steady state
density profile must be consistent with a divergence-free
current due to the conservation of mass.

In two dimensions, the active particle density p(x,y)
satisfies a continuity equation

Orp(x,y) =V -(D-Vp(x,y)) ©)

where D;; = Ds6;; — Das;j, 6;; is a Kronecker §-function,
and g;; is the antisymmetric Levi-Civita tensor. Without
boundary conditions, the continuity equation results in a
steady-state concentration profile that is independent of
D,; however, when the density has Neumann boundary
conditions, the antisymmetric contribution to the diffu-
sion tensor can affect the steady-state. We note that simi-
lar results hold in three dimensions, but require specifying
the direction of the active torque in order to determine the
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form of the diffusion tensor.

To determine if odd diffusivity plays a significant role in
shaping the density field of the chiral active particles, we
numerically solve (6) in conditions where assembly does
and does not occur. To do so, we first estimated the flux
around the boundary of a passive object by computing

1 & T
V) == i+vbi .Y).ri)dt,
RN Y ALY

where the integral is over a simulation of duration 7 in
the steady state. We use a Gaussian kernel (described in
detail in Sec. C.4) to obtain a smooth flux field.

The diffusion coefficients can be directly related to the

velocities via a Green-Kubo relation>8,

Dg = 1‘/'OO (vi(t)Vj(0)>5ijdt,
2 Jo
8

Da=‘%[;<w0ﬁvmnsﬁm’

where (...) denotes an average over all solvent particles,
and v;(7) is the i-th component of the velocity of a par-
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and external fluxes at the walls for different separation distances, r, in each panel, evaluated using a finite difference scheme where
the fluxes parallel and perpendicular to the walls are discretized at second and fourth order, respectively. The external flux is set to
Joutside = 10DaD;1 to maintain a relatively similar range of concentrations across the parameters. Inset images correspond to the
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Fig. 7 Force measured from finite difference scheme Fpp, in
which the fluxes parallel and perpendicular to the walls are ex-
panded to second and fourth order respectively for walls of length
10 o, width 3 0, and w = 0 and w = 5, and the force mea-
sured from simulations, Fgip, for w = 5. Force offsets corre-
spond to Fop(r;w = 0) = 1.0, Fop(r;w = 5) = 16.1, and
Fsim(r; w = 5) = —12 + 8, with the simulation results corre-
sponding to p = 0.2 and v = 80.

ticular solvent particle at time 7. We compute these inte-
grals with numerical quadrature after obtaining the time
correlation functions using the Wiener-Khinchin theorem.
These autocorrelation functions are shown in Fig. 5, with
diffusion coefficients across p and w shown in Fig. S18.
The oscillatory autocorrelation functions that we observe
are consistent with recent theoretical work for odd diffu-
sive dynamics4?. With the boundary fluxes and the diffu-
sion tensor determined, we then solve for the steady-state
density profile using finite differences. We describe the
numerical details in Sec. B.1.

As shown in Fig. 6, we compute the stationary density
profile as a function of the ratio of the flux in the inter-
stitial region Jisiqe to the flux on the outside boundary
Joutside and also the ratio of the symmetric to antisym-
metric part of the diffusion tensor, Ds/D,. We then com-
puted the difference between the average concentration
near the walls in the interstitial and a region of the same
area on the outside; this is a proxy for the magnitude of
the induced attractive force because the total force ex-
erted on the walls is proportional to the local concentra-

10 | 1-25

tion. At short separation distances, we see (Fig. 6 (a-b))
that this concentration difference is negative over a large
range of Jinside/Joutside> Provided that D, is appreciable
relative to Dg. As the separation between the walls grows,
this effect persists but becomes considerably weaker, as
correlations between the adjacent walls in the interstitial
region decay, as shown in Fig. 6 (c-d). The inset concen-
tration profiles in Fig. 6 are in good qualitative agreement
with the density profiles obtained from direct numerical
simulation in Figs. S20-S24.

3.1 Minimal model of odd diffusivity captures effec-
tive attraction

While the difference in concentration that we plot in Fig. 6
is highly suggestive of an attractive force, to quantify the
resulting force, we develop a simple mean-field model of
the force profile using the computed concentration pro-
files. The excess force into the wall can be computed, for
a steady state density profile pgs(x), as

Fratllpss(@)] = / [F(x) +vb(x)] - é1 pss(x)dx, (9)

wa.

which is simply the projection of the total force onto the
wall and x = (r,0); the unit vector é; is aligned per-
pendicular to the wall. This force accounts for particle-
particle interactions in addition to the wall-particle inter-
actions. Making a mean-field assumption that the excess
force into the wall arises not from inter-particle interac-
tions, but instead from the larger scale particle flows and
the active velocity, we obtain

(int) _ =
Flall ® /mtf(r)'el pss(r)dr (10)

with the active velocity f(r) being found from the total
active velocity v and the active velocity parallel to the wall

oJy per
fr)y=v2- o2J3(r). (11)

This expression allows us to estimate the force on the
walls using the steady-state density obtained by solv-
ing (6) with Neumann flux boundary conditions, imposed
using the numerically measured fluxes. Integrating this
expression over the regions “int” and “ext”, defined to be
a rectangle of area ¢ x o immediately abutting the wall
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on the interior and exterior, respectively, we obtain nu-
merical values for F‘fvl:ﬁ) and F (e}ﬁt). As shown in Fig. 7,
this minimal model captures the correct magnitude of
the force and also is in good agreement with its spatial
range. The agreement is due to the two-body nature of
the interactions between the solvent and the passive ob-
jects at higher torque values as the density of active parti-
cles at passive object boundaries is lowered, as shown in
Figs. 1(a,b) and 4. This assumption breaks down at low
separation distances, at which point the confined space
between the walls leads to more complex interactions
leading to the spikes in the simulation force profile as
shown in Fig. 7.

4 Conclusion

116 118,25

Both experimenta and computationa studies
have emphasized the potentialities of an active envi-
ronment for accelerating and controlling self-assembly.
However, the microscopic dynamics of the active mat-
ter environment have a profound influence and deter-
mine whether or not assembly is possible. Our work here
demonstrates that a striking difference emerges when ac-
tive baths break chiral symmetry: while achiral active par-
ticles do not drive assembly, chiral active matter robustly
and stably drives aggregation of passive solutes. Remark-
ably, this phenomenon occurs even when those passive so-
lutes have no attractive interaction amongst themselves.
In other words, the propensity to self-assemble results en-
tirely from the fluctuations of the chiral active solvent.
Further extensions of this work could focus on several
themes, namely further development of the theory, and
the ability to attain certain structures through incorpora-
tion of more complex interactions and protocols. While
odd diffusion provides an adequate description of the sol-
vent interaction with the solutes, extensions of prior work
looking at interactions of ideal active Brownian particles
with passive objects*! could be used to provide a more
detailed understanding of the forces that drive assembly.
In particular, active field theories could be used to de-
scribe from a first-principles approach the interactions be-
tween the chiral active solvent and the passive solutes in
a manner that captures both interacting solvent particles
and the effects of chirality#243. Additionally, this work
has considered only WCA interactions, with the incorpo-

Soft Matter

ration of other potentials leading to potentially interest-
ing assembly outcomes*+*°. In conjunction with recent
work considering how to design nonequilibrium protocols
to reach desired structures4”>*8, the use of chiral active
matter to drive self-assembly could be a powerful tool for
the design of materials.

We extensively characterize the differences between
chiral and achiral active solvents both numerically and
theoretically. We provide clear evidence that the robust
assembly we observe occurs in both two and three di-
mensions, depends weakly on the shape and size of the
solute, and remains robust over a range of densities and
activities. We provide a complete theoretical explanation
for the origins of self-assembly forces in these far-from-
equilibrium environments. The forces that arise between
solutes in active Brownian particle systems can be ex-
plained entirely by density effects, as shown in Sec. A,
and we show that these forces do not drive assembly in
any regime. Chiral active solvents, however, lead to odd
transport dynamics and flows of the active solvent near
the solutes lead to long range and attractive forces. Taken
together, these results provide a proscriptive theory for
understanding self-assembly in complex, active environ-
ments. Our results lay the foundations to characterize and
ultimately control actively driven self-assembly in both bi-
ological and synthetic environments.
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A Analyzing the force between solutes in an achiral active Brownian particle bath

The dominant contribution to forces both internal and external for a passive solute in an achiral active Brownian particle
bath is the local enhancement of density around the solute (see Fig. 3 (b)). The large density gradient perpendicular
to the walls forms through a mechanism similar to motility-induced phase separation (MIPS): particles orient into the
direction of the wall and generate a force in proportion to the average local density a distance o (given by the WCA
potential) away from the wall, which we denote py,. This force can be approximated as F(pya11) ~ vioTpg where T
is the characteristic rotational diffusion time. When the walls are separated by a distance larger than the length over
which the density is enhanced, F‘fvi:ltl) = —F‘:ﬁf) and the interaction vanishes. In fact, any attractive force for achiral
(and nearly achiral) active particles arises from density correlations in the interstitial region. This basic picture holds
over a variety of conditions, including different points in the MIPS phase diagram (i.e., different choices of total density

and active velocity) as shown in Figs. S10-S12.

A minimal model illustrates that the oscillatory force profile for achiral particles arises entirely due to packing con-
straints: the separation distances r at which the two walls accommodate a high-density hexatic packing lead to large
repulsive forces, while the separation distances r that are not commensurate with a hexatic lattice lead to smaller values
of FUM) and consequently attractive forces. We verified that hexatic order was correlated with the location of the

wall 2
repulsive peaks in the force profile (Figs. S10 and S12) by computing an average of the hexatic order parameter

1 .
el =g ), 0% (12)
lEN(rk)

where N(r) denotes the set of the six nearest neighbors of the particle at position r and 6y; is the angle between the
vector r; — ry and e,. We denote by ¢ the average value of ¢ restricted to the region between the two parallel walls.

The total force on the walls arises from active particles oriented into the walls aggregating and pushing inward. The
forces generated by the active particles balance exactly when the separation between the walls is large: it is inter-particle
correlations in the interstitial region that lead to the nontrivial force profile shown in Fig. 3 (b). To capture the nature
of the forces arising from these inter-particle correlations, we first define p(r) as the average density in the interstitial
region as a function of the wall separation distance. At the Péclet numbers, given by vo-/D;, we consider here, the
density adjacent to the internal and external walls remains close to the hexatic density. A minimal model for the density
in the interstitial region is then

5(r) = Nhex (1) +rA€nWCA(”) 13)

where ny,q (r) is simply the number of particles accommodated by a hexatic packing | 2r/(V3c)|¢ and

ge—rDr/v

Anweoa(r) = 17 exp [—a(5r — 6o7r)] Y

with 6r = r — [2r/(V30)]¢, an offset §o = ¢(21/6 — 1)c-, and a parameter a that accounts for the softness of WCA
interaction. The exponential decay accounts for the decay in correlations with the boundary, and the rate is chosen to
be the persistence length for ABPs. The principal contribution to the average internal force Fv(vi;ﬁ) at first order in r is a
repulsive inter-particle force due to a strained hexatic packing. That is, by compressing the space available to the hexatic
lattice, the particles in the interstitial region are strained. This additional contribution can be calculated easily,

AF (1) = 18VAeal(p(r) = pex)? (15)

which uses a second-order expansion of the repulsive interaction. This model, despite its strong simplifying assumptions,
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predicts the location and magnitude of the oscillatory repulsive peaks with surprising accuracy (Fig. A1). For separation
distances that are just above those that accommodate a hexatic lattice, depletion of achiral particles in the interstitial
region leads to lower force generation in F\gﬁ), and the walls are pushed together by the external active Brownian
particle bath. This complex interplay of packing and finite-size effects does not yield a robust assembly force.

To test the hypothesis that the repulsive force emerges from hexatic order, we conducted extensive numerical simula-
tions under conditions in which this order could not emerge. First, at very low densities, there is not a sufficiently large
relative enhancement of the local density to achieve a fully packed interstitial region, leading to a g ~ 0 for all wall
separation distances. As shown in Fig. S12, there is no oscillatory force and, in fact, there is only a weakly attractive
long-ranged force. Additionally, we varied the angle between the plates and offset the distance between the center of
the plates in the y-direction, processes which disrupt the ordering between the plates, and found in both cases the force
between the plates to be diminished (Fig. S14). In contrast, constraining the motion of the plates to be only in the
x-direction and hence preserving the hexatic lattice is found to lead to attractive effective free energies between the
plates (Fig. S16).

At higher particle densities, we disrupted hexatic order by examining a system of continuously polydisperse active
particles. The particle diameters were drawn with a power law decay P(o-) = Ao-~3. This model has been studied in
the literature on glassy dynamics due to its resistance to crystallization, even when deeply quenched 4°. Without regular
order, the system does not admit the high-density interstitial packings achieved when the bath contains only particles of
a single diameter. Consistent with the minimal model, this effect eliminates the oscillations in the force profile and the
effective nonequilibrium free energy —In g(r) shows only a short-ranged repulsion as r — 0 (Fig. S17; see Sec. C.7 for
further details).

B 0Odd diffusion results

B.1 0dd Diffusion Scheme Details

We solve the steady state form of (6) using a finite difference scheme for a system with two walls. Far from the walls,
the density is assumed to be the bulk density pg. Around the walls, Neumann boundary conditions are imposed by the
fluxes, which take the form

0 0
Jx:—DSa—5+Daa—§, (16)

B ap ap
Jy ==Dazc ~Ds7o. (17

where the flux perpendicular to the wall is zero by no-flux boundary conditions, and the flux parallel to the wall will be
an input based on simulation data. Under steady-state conditions, (6) becomes

DsV2p =0, (18)

which we solve by discretizing p and the differential operators on a grid with equal spacing % in the x and y directions,
yielding p; ; in the bulk by a central difference scheme

Pitl,j + Pi-1,j + Pi,j+1 + Pi,j-1 — 4pi.

Dg 2 =0. (19)

The Neumann boundary conditions are enforced by introducing fictitious grid points at the surface of the walls. We
discretize the derivatives in either J, and Jy to fourth and second order in the directions perpendicular and parallel to
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Fig. Al The strain force (15) with @ = 20 and ¢ = 0.4. These parameters were chosen for agreement with the magnitude of the
force, but the location of the peaks in the strain force depends weakly on these free parameters.
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the wall, which yield the expressions

—pi+2,j +8pir1,j —8pi-1,j + pPi-2,j Pi,j+1 = Pi,j-1

-D D = 2
s 19K +Da YA 0, (20)
—pi+2,j +8pi+1,j — 8pi-1,j + pi-2,j Pi,j+1 — Pi,j-1
-D — D« = 21
& 12h ® 2h Ty (21

for the areas to the left and right of the walls, with analogous expressions for the areas above and below the walls. It
is found that expanding the perpendicular direction derivative to fourth order for both Jx and Jy leads to a singular
matrix, and hence we expand to fourth order for only one of the fluxes. The fictitious nodes are eliminated by solving
for them in terms of the equations given by fluxes and inputting the subsequent values into the governing equation (18),
in which the derivative in the direction to the wall is also expanded to fourth order, to yield a linear system of equations
that can be solved for p; ;. In the case of nodes on the left side of the walls in which we expand the fluxes parallel to the
walls, Jy, to fourth order and the fluxes perpendicular to the walls, Jy, to second order, the fictitious nodes are given by

Pi+l,j — Pi-1,j Pi,j+1 ~ Pi,j-1

-D D =0 22
s T +Da o , (22)
—pi+2,j +8pi+1,j — 8pi-1,j + pi-2,j Pij+1 — Pi,j-1
-D; - Dg =J 23
a 12h S 2h yo ( )
which yields for the fictitious nodes p;;1,; and p;42,;
Da
Pi+l,j = Pi-1,j+ 5~ (i j+1 = pij-1) » 24
S
12h 6Dgs 8D
pis2.j = p- Iy +pi-2.j+ (D—b + D—a) (pi,j+1 = Pij-1) » (25)
a a S

and upon input to the governing equation, we obtain

L 1 4 5 4 1
Dsh™ | (pi,j-1 = 2pij + pijs1) + |~ 5Pi-2,) + FPI-Lj T GPL) Pl T 5 P2

3D, _ 4D 3D, _ 4D (26)
S S O SO SN SO s - S
~ hDa 6h2p'_2’f 3h2p"1v1 6h2 Pi,j-1 2h2Pt,J 62 pi,j+1 =0.
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A similar procedure is followed for the nodes on the right, top, and bottom sides of the walls. Rewriting (26) slightly,
we obtain for the governing equations around the walls

Left: DsDapi—2,j — 16DsDapi—1.; + (—6DSDa -3D2 + 4D§) pi.j—1+27DsDap;

27)
+(~6D,Dy +3DZ - 4D2) py 11 + 65Dy =0,
Right: — (6DSDa ~3D2 + 4D§) pi.j—1 +27DsDapi j — 16DsDapis1.; + DsDapisa.;
(28)
- (6DsD4 +3D2 - 4D§) pi.j+1 - 6hDsJy =0,
Bottom: — (6D5Da - 3D§ + 4Dg) pPi-1,j + DsDapi,j—Z - 16DsDapi,j—1 + 27D5Dapi,j
29
~ (6DsDa +3D2 = 4D2) pis1,; — 6hDsJx = 0,
Top: (~6D,Dy — 3D +4D2) py-1,j +27DDapy,j + (~6DsDa + 3DZ = 4D2) pisa,
(30)

= 16DsDapi, j+1 + DsDapi, j+2 + 6hDsJx = 0.

Alternatively, one can expand the fluxes parallel to the walls to second order and the fluxes perpendicular to the walls
to fourth order. In this case, the fictitious nodes on the left side of the walls are given by

—pi+2,j +8pi+1,j — 8pi-1,j + pPi-2,j Pi,j+1 = Pi,j-1

-D D = 1
s 121 TR 0- (1)
Pi+l,j — Pi-1,j Pi,j+1 = Pi,j-1
-D —Ds =J 32
a o s % v (32)
which yields for the fictitious nodes p;11 ; and p;42,;
2h D
pirl,j = —=Jy +pi-1,j+ = (Pi,j+1 — Pi,j-1) » (33)
Da Da
16h 8Dy 6D,
pi+2,j = _D_ajy +pi-2,j — (D_a + D_s) (pi,j+1 = pij-1) » (34)
and we obtain for the governing equation
1 4 4 1
-2
Dsh™ | (pi,j-1 = 2pij + pija1) + | =15 Pi-2.5 + 3Pi-1.j = 5Pij + 3Pi+1,j — ﬁpm,,‘)
4D, _ 3D 4D, , 3D (35)
4y 1 8 6+5,; - o 9 6~ * D _
= 73D, —Wpi—Q,j"'ﬁpi—l,j"'TPi,j—l _Wpi’j+ 62 pij+1=0.

A similar procedure can be followed for the nodes on the right, top, and bottom sides of the walls, and upon rewrit-
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ing (35) we obtain for the governing equations around the walls

Left: DSDapi_g,]‘ - 16DsDa,0i—1,j + (—6D5Da - 4Dg + 3Dg) pPi,j-1+ 27DsDapi,j

(36)
+ (—GDSDa +4D2 - 3D.§) pij+1+8hDgJy =0,
Right: - (6D,Da — 4D2 +3D2) pi,j1 + 27D Dapi,; — 16DsDapis1,; + DsDapis2,j
37
- (GDSDa +4D2 = 3D2) pi. ju1 - 8hDsJy = 0,
Bottom: — (6DSDa - 4D§ + 3Dg) Pi-1,j + DsDapi,j—2 - 16DsDapi,j—l + 27DsDapi,j
(38)
- (GDSDa +4D2 - 3D§) pis1.j - 8hDsJy =0,
Top: (—6DsDa —4D2 + 3D§) pi_1.j+27DsDapi j + (—6D5Da +4D2 - 3D§) pisl.)
(39)

—16DsDap;, j+1 + DsDapi, j+2 + 8hDsJx = 0.

(36)-(39) differ from (27)-(30) by the coefficients on the terms perpendicular to walls and the flux terms, leading to
slight differences in the numerical results. The equivalent of the results shown in the main text, with Fig. 6 demonstrating
the density profiles and concentration differences and 7 demonstrating the forces, are shown for the fourth order
and second order in the parallel and perpendicular directions scheme in Figs. A2-A3. Figs. 6 and A2 have similar
concentration differences, with the values in Fig. 6 shifted to lower values of Dg/D, relative to Fig. A2. The measured
diffusion constants from simulation, shown in Fig. S18, indicate that the second and fourth order in the parallel and
perpendicular directions scheme is more representative of the simulated chiral active particle systems. Similarly, the
force profile computed using the second and fourth order in the parallel and perpendicular directions scheme has a
higher agreement with the simulated data than the other scheme. We also compute concentration differences between
the internal and external regions of the walls for these parameters for both schemes in Fig. A4.

As mentioned, the fluxes perpendicular to the walls are zero by no-flux boundary conditions. The fluxes parallel to the
walls are measured in simulation. To do so, the flux field with respect to the solvent is evaluated using Gaussian kernels
per Sec. C.4. To yield the flux parallel to the walls, we average over the flux values at distances %(1 +sin(%)) + 0.4
perpendicularly away from the walls, where b is the hexatic lattice spacing for a given activity32. The difference between
the external and internal densities and the ratio of the internal and external fluxes computed using this scheme are shown
in Fig. S19. These measured profiles follow a sawtooth pattern, resulting in the patterns observed in the concentration
and force profiles obtained from the finite difference schemes.

C Methods

C.1 System and integration scheme

The solvent and solutes evolve under overdamped Langevin dynamics using HOOMD-blue°° for two-dimensional and
three-dimensional systems. The solvent is modeled as chiral active particles, in which the ith solvent particle evolves
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Fig. A2 Difference between the concentrations near the walls internally and externally for a varying ratio of Dg/D, and the internal
and external fluxes at the walls for different separation distances, r, in each panel, evaluated using a finite difference scheme where
the fluxes parallel and perpendicular to the walls are discretized at fourth and second order, respectively. The external flux is set to
Joutside = 10D3LDS‘1 to maintain a relatively similar range of concentrations across the parameters. Inset images correspond to the
concentration profiles for the parameters at the gold star.
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FOD - FQD(T == 158)
Fsim — Fsim('r = 158)

w
—e— (0, OD —=— 5 0D —4— 5, sim

Fig. A3 Force measured from finite difference scheme Fop, in which the fluxes parallel and perpendicular to the walls are expanded
to fourth and second order respectively for walls of length 10 o, width 3 o, and w =0 and w =5, and the force measured from
simulations, Fsim, for w = 5. Force offsets correspond to Fop(r;w =0) =1.1, Fop(r;w=5) =7.1, and Fsim (r; w =5) = -12 £ 38,
with the simulation results corresponding to v =80 and p =0.2.

1-25 |21



Soft Matter Page 22 of 25

Scheme: 2nd order parallel, 4th order perpendicular
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Fig. A4 Concentration difference between the internal and external regions of the walls for varying schemes with parameters obtained
from simulations at varying «w and fixed v =80 and p =0.2.

as 33,34
Fi(t) = € L[F; +vbi(1)] + V2D A;, (40)
bi(1) = [cos6;(¢),sin0;(1)]7, 41)
0;(t) = w++2D,T;, (42)

where r; denotes the position of the ith particle, ¢ is the translational drag coefficient, F; is the force, b; denotes the
direction of its active velocity, v is the magnitude of the active force, w is the active torque, and D; and D, are the
translational and rotational diffusion constants that are related by the formula D, = 3 o~2D;. Here, A; and I} are
independent Gaussian white noises with zero mean and unit variance. The particles interact with the Weeks-Chandler-
Anderson (WCA) potential >, given by the sum U = ¥ ; u(l;;), where I;; = |r; — r | is the distance between particles i
and j. The form of u(l;;) is given by

L\ 12 ..\ 6 ..
u(lij)=4€ij [(ﬁ) —(ﬁ) +i}9(2é —ll—]) N 43)

where €;; and o;; are the energy and length scales set by the particle types, respectively, and 6 is the Heaviside function.
J J 8y g y the p P Y,
—ag—r@. The solutes are represented as rigid bodies composed of particles interacting
1
51,52 £ 51

The corresponding force is F; =

under the WCA potential with other particles not in the same rigid body . Following Ref.>*, a rigid body b composed
of Ny, internal particles has its internal particles indexed by Bp; = [Bbl, ..., Bp Nb]’ with the overall rigid body position
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and quaternion given by r;, and ¢, respectively. Evaluating the net force and torque on the bth rigid body per

Fp= ) F, (44)
iEBbk

T, = Z (ri —rp) X Fi, (45)
1€Bpi

the equations of motion for the rigid body are given by

Fp(1) = £, Fy + 2D p Ay, (46)
4 (1) = 0.5(6, Ty + 2D, ,qTuq, g0 » (47)

where &, and &, ,- are the translational and rotational drag coefficients, respectively, D, ;, and D, ;, are the translational
and rotational diffusion constants, respectively, and A; and I';, are independent Gaussian white noises with zero mean
and unit variance. As the system is two-dimensional, only the z-component of the torque and I';, are non-zero. The
relations between the drag coefficients and diffusion constants are given by the Stokes-Einstein and Stokes-Einstein-
Debye relations in which for the solute one has

D, = kpT€, ", (48)
Dy} = kBTgl;}r =305°Dsp, (49)

where o is the hydrodynamic diameter of the solute, and kg and T are the Boltzmann constant and temperature,
respectively. Analogous relations hold for the solvent. We choose the diffusion constants for the solvent and solutes to
be equal with D; = D, ;, = 1, kT = 1, and ¢;; = 40 and o; = 1 unless otherwise specified.

For simulations in three dimensions, the equations of motion for the rigid body given by Eqgs. (46) and (47) extend
naturally, while the solvent particles evolve under slightly modified equations. These equations of motion are given by

Fi(1) = € [Fi +vqi fig; '] +\2D A, (50)
w _ A; _ oA
qi (1) =0.5(—qiu;q; Ly (cos =L lmll lni sin =% )qi, (5D
&r 2 2
R e | .
n; —(qlflqi )XAzy (52)

where f; is the direction of the active force in the local particle coordinate frame of the ith particle, u; is the direction
of the active torque in the local particle coordinate frame of the ith particle, &, is the rotational drag coefficient, A;
is Gaussian white noise with mean zero and variance 2D, where D, is the rotational diffusion constant, and A; is a
Gaussian white noise about the unit sphere. In all cases, we set f; = [1,0,0] and u; = [0,0, 1].

C.2 Local densities

To obtain the local densities of passive particles, pp (Figs. 1, 2, and S5-S9), a Voronoi tesselation is obtained on
the positions of the passive particles via Freud>3. The local density of a passive rigid body particle is then given by
pp = Np/Ay, where Np is the number of particles in the rigid body and Ay is the area of the associated Voronoi cells.
For results involving passive disk and sphere particles, the local density is instead computed per pp = Vp/Ay, where Vp
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is the volume of the particle. In both cases this rescaling of pp is done to keep the axes comparable between different
systems and sizes of passive particles.

C.3 Force and effective free energy

The force on a fixed wall is obtained by summing over the forces from the solvent interacting with the wall. Denoting
the force on a wall as Fj,, the force on the wall is given by

Fp= 3 3 -2 3)

iEBbpk JENA

Denoting the force on the left and right walls by F;, and Fg, the effective force in the x direction is given by
1
F=5(FRx=Frx), (54)

which has the convention per Sec. A that F > 0 corresponds repulsion and F < 0 corresponds to attraction.

The effective free energy, taken as the logarithm of the radial distribution function —In g(r), is obtained by simulating

two passive walls. A tether potential of the form >*
Ktoth exp(/Uo=r)) — f, 5 lo
Utether(r) = tether fmax =1 . (55)
0, otherwise

is used to constrain the walls below a cutoff distance I;,,x. The radial distribution function is then obtained in the
standard manner by binning the distances between the walls obtained in simulation and normalizing relative to the
ideal gas distribution .

C.4 Gaussian kernel

A Gaussian kernel is used to convert per-particle quantities into field quantities using Freud 3. The Gaussian kernel is
given by, for a quantity k,
-1 (x-r i)2
k) =Ct Y kiexp (-], (56)

. 20

ieNb
where the summation denotes the particles about x within a cutoff distance ryax. The normalization constant C in 2D
is evaluated as

C= 2nrexp|———= | =2n0° |1 — exp(— . 57
/0 p( 202) ( p( 502 )) (57)

We take rmax = 0.5 and o = 1 to yield statistics corresponding to local regions corresponding to single particles. The
kernel is evaluated on a grid cell with {% spacing.

This procedure is used to evaluate the density, flux, and orientation fields. The density field p(x) is evaluated by
setting k; = 1. The flux field is evaluated per k; = F; + vb;. For the orientation field, as the angle @ is a periodic variable,
f(x) is evaluated through a circular mean. This is done by evaluating cos 8(x) and sin §(x) through k; = cos6; and
ki = sin 6;, respectively, and then obtain the orientation field as

O(x) = atan2 (sin 0(x), cos 8(x)) . (58)
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C.5 Density and hexatic order parameter between walls

The local density is obtained by enumerating the number of particles between the walls and dividing by the free area
between the walls. The hexatic order parameter of a particle is obtained through Freud >3 by evaluating (12). In the
case of there being no particles between the walls, the hexatic order parameter is taken to be zero.

C.6 Constraining the system

To perform simulations of moving walls with fixed orientation and y-positions, the orientation is fixed by setting the
rotational drag coefficient to be numerically infinite, and the y-position is reset to the initial y-position after each time
step.

C.7 Glass model

We modify a model used in the simulation of glass formers due to the model’s resistance to crystallization *%-°°. In our
model, values of oy are drawn from a discrete probability distribution P(¢c-) = Ao-~3 with 51 bins between opin = 0.6 and
Omax = 2.29, with the value of o, set to a predetermined value and oyax set to allow the particles to have the same
volume fraction as a monodisperse system with o = 1 and p = 0.4. The value of A is set to ensure that the distribution
is normalized. The value of ¢;; is set to 40, and the value of o;; is set to the arithmetic mean of ¢; and o-;. The WCA
potential of (43) is used to model the interaction between particles. This model defers from the original glass model of
Refs. 4936 in that the form of the potential is different along with the mixing rule for o; i, along with the polydispersity
being drawn from a discrete distribution rather than a continuous one.
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