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Abstract

Thermodynamic characterization of metal oxide reduction/re-oxidation plays a vital role in 

material identification and optimization of many chemical processes. However, this 

characterization generally requires significant data collection (spanning several hundred T, pO2, 

and composition (X) combinations) to appropriately sample phase space and identify key 

inflection zones that are not known a priori and are missed without the sampling of a fine mesh 

grid of T, pO2, and X combinations. Here we have coupled our previously reported CrossFit 

Compound Energy Formalism algorithm for reduction/re-oxidation thermodynamic model fitting 

with Bayesian Inference techniques to build an optimized data selection scheme. Using the BaxSr1-

xFeO3-δ system as a proof of concept, we show that our Bayesian data selection technique required 

less than half (44) data points to achieve the same accuracy as a mesh grid of 100 T, pO2, and X 

point combinations. Our method has errors of < 2 kJ/mol in reduction enthalpy  and < 3 J/(mol (∂𝐻
∂𝛿)

K) difference in reduction entropy  compared to the full data set. Further, randomly selected (∂𝑆
∂𝛿)
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44 T, pO2 and X data points only reproduced the ground truth model 5% of the time, demonstrating 

the power of our approach. Our method offers a human free, physically informed, data collection 

approach and paves the way for a high-throughput active data selection process for metal oxide 

reduction/re-oxidation thermodynamics.
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1 Introduction

The cyclic reduction/re-oxidation of metal oxide (MxOy ) materials forms the backbone of 

a vast number of chemical processes, such as gas reforming1, 2, gas separation and pumping3-9, 

energy production and storage10-17, and many catalytic processes, particularly those which operate 

on  Mars-van Krevelen-like mechanisms18-24. The performance of these materials is directly related 

to their partial molar reduction thermodynamics, i.e. enthalpies and entropies of reduction as a 

function of reduction (MxOy-δ). Importantly, the subtle differences between reduction enthalpies 

and entropies across varying compositions of the same MxOy can have a measurable effect on 

material performance12, 25, 26. Therefore, accurate thermodynamic modeling of these MxOy 

materials underpins the design and optimization of MxOy for their respective chemical processes.  

This paper describes a new method for selecting data points which should be collected to extract 

these crucial thermodynamic parameters.

Detailed thermodynamic characterization of MxOy reduction/re-oxidation generally 

consists of careful thermogravimetric analysis (TGA) of mass loss as a function of temperatures 

and pressures which are fit to a thermodynamic model. The most commonly used model is based 

on van’t Hoff analysis27-31 , which is relatively simple to implement but does not provide 

temperature dependent information. Conversely, the compound energy formalism (CEF) is more 

robust albeit more complicated to fit. Using either model, fitting of thermodynamic parameters to 

TGA experimental data requires the measurement of non-stoichiometry across a large array of 

temperatures (T) and oxygen partial pressures (pO2). It is unclear a priori what points should be 

examined, aside from the need to span a large range of operating points. The difficulty in selecting 

points arises because the non-stoichiometry, and the underlying thermodynamics are often highly 

non-linear11, 14 and obviously unknown a priori. Thus, the use of evenly spaced points in 
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measurement points, T, pO2 and compositional changes, generically referred to here as X, which 

we call (TpOX), either require fine search meshes, and thus significant time in synthesis and 

characterization, or luck to adequately sample inflection zones. Therefore, the development of a 

model informed data collection scheme for MxOy reduction thermodynamics would substantially 

decrease the time needed for material synthesis and TGA characterization and enable a high 

throughput material screening process. A clear benefit to such a scheme is that it will highlight 

important compositional changes to investigate as these bear the highest cost in experimental data 

collection. However, while TGA programming may be easily adjusted from one run to the next, 

specific X, T, and pO2 points around inflection zones are of great interest, but not known a priori. 

Active data selection techniques have been studied for several decades in a variety of 

scientific disciplines32-35 such as medical disease analysis36, 37, weather prediction38, and material 

design39-41. To date, these have not been applied or refined for thermodynamic characterization of 

MxOy reduction/re-oxidation cycle materials. In this work we aim to fill this methodological gap 

through a novel algorithm which systematically selects the most important experimental data 

points to collect without prior knowledge of the system behavior. This method uses a combination 

of our recently developed cross-fit experimental and computational CEF model42 and Bayesian 

inference43-46 to select the data points to be experimentally examined and guide the fitting of robust 

thermodynamic models. In our algorithm, we leverage ab initio methods to estimate material 

enthalpies while the complex temperature and entropy interactions arise from TGA data. Overall, 

we provide a hands-off approach that: 1) requires the collection of less computational and 

experimental data than would be necessary if collected systematically on a grid, and 2) informs 

the experimentalist when additional data is required to build a more robust thermodynamic model. 

Furthermore, we note not all MxOy behave alike, with some varying greatly in reduction 
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thermodynamics as a function of composition or even undergoing phase transitions. The Bayesian 

data selection approach is inherently built to “seek out” this variation in trends as data is added 

during each iteration guiding the researcher towards these behavior altering regions.

As a demonstration of this method, we examine BaxSr1-xFeO3-δ (BSF) because we have a 

large existing experimental data set47 and have previously established its thermodynamics. BSF 

reduces and oxidizes according to eqn 1& eqn 2

Where Δδ is the change in the non-stoichiometry of BSF at new TpOX conditions. We will 

detmerine how our Bayesian informed data selection scheme requires less TpOX points to derive 

the same thermodynamic results as a ground truth model utilizing all available TpOX data. 

Furthermore, we will show that the Bayesian informed approach performs better than pure random 

sampling as we repeatedly modeled a set of 

randomly selected experimental data points 

and compared the derived thermodynamics 

to the Bayesian selected set and the ground 

truth models. 

2 Methods

We propose using two Bayesian approaches to identify the appropriate thermodynamic 

model and optimize data collection: Bayesian Information Criterion (BIC)48, 49 and a new Bayesian 

implementation for data selection.  The BIC determines 1) which  CEF model is the most 

𝐵𝑎𝑥𝑆𝑟1 ― 𝑥𝐹𝑒𝑂3 ― 𝛿1→𝐵𝑎𝑥𝑆𝑟1 ― 𝑥𝐹𝑒𝑂3 ― 𝛿2 +
∆𝛿
2 𝑂2 eqn 1

𝐵𝑎𝑥𝑆𝑟1 ― 𝑥𝐹𝑒𝑂3 ― 𝛿2 +
∆𝛿
2 𝑂2→𝐵𝑎𝑥𝑆𝑟1 ― 𝑥𝐹𝑒𝑂3 ― 𝛿1 eqn 2

Figure 1: Schematic of the information flow in the proposed 
data selection scheme. 
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appropriate from an array of optimized models with varying numbers of excess terms and 2) when 

sufficient data has been collected, i.e. when the CEF model is trustworthy. The new proposed 

Bayesian determines the next TpOX sample point based on the collected data points and the 

associated uncertainty in the predicted experimental data across the current array CEF models. 

Figure 1 shows the proposed iterative cycle. 

In this section we first briefly explain the CEF construction and the associated generation of 

multiple thermodynamic models from our previously described cross-fitting algorithm.42 We then 

describe the use of BIC for selecting the “best” model. Subsequently, we outline our new Bayesian 

approach for selecting the next TpOX data point to be sampled, and the associated stopping criteria 

for the iterative loop. Our intention is not to provide detailed derivation of Bayesian Inference 

techniques but rather to outline the integration of the method into our workflow. For an in depth 

understanding of Bayesian Inference as it applies to model comparison, we direct the reader to the 

excellent O’Hagan and Foster text on the subject50. Finally, we give a brief explanation of the data 

sources for our models. 

2.1 Overview of CEF 

We use the CEF51, 52 approach to represent the Gibbs free energy of a solid as a solution on 

a set of sub-lattices via the summation of three terms( eqn 3): 1) a linear combination of the Gibbs 

free energies of the so-called endmember compounds representing the composition of the solid 

solution, 2) a configurational entropy term, and 3) an excess term that accounts for interactions on 

and between the sub-lattices and accounts for any deviations from ideality as prescribed by the 

endmember and configurational entropy terms. We note that the configurational entropy term 

describes full disorder. Real materials may have a significant extent of short-range ordering (SRO), 

and thus lower entropy. While methods exits that incorporate SRO within the CEF53, accounting 
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for such effects is not trivial and beyond the scope of our studies. In both  and  𝐺𝑒𝑛𝑑𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝐺𝑒𝑥𝑐𝑒𝑠𝑠

the free energy is expressed as an expansion with constant heat capacity (Cp = C) (eqn 4).

𝐺𝑠𝑜𝑙𝑛 = 𝐺𝑒𝑛𝑑𝑚𝑒𝑚𝑏𝑒𝑟𝑠 ―  𝑇 ∗ 𝑆𝑐𝑜𝑛𝑓𝑖𝑔 +  𝐺𝑒𝑥𝑐𝑒𝑠𝑠 eqn 3

𝐺 = 𝐴 + 𝐵 ∗ 𝑇 + 𝐶 ∗ 𝑇 ∗ ln (𝑇) eqn 4

Where the parameters A, B, and C, in eqn 4, are derived from the integration of a constant heat 

capacity (Cp = C). The enthalpy integrated from heat capacity as, H =  and the ∫𝐶𝑑𝑇 = 𝑐1 + 𝐶𝑇

entropy integrated from heat capacity as: S = . Utilizing the state function ∫
𝐶
𝑇𝑑𝑇 = 𝑐2 + 𝐶𝑙𝑛(𝑇)

 and combining like terms to simplify the parameter space we arrive at eqn 4.𝐺 = 𝐻 ― 𝑇𝑆 

The terms from eqn 3 and eqn 4 are defined by eqn 5 - eqn 8: 

where  is the site fraction of a species on a sublattice site,  is the total number of endmember  𝛾 𝑁

terms,  is the total number of sites, z is a particular sub-lattice, and M counts over the components 𝑛

that can occupy a site on sublattice z. eqn 8 is configured for the BSF system which is a three 

sublattice model with two components per sublattice, and , , and  are the sublattices. A Redlich-ℎ 𝑘 𝑙

Kister expansion expresses the  terms in  54 of the  site fraction terms up to order m, taken ℒ 𝐺𝑒𝑥𝑐𝑒𝑠𝑠 γ

𝐺𝑒𝑛𝑑𝑚𝑒𝑚𝑏𝑒𝑟𝑠 =  
𝑁

∑
𝑖
∏𝛾𝑧

𝑀𝐺𝑒𝑛𝑑𝑚𝑒𝑚𝑏𝑒𝑟
𝑖 eqn 5

𝑆𝑐𝑜𝑛𝑓𝑖𝑔 = ―𝑅∑
𝑧

𝑛𝑧∑
𝑋

𝛾𝑧
𝑀 ∗ 𝑙𝑛(𝛾𝑧

𝑀) 
eqn 6

𝐺𝑒𝑥𝑐𝑒𝑠𝑠 =  ∑
ℎ

𝛾ℎ
1𝛾ℎ

2 ∑
𝑘 ≠ ℎ

2

∑
𝑀 = 1

𝛾𝑘
𝑀 ∑

𝑙 ≠ ℎ ≠ 𝑘

2

∑
𝑀 = 1

𝛾𝑙
𝑀ℒℎ:𝑘:𝑙 eqn 7

ℒℎ:𝑘:𝑙 =
1

∑
 = 0

(𝛾ℎ
1 ― 𝛾ℎ

2)𝐿𝜈
ℎ:𝑘:𝑙 eqn 8
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to be ν=1. For further development and fundamental analysis of the CEF model, we direct the 

reader to Ref. 42, 51, 52, 55-58. In the SI, Table SI-1, we list the Redlich-Kister expansion  terms. ℒ

Constructing the CEF model as shown for any given MxOy systems results in several excess 

 terms each carrying their own A, B, and C parameters to be optimized. Thus, the CEF fitting 𝐿𝜈
ℎ:𝑘:𝑙

model provides a range of thermodynamic prediction models based on how many excess terms are 

included. We have previously demonstrated how to down select which excess terms should be 

included up to q excess terms using cross-fitting and a down selection logic model42; however, the 

fitting procedure does not identify which q  best describes the data, i.e., how many excess terms 

should be included. 

We show the  and  model trends for all optimized models on the full experimental (ground 
∂𝐻
∂𝛿

∂𝑆
∂𝛿

truth) BSF dataset in Figure 2a-b. Commonly, the selection of the most appropriate model is based 

on visual comparison of thermodynamic trends and error comparisons. This human intervention 

can lead to biasing of the model based on the choices of the user. Therefore, we propose using a 

statistical BIC method to select the most appropriate CEF model.
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2.2 Determining the most appropriate model using BIC

The proper dimensionality of a model when fit to a non-predetermined functional form is often 

difficult to discern59. The BIC circumvents the unknown dimensionality problem by balancing the 

model accuracy (based of the observed data) against the number of parameters utilized by the 

model, seen as eqn 9:

𝐵𝐼𝐶 = 𝜅 ∗ 𝑙𝑛(𝑁) ― 2 ∗ ln (𝓁) eqn 9

where  is the number of parameters in the model,  is the number of data points, and  is the log-𝜅 𝑁 𝓁

likelihood function for the given model. The optimal balance of complexity and accuracy results 

in the lowest BIC value. Figure 1c depicts an example BIC calculation for the ground truth model. 

The likelihood function comes from Bayes’ Theorem as the sampling probability (𝑃(𝑫│𝑀)

, where D is the dataset for the given model M, or probability that the data  also written as ℒ(𝑀) )

resulting from physics is accurately described by a given model. In the case that the  is ℒ(𝑀)

Figure 2: a) The enthalpy of reduction  of BSF for all 22 models generated during the CrossFit CEF algorithm, (∂𝐻
∂𝛿)

b) The entropy of reduction  of all 22 models, c) BIC results for the ground truth BSF models, d-e) Data points (∂𝑆
∂𝛿)

with low (d) and high (e) δ range predictions versus chemical potential where T and X are held constant for each 
point and pO2 varies. The legend indicates the number of excess (  terms for each model.ℒ)
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utilized in BIC, all model likelihoods are calculated on the same dataset with which all models 

were optimized.

We construct our comparisons assuming that error arises from both data noise and model 

error, and therefore, the forms of the likelihood functions are based on two normal distributions, 

as outlined by Gregory et al.60 The convolution of the two distributions gives the probability that 

data point  resulted from the given model where  are the optimized model parameters.  𝑌𝑖 𝑚(𝑥𝑖│𝜽) 𝜽

When all  are independent, the likelihood 𝑌𝑖 𝑃(𝑫│𝑀) =   𝑃(𝑌1,𝑌2,𝑌3,…,𝑌𝑛│𝑀,𝜃) =  

. Therefore, the construction of  for a model is:∏𝑁
𝑖 = 1𝑃(𝑌𝑖|𝑀,𝜃) ℒ(𝑀)

ℒ(𝑀) = (2𝜋) ―𝑁/2( 𝑁

∏
𝑖 = 1

(𝜎2
𝑖 + 𝜎2

𝑚) ―1/2)𝑒𝑥𝑝( 𝑁

∑
𝑖 = 1

―
(𝑦𝑖 ― 𝑚(𝑥𝑖│𝜃))2

2(𝜎2
𝑖 + 𝜎2

𝑚) ) eqn 10

Where  is the standard distribution of model error, and  is the standard distribution of the 𝜎𝑚 𝜎𝑖 𝑖𝑡ℎ

data point noise. 

We use the natural logarithm of the  in constructing the log-likelihood function ℒ(𝑀) 𝓁(𝑀) 

(eqn 11) which makes the calculations more numerically stable by transforming products into 

sums, which have better behaved derivatives. We note that maximizing the likelihood  is 𝓁(𝑀)

equal to maximizing the log-likelihood . The final form of the log likelihood used is:ℒ(𝑀)

 𝓁(𝑀) = 𝑙𝑜𝑔(ℒ(𝑀)) = ―
𝑁
2log (2𝜋) ―

1
2

𝑁

∑
𝑖 = 1

𝑙𝑜𝑔(𝜎2
𝑖 + 𝜎2

𝑚) ―
1
2( 𝑁

∑
𝑖 = 1

(𝑦𝑖 ― 𝑚(𝑥𝑖│𝜃))2

(𝜎2
𝑖 + 𝜎2

𝑚) ) eqn 11
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2.3 Using Bayesian Approaches for Model and Data Selection – Comparing Log-

Likelihoods

2.3.1 Selection of new TpOX points for data collection

The multiple models with which we conduct our statistical analysis arise from the  term 𝐺𝑒𝑥𝑐𝑒𝑠𝑠

in eqn 3.  describes the interaction of the various species on one sublattice given the 𝐺𝑒𝑥𝑐𝑒𝑠𝑠

composition of the other sublattices. Most of the excess terms have negligible contributions, or 

there is insufficient data to fully define them. Therefore, we use our recently developed cross-

fitting algorithm which adopts a top-down approach to select and optimize the parameters 

associated with . This process generates multiple optimized models, which vary in the 𝐺𝑒𝑥𝑐𝑒𝑠𝑠

number of excess terms included, q, for a given TpOX dataset. The differing number of excess 

terms results in different predictions of thermodynamic states and expected δ (off stoichiometric) 

values. We exploit the variance in the predicted thermodynamics and δ to select the appropriate 

model by statistical methods. Likewise, the uncertainty from the multiple models enables a 

Bayesian approach to select the TpOX point which, if sampled next, would add the most 

information and thus generate the most robust/accurate next model.

We base our data point selection methods on Gaussian Process Regression (GPR)61, 62. 

Through GPR, the variation between models collapses as more data is observed. In GPR one 

determines points for data collection by considering which points have the greatest variance across 

all models. In our method, each of our CEF models (22 of them) predicts a δ value across a range 

of unsampled TpOX points. TpOX points with a narrow range in predicted δ indicates CEF model 

agreement and insensitivity to the parameters. Thus, sampling at these points is not expected to 

improve the model fit. Conversely, TpOX points with a wide range in predicted δ denotes 

disagreement between models, and thus an ability to delineate effects between excess terms. We 
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elect to use the range (or spread) of predicted δ values to determine model consistency because the 

range is more sensitive to differences in outlying models than other statistical quantities. An 

example of two data points with low and high range predictions where T and X are held constant 

for each point and pO2 varies is seen in Figure 2d-e. 

 In order to create a more robust modeling algorithm we select a point that has the highest 

predicted range in δ across the models to sample next. When the new data point is selected and the 

model parameters re-optimized with the additional data point, the various models lower their 

prediction range at that point as all models have now been optimized to include the new observed 

data. As a result, the models may differ in points which were previously well described by older 

models. This is a desired trait, allowing the algorithm to “hunt” for inflections and curvature in 

thermodynamic trends due to new TpOX sample points. The hunting nature prevents the algorithm 

from agreeing with itself too early in the data collection process and preventing inadequate 

sampling of the data.  

2.3.2 Stopping Criteria Utilizing the Likelihood Ratio Test

The stopping criteria of our iterative data selection process  is based on a comparison of the 

models from one iteration to the next via a likelihood function through the so-called Bayes Factor 

63 and a cutoff threshold for the number of sequential models which are statistically the same. 

Thus, building high confidence in our model. 

Instead of using an obscure kernel as a prior, which is non-physical, we use the uncertainty 

in the existing optimized CEF models which vary in the number of excess terms. The optimized 

CEF models are all equally likely to represent the data they were optimized for, resulting in all 

prior probabilities being equal. Because the model parameters are optimized in each model and 
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there are no unknown parameters, the Bayes Factor simplifies to the ratio of likelihoods in what is 

known as a  likelihood-ratio test50, 63-66 (eqn 12). 

The likelihood ratio test is used to compare one model to another in the Bayesian iterative process. 

In our iterative approach, we add data then optimize thermodynamic parameters to that data 

through the cross-fitting CEF approach, creating several models of varying parameter amounts. 

We then utilize BIC to determine the appropriate model for the current dataset in Bayesian iterative 

process (e.g during the  iteration  utilizes dataset  to determine the best model for this 𝑖𝑡ℎ 𝓁(𝑀𝑖) 𝑫𝟏:𝒊

iteration). Lastly, we assess whether we have reached our optimal model with the least amount of 

data required via the likelihood-ratio test ( ).67, 68 When two models would fit the data with the ℬ𝐿𝑅

same trends their likelihoods would be almost identical, i.e .ℬ𝐿𝑅 ≈ 0

Because the likelihood ratio test requires consistent data points between the candidate models, 

we evaluate both the current model (model i) and the previous model (model i-1) with all available 

data (i.e. D1:i). Thus, the  model is assessed on a data point it has not been optimized on.  𝑖𝑡ℎ ―1

When the i-1 model has the same likelihood as the ith
 model even at a TpOX it was not optimized 

for, the confidence in the models grows. We follow Kass and Raftery’s63 work and take a value of 

 to indicate that there is very little evidence of having dissimilar models. We note that |ℬ𝐿𝑅| ≤ 2

 can be negative or positive simply based on which model better describes the dataset. To ℬ𝐿𝑅

ensure confidence in our model, we require several consecutive iterations which achieve |ℬ𝐿𝑅| ≤ 2

., i.e. we impose a cutoff value. Too low of a cutoff value may stop the Bayesian iterative process 

prematurely, particularly early in the cycle, while too large of a cutoff would cause unnecessary 

data collection. 

ℬ𝐿𝑅 = ―2(𝓁(𝑀𝑖 ― 1) ―  𝓁(𝑀𝑖))
eqn 12
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2.4 Data Sources

This work uses both computational and experimental BSF off-stoichiometry data from our 

previous work42 and Bush et al,47 respectively. Because these data sets have been previously 

described in detail, we provide only a brief summary of their collection method and characteristics 

to provide context. 

DFT calculations were conducted to obtain the energy of Ba1-xSrxFeO3-δ compositions using 

the Vienna Ab Initio Simulation Package (VASP)69, 70 with the meta-GGA strongly constrained 

and appropriately normed (SCAN)71 exchange/correlation functional and a Hubbard correction72, 

73 (SCAN+U) U value of 3.1 eV for the Fe d-orbitals, 74. Various δ values were achieved via 

supercell size variations and meticulous comparison of all vacancy interaction pairs to find the 

lowest ground state configuration for each δ value considered. In this study, we note we use all 

available density functional theory (DFT) data previously gathered and leave the application of the 

Bayesian data selection method to DFT data as future work. However, our method could easily be 

extended to drive computational data collection as well.

The experimental data consists of 2200 

thermogravimetric (TGA) data points 

spanning four temperatures (T=400°C, 

538°C, 747°C, 1100°C), five oxygen 

partial pressures (pO2=0.9, 0.29, 0.095, 

0.03, and 0.01 bar) and five Ba mole 

fractions (x=0, 0.05, 0.10, 0.15, 0.20). 

Measurements were taken at each TpOX, 

providing 100 TpOX combinations and 

Figure 3: a) BSF TGA data provided by Bush et al, b) Range 
of Δδ values for each TpOX combination of TGA data points 
sorted by increasing average Δδ, c) Normal PDF plots for each 
TpOX data point illustrating increasing uncertainty with 
increasing Δδ values.
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were corrected by 10 background (i.e., “blank run”) measurements. Additionally, the average of 

the 10 subtractions for each point was included yielding 11 total subtractions and 1100 datapoints. 

The same 100 material measurements and 10 background measurements were repeated, resulting 

in a total dataset of 2200 TpOX points. TGA measured the change in δ (Δδ) from a reference 

measurement (δ0) at 300°C and pO2 = 0.9 bar. The δ0 value has not been determined experimentally 

for this dataset. Figure 3a shows a plot of Δδ values at each TpOX. We note that the variance and 

range of the measured Δδ is correlated with its mean value, with higher values of Δδ having more 

uncertainty. Figure 3b shows the range of each 100 measured data points sorted by increasing 

average Δδ value. Figure 3c shows the probability density of each 100 measured data points based 

on their respective mean and standard deviation created by the 20 total background subtraction 

from each measured data point. 

3 Results and Discussion

In this section we first report on the performance of the Bayesian approach to selecting a 

robust model with the least amount of data required. We then compare our approach to randomly 

selected data from the pool of available experimental data points to determine the robustness of 

our method. We define the ground truth model as the model that was optimized on the full set of 

available experimental TpOX data.

3.1 Iterative Bayesian Algorithm Applied to Example BSF System. 

 Through the Bayesian data selection process, we assess the predictive confidence of the 

current model based on the range of the predicted δ value at an unsampled set of TpOX across the 

optimized CEF using different numbers of excess terms. We apply this method to the BSF system 

with an available pool of 100 unique TpOX data points. The Bayesian method iterates through the 

available data points assessing at each iteration which point to add next that would build 
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confidence in the model. We show an 

example of the range in predicted δ during 

data point selection in Figure 4a-b with a 

model fit on 44 TpOX points. Red “hot 

zones” in Figure 4a indicate TpOX points 

with the highest range in predicted δ values 

while blue “cold regions” indicate where 

the models mostly agree. For ease of 

visualization, in Figure 4b, we only display 

the data points with the largest (top 20%) 

range in δ, thus highlighting the sampling 

regions of interest. Once the algorithm has produced a statistically equivalent model multiple times 

in a row, based on the cutoff value; the algorithm stops, and a high confidence thermodynamic 

model is reached.

For the remainder of this work, we only select TpOX point for which we have existing 

experimental data. However, in practice the full range of points would be considered for selection. 

Additionally, multiple points from the different hot regions could be selected for simultaneous 

experimental evaluation to facilitate data collection. In the selection of multiple points Bayesian 

Inference can be used to determine the best choice in multiple points; however, such an 

implementation is left to future work. 

We initialized the Bayesian iterative process with 12 experimental TpOX points and all 

DFT data points. We used every combination of three temperature points (T = 673, 811 & 1373 

K) (the required minimum number of temperature points to fit the free energy model given the 

Figure 4:a) Sampling TpOX mesh grid illustrating calculated 
range in δ values across each model. Higher range means 
higher uncertainty across all models. b) Top 20% of predicted 
δ range, c) Likelihood ratio test for Bayesian iterative data 
selection process (dashed lines at indicate |ℬ𝐿𝑅| ≤ 2
statistically similar models), d) Likelihood ratio test for model 
comparison to ground truth model. Red circles indicate 
iterations that resulted in models that match the ground truth 
model in number of excess terms and selected excess terms.
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constant heat capacity assumption), two oxygen partial pressures (pO2 = 0.9 & 0.01 bar) and two 

mol fractions (x=0 & 0.2).  Based on initial testing, we recommend that the initial T and pO2 point 

selection include the minimum and maximum conditions experimentally obtainable with the third 

T point halfway between the extremes in order to initially sample a wide range of the chemical 

potential phase space. The thermodynamic model based on these 12 initial data points is named 

iteration 0. 

The likelihood-ratio test between subsequent iterations determines when the model is likely 

to be accurate and thus sufficient data has been collected. This test is used after each iteration as 

the stopping criteria because under experimental scenarios the true thermodynamics are unknown 

a priori. Figure 4c shows the likelihood ratios from one iteration to the next out to 50 Bayesian 

iterations. Using a convergence criterion of 

five sequential iterations with , |ℬ𝐿𝑅| ≤ 2

terminates the Bayesian process after 

iteration 36 (48 total data points). As 

demonstrated by the red circles in Figure 

4c, the models converge to the same excess 

terms as the ground truth model. The points 

selected are displayed in Figure 5. We note 

that these points do not form an obvious pattern, nor are they seemingly systematic.

Figure 4c also illustrates that overly loose convergence criteria can produce poor results. For 

example, a convergence criterion of three sequential iterations with  , would stop our |ℬ𝐿𝑅| ≤ 2

algorithm after iteration 3, 15 data points total, but iteration 3’s thermodynamics do not match the 

ground truth. We hypothesize that early convergence of the Bayesian iterations is most likely early 

Figure 5: Data selected up to Iteration 32 (44 data points). 
Circles indicates point selected in Bayesian iterations. X 
points indicates initial starting points selected for iteration 0. 
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in sampling iterations where the data is most limited. 

Furthermore, we conducted a likelihood ratio test of the 

first 50 models to the ground truth model illustrated in 

Figure 4d. We find that the same models that met the 

stopping criteria are not statistically different than the 

ground truth model.

We compare the accuracy of the predicted 

thermodynamics for SrFeO3-δ at iteration 3, 32 and our 

ground truth in Figure 6. We select iteration 32 as the point 

of comparison because it is the first of five in the cutoff 

iterations and, via our likelihood ratio test, the next four 

models after iteration 32 are statistically equivalent. One 

can see in Figure 6 that at iteration 3 the thermodynamic results are vastly different from the ground 

truth results. Conversely, the thermodynamic model constructed by iteration 32 closely matches 

the ground truth model with only a 2 kJ/mol error in reduction enthalpy  and < 3 J/mol K (∂𝐻
∂𝛿)

difference in reduction entropy  normalized to mol O. Furthermore, the model from iteration (∂𝑆
∂𝛿)

32 matches the ground truth, both in number of excess terms selected by BIC, q= 2, and the selected 

excess terms, L17 and L18. The excess term identity and number selected in iteration 32 – 36 

match, and that the optimized parameters are the same order of magnitude and sign. A table of all 

optimized parameters from iteration 32 – 36 and the ground truth can be found in the SI, Table 

SI-2. We note, the complex linear combination of terms allows for some tradeoff between 

parameters B and C in eqn 4 so that they may differ between models and still result in the same 

thermodynamic trends. We leave the assessment of state function parameter setup to prevent this 

Figure 6: Comparison of enthalpy of 
reduction  (top) and entropy of (∂𝐻

∂𝛿)
reduction  (bottom) for Bayesian (∂𝑆

∂𝛿)
iteration 3, 32 and ground truth at T = 
1000K.
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strict parameter trade off to future work. In this work, careful selection of parameter initialization 

values is conducted to prevent inaccurate trade off as described in our previous work.42 

The cost effectiveness of running this algorithm directly arises from the algorithm speed, 

experimental data collection time, frequency and ability to update the data collection program. In 

an unoptimized state, the MATLAB implementation of this method is < 2 hours; however, we note 

that the code can be further optimized, parallelized, and migrated to a faster language, significantly 

accelerating its execution in future versions. The experimental approach requires the synthesis of 

materials to investigate compositional changes and the collection non-stoichiometry at T and pO2 

points. Amongst these, the synthesis of new materials represents a significant bottleneck, as such, 

the ability of our method to pre-select important compositions significantly decreases the number 

of expensive synthesis steps. The benefits of selecting T and pO2 points will depend on the kinetics 

of the materials, where slower reducing/oxidizing materials will benefit more than those with near 

instantaneous equilibrium. In general, lower temperature and pO2 points are likely to benefit the 

most as kinetics are slower. Because the users of this method choose the candidate points the model 

select as the most important, they can weigh their relative cost of T, pO2, or X data collection and 

adjust the candidate points accordingly. Considering these facts, the <2 hour run time for the 

Bayesian scheme heavily outweighs the time needed to synthesize and establish fine mesh grids 

of T and pO2 for the traditional systematic approach to data collection.

3.2 Bayesian Data Selection Outperforms Random Chance

We test the Bayesian selected data approach to one in which data is randomly selected as 

an example where the experimentalist is unsure of the critical points that control the 

thermodynamics of the material. We created 20 datasets each starting with the same 12 initial data 

points as our Bayesian iterative process and then selected 32 additional data points at random from 
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the remaining 88 available. We note that there are almost 1 septillion (1024) possible combinations 

of data points to choose from. Therefore, the probability that an experimentalist would choose the 

Bayseian selected data points is effectively 0. 

Utilizing the likelihood-ratio test we compare the 20 models optimized to their respective 

randomly selected data points to the Bayesian selected dataset, illustrated in Figure 7. In order to 

make an appropriate comparison the models must be compared on the same dataset therefore we 

calculate the error of all 20 models on the dataset the Bayesian approach selected, . We note 𝑫𝟏:𝟒𝟒

the dataset used has no bearing on the comparison, only that the comparison is done on the same 

dataset. We find that only one of the twenty models is 

statistically the same as the Bayesian selected data model, 

i.e . Thus, the Bayesian approach outperformed |ℬ𝐿𝑅| < 2

95% of the randomly selected data. 

4 Conclusions 

In this work we successfully implemented a Bayesian 

inference approach for model and data selection for 

reduction thermodynamic analysis. We utilize the Bayesian Information Criterion to identify the 

proper dimensionality (i.e. how many excess terms to include, q) of the CEF model. Through an 

iterative process, we add data until a cutoff metric is met via the likelihood-ratio test. The data to 

be added at each iteration is selected through a Bayesian approach where the TpOX data point 

with the highest predicted range in δ among CEF models with various excess terms is selected. 

The aim of the Bayesian approach to data selection is to lower the spread of predicted values over 

the entire sample space. We show that through the employment of our Bayesian informed data 

selection scheme less than half the experimental data set (44 out of 100 points) is required to reach 

Figure 7: Likelihood-ratio test comparing 20 
models generated from randomly selected 
data compared to the Bayesian method 
selected data at iteration 32 (44 data points).
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the same thermodynamic results. Importantly, the data selected by the Bayesian method is not 

overly represented in the low pO2 and high temperature regions. Rather, in its BSF application, 

only ~22% of the selected points were in the lowest pO2 of the available dataset. Therefore, this 

methodology effectively decreases the number of total data points required as well as the number 

of difficult data points to sample. We note, however, it this method does not guarantee that no low 

pO2 points are needed if that is where critical information is located, but it does restrict the number 

of datapoints at low pO2 to those which are necessary in building a robust model. Furthermore, we 

show that the Bayesian informed approach does better than pure random sampling of data as only 

5% of the models optimized on 44 randomly selected data points identified the same 

thermodynamic trends as the model optimized on the full 100 data points. Overall, implementation 

of our method will save significant time in data collection, allowing for more materials to be 

investigated and lower research costs. Further, it opens the possibility of a hands-off high-

throughput process for MxOy material selection and design and while we have not directly 

interfaced this code with TGA or other data acquisition software, there is no reason that it could 

not be easily implemented.

Page 21 of 28 Journal of Materials Chemistry A



22

5 Associated Content 

Supporting Information.

Contains list of Redlich-Kister expansion of  terms. A table of all optimized parameters from ℒ

iterations 32 – 36 and the ground truth. MATLAB code for all algorithms and data used can be 

found at https://github.com/MuhichLab/Bays_Data_Selection.git.

6 Funding Sources

This material is based upon work supported by the U.S. Department of Energy, Office of 

Science, Office of Advanced Scientific Computing Research, Department of Energy 

Computational Science Graduate Fellowship under Award Number DE-SC0022158. This work is 

also supported by the U.S. Department of Energy’s Energy Efficiency & Renewable Energy office 

under Award Number DE-EEDE-EE0010732. 

7 Acknowledgement 

We gratefully acknowledge the group of Prof. Peter Loutzenhiser for sharing their TGA data 

on BSF, Nhu Nguyen and Tyler Farr for conducting the experiments and processing the data and 

sharing it in spreadsheet form. All fitting calculations were conducted in MATLAB© 2021a. The 

authors acknowledge Research Computing at Arizona State University for providing HPC 

resources that have contributed to the research results reported within this paper.

8 Corresponding Author Information

Corresponding Authors: Christopher Muhich 

Email: cmuhich@asu.edu

Telephone: 480-965-2673

Page 22 of 28Journal of Materials Chemistry A

https://github.com/MuhichLab/Bays_Data_Selection.git


23

Address: 551 E. Tyler Mall, ERC 257, Arizona State University, Tempe AZ

Page 23 of 28 Journal of Materials Chemistry A



24

REFERNCE LIST

1. Guo, Q.;  Geng, J.;  Pan, J.;  Zou, L.;  Tian, Y.;  Chi, B.; Pu, J., Brief review of hydrocarbon-
reforming catalysts map for hydrogen production. Energy Reviews 2023, 2 (3), 100037.
2. Ahmad, Y. H.;  Mohamed, A. T.;  Kumar, A.; Al-Qaradawi, S. Y., Solution combustion 
synthesis of Ni/La2O3 for dry reforming of methane: tuning the basicity via alkali and alkaline 
earth metal oxide promoters. RSC Advances 2021, 11 (53), 33734-33743.
3. Bulfin, B.;  Lapp, J.;  Richter, S.;  Gubàn, D.;  Vieten, J.;  Brendelberger, S.;  Roeb, M.; 
Sattler, C., Air separation and selective oxygen pumping via temperature and pressure swing 
oxygen adsorption using a redox cycle of SrFeO3 perovskite. Chemical Engineering Science 2019, 
203, 68-75.
4. Krzystowczyk, E.;  Haribal, V.;  Dou, J.; Li, F., Chemical Looping Air Separation Using a 
Perovskite-Based Oxygen Sorbent: System Design and Process Analysis. ACS Sustainable 
Chemistry & Engineering 2021, 9 (36), 12185-12195.
5. Cai, R.;  Dou, J.;  Krzystowczyk, E.;  Richard, A.; Li, F., Chemical looping air separation 
with Sr0.8Ca0.2Fe0.9Co0.1O3-δ perovskite sorbent: Packed bed modeling, verification, and 
optimization. Chemical Engineering Journal 2022, 429, 132370.
6. Gu, X.-K.;  Samira, S.; Nikolla, E., Oxygen Sponges for Electrocatalysis: Oxygen 
Reduction/Evolution on Nonstoichiometric, Mixed Metal Oxides. Chemistry of Materials 2018, 
30 (9), 2860-2872.
7. Xu, M.;  Ermanoski, I.;  Stechel, E. B.; Deng, S., Oxygen pumping characteristics of 
YBaCo4O7+δ for solar thermochemical cycles. Chemical Engineering Journal 2020, 389, 
124026.
8. Bulfin, B.;  Vieten, J.;  Starr, D.;  Azarpira, A.;  Zachäus, C.;  Hävecker, M.;  Skorupska, 
K.;  Schmücker, M.;  Roeb, M.; Sattler, C., Redox chemistry of CaMnO 3 and Ca 0.8 Sr 0.2 MnO 
3 oxygen storage perovskites. Journal of Materials Chemistry A 2017, 5 (17), 7912-7919.
9. Vieten, J.;  Bulfin, B.;  Call, F.;  Lange, M.;  Schmücker, M.;  Francke, A.;  Roeb, M.; 
Sattler, C., Perovskite oxides for application in thermochemical air separation and oxygen storage. 
Journal of Materials Chemistry A 2016, 4 (35), 13652-13659.
10. Mane, R.;  Kim, H.;  Han, K.;  Kim, H.;  Lee, S. S.;  Roh, H.-S.;  Lee, C.; Jeon, Y., Important 
factors of the A-site deficient Mn perovskites design affecting the CO oxidation activity. Catalysis 
Today 2023, 114347.
11. Wexler, R. B.;  Sai Gautam, G.;  Bell, R. T.;  Shulda, S.;  Strange, N. A.;  Trindell, J. A.;  
Sugar, J. D.;  Nygren, E.;  Sainio, S.;  McDaniel, A. H.;  Ginley, D.;  Carter, E. A.; Stechel, E. B., 
Multiple and nonlocal cation redox in Ca–Ce–Ti–Mn oxide perovskites for solar thermochemical 
applications. Energy & Environmental Science 2023, 16 (6), 2550-2560.
12. Hashimoto, J.;  Bayon, A.;  Tamburro, O.; Muhich, C. L., Thermodynamic and Structural 
Effects of Fe Doping in Magnesium Manganese Oxides for Thermochemical Energy Storage. 
Energy & Fuels 2023, 37 (6), 4692-4700.
13. Bayon, A.;  Hashimoto, J.; Muhich, C., Chapter Two - Fundamentals of solar 
thermochemical gas splitting materials. In Advances in Chemical Engineering, Lipiński, W., Ed. 
Academic Press: 2021; Vol. 58, pp 55-90.

Page 24 of 28Journal of Materials Chemistry A



25

14. Sai Gautam, G.;  Stechel, E. B.; Carter, E. A., Exploring Ca–Ce–M–O (M = 3d Transition 
Metal) Oxide Perovskites for Solar Thermochemical Applications. Chemistry of Materials 2020, 
32 (23), 9964-9982.
15. Park, J.;  Xu, B.;  Pan, J.;  Zhang, D.;  Lany, S.;  Liu, X.;  Luo, J.; Qi, Y., Accurate prediction 
of oxygen vacancy concentration with disordered A-site cations in high-entropy perovskite oxides. 
npj Computational Materials 2023, 9 (1), 29.
16. van de Krol, R.;  Liang, Y.; Schoonman, J., Solar hydrogen production with nanostructured 
metal oxides. Journal of Materials Chemistry 2008, 18 (20), 2311-2320.
17. Mastronardo, E.;  Qian, X.;  Coronado, J. M.; Haile, S. M., The favourable thermodynamic 
properties of Fe-doped CaMnO3 for thermochemical heat storage. Journal of Materials Chemistry 
A 2020, 8 (17), 8503-8517.
18. Liu, D.;  Dou, Y.;  Xia, T.;  Li, Q.;  Sun, L.;  Huo, L.; Zhao, H., B-site La, Ce, and Pr-
doped Ba0.5Sr0.5Co0.7Fe0.3O3-δ perovskite cathodes for intermediate-temperature solid oxide 
fuel cells: Effectively promoted oxygen reduction activity and operating stability. Journal of 
Power Sources 2021, 494, 229778.
19. Fuks, D.;  Mastrikov, Y.;  Kotomin, E.; Maier, J., Ab initio thermodynamic study of (Ba, 
Sr)(Co, Fe) O 3 perovskite solid solutions for fuel cell applications. Journal of Materials 
Chemistry A 2013, 1 (45), 14320-14328.
20. Barry, T. I.;  Dinsdale, A. T.;  Gisby, J. A.;  Hallstedt, B.;  Hillert, M.;  Jansson, B.;  Jonsson, 
S.;  Sundman, B.; Taylor, J. R., The compound energy model for ionic solutions with applications 
to solid oxides. Journal of Phase Equilibria 1992, 13 (5), 459-475.
21. Kolodiazhnyi, T.;  Sakurai, H.;  Belik, A.; Gornostaeva, O., Unusual lattice evolution and 
magnetochemistry of Nb doped CeO2. Acta Materialia 2016, 113, 116-123.
22. Rousseau, R.;  Glezakou, V.-A.; Selloni, A., Theoretical insights into the surface physics 
and chemistry of redox-active oxides. Nature Reviews Materials 2020, 5 (6), 460-475.
23. Teh, L. P.;  Setiabudi, H. D.;  Timmiati, S. N.;  Aziz, M. A. A.;  Annuar, N. H. R.; Ruslan, 
N. N., Recent progress in ceria-based catalysts for the dry reforming of methane: A review. 
Chemical Engineering Science 2021, 242, 116606.
24. Young, S. D.;  Chen, J.;  Sun, W.;  Goldsmith, B. R.; Pilania, G., Thermodynamic Stability 
and Anion Ordering of Perovskite Oxynitrides. Chemistry of Materials 2023, 35 (15), 5975-5987.
25. Arifin, D.;  Ambrosini, A.;  Wilson, S. A.;  Mandal, B.;  Muhich, C. L.; Weimer, A. W., 
Investigation of Zr, Gd/Zr, and Pr/Zr – doped ceria for the redox splitting of water. International 
Journal of Hydrogen Energy 2020, 45 (1), 160-174.
26. Bulfin, B.;  Vieten, J.;  Agrafiotis, C.;  Roeb, M.; Sattler, C., Applications and limitations 
of two step metal oxide thermochemical redox cycles; a review. Journal of Materials Chemistry A 
2017, 5 (36), 18951-18966.
27. Hoes, M.;  Muhich, C. L.;  Jacot, R.;  Patzke, G. R.; Steinfeld, A., Thermodynamics of 
paired charge-compensating doped ceria with superior redox performance for solar 
thermochemical splitting of H2O and CO2. Journal of Materials Chemistry A 2017, 5 (36), 19476-
19484.
28. Takacs, M.;  Hoes, M.;  Caduff, M.;  Cooper, T.;  Scheffe, J. R.; Steinfeld, A., Oxygen 
nonstoichiometry, defect equilibria, and thermodynamic characterization of LaMnO3 perovskites 
with Ca/Sr A-site and Al B-site doping. Acta Materialia 2016, 103, 700-710.
29. Panlener, R. J.;  Blumenthal, R. N.; Garnier, J. E., A THERMODYNAMIC STUDY OF 
NONSTOICHIOMETRIC CERIUM DIOXIDE. Journal of Physics and Chemistry of Solids 1975, 
36, 1213-1222.

Page 25 of 28 Journal of Materials Chemistry A



26

30. Bayon, A.;  Hashimoto, J.; Muhich, C., Fundamentals of solar thermochemical gas splitting 
materials. In Advances in Chemical Engineering, Elsevier: 2021; Vol. 58, pp 55-90.
31. Krug, R. R.;  Hunter, W. G.; Grieger, R. A., Enthalpy-entropy compensation. 1. Some 
fundamental statistical problems associated with the analysis of van't Hoff and Arrhenius data. The 
Journal of Physical Chemistry 1976, 80 (21), 2335-2341.
32. MacKay, D. J. C., Information-Based Objective Functions for Active Data Selection. 
Neural Computation 1992, 4 (4), 590-604.
33. Seo, S.;  Wallat, M.;  Graepel, T.; Obermayer, K. In Gaussian Process Regression: Active 
Data Selection and Test Point Rejection, Mustererkennung 2000, Berlin, Heidelberg, 2000//; 
Sommer, G.;  Krüger, N.; Perwass, C., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2000; 
pp 27-34.
34. Zhang, B.-T.; Cho, D.-Y. In Genetic Programming with Active Data Selection, Simulated 
Evolution and Learning, Berlin, Heidelberg, 1999//; McKay, B.;  Yao, X.;  Newton, C. S.;  Kim, 
J.-H.; Furuhashi, T., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 1999; pp 146-153.
35. Tsamardinos, I.;  Charonyktakis, P.;  Papoutsoglou, G.;  Borboudakis, G.;  Lakiotaki, K.;  
Zenklusen, J. C.;  Juhl, H.;  Chatzaki, E.; Lagani, V., Just Add Data: automated predictive modeling 
for knowledge discovery and feature selection. npj Precision Oncology 2022, 6 (1), 38.
36. Khan, N. M.;  Abraham, N.; Hon, M., Transfer Learning With Intelligent Training Data 
Selection for Prediction of Alzheimer’s Disease. IEEE Access 2019, 7, 72726-72735.
37. Tomida, N.;  Tanaka, T.;  Ono, S.;  Yamagishi, M.; Higashi, H., Active Data Selection for 
Motor Imagery EEG Classification. IEEE Transactions on Biomedical Engineering 2015, 62 (2), 
458-467.
38. Dunbar, O. R. A.;  Howland, M. F.;  Schneider, T.; Stuart, A. M., Ensemble-Based 
Experimental Design for Targeting Data Acquisition to Inform Climate Models. Journal of 
Advances in Modeling Earth Systems 2022, 14 (9), e2022MS002997.
39. Eng, A. Y. S.;  Soni, C. B.;  Lum, Y.;  Khoo, E.;  Yao, Z.;  Vineeth, S. K.;  Kumar, V.;  Lu, 
J.;  Johnson, C. S.;  Wolverton, C.; Seh, Z. W., Theory-guided experimental design in battery 
materials research. Science Advances 2022, 8 (19), eabm2422.
40. Lin, Y.;  Li, M.;  Watanabe, Y.;  Kimura, T.;  Matsunawa, T.;  Nojima, S.; Pan, D. Z., Data 
Efficient Lithography Modeling With Transfer Learning and Active Data Selection. IEEE 
Transactions on Computer-Aided Design of Integrated Circuits and Systems 2019, 38 (10), 1900-
1913.
41. Lookman, T.;  Balachandran, P. V.;  Xue, D.; Yuan, R., Active learning in materials science 
with emphasis on adaptive sampling using uncertainties for targeted design. npj Computational 
Materials 2019, 5 (1), 21.
42. Wilson, S. A.;  Stechel, E. B.; Muhich, C. L., Overcoming significant challenges in 
extracting off-stoichiometric thermodynamics using the compound energy formalism through 
complementary use of experimental and first principles data: A case study of Ba1-xSrxFeO3-δ. 
Solid State Ionics 2023, 390, 116115.
43. Todorović, M.;  Gutmann, M. U.;  Corander, J.; Rinke, P., Bayesian inference of atomistic 
structure in functional materials. Npj computational materials 2019, 5 (1), 35.
44. Lei, B.;  Kirk, T. Q.;  Bhattacharya, A.;  Pati, D.;  Qian, X.;  Arroyave, R.; Mallick, B. K., 
Bayesian optimization with adaptive surrogate models for automated experimental design. npj 
Computational Materials 2021, 7 (1), 194.
45. Vigliotti, A.;  Csányi, G.; Deshpande, V. S., Bayesian inference of the spatial distributions 
of material properties. Journal of the Mechanics and Physics of Solids 2018, 118, 74-97.

Page 26 of 28Journal of Materials Chemistry A



27

46. Fang, L.;  Guo, X.;  Todorović, M.;  Rinke, P.; Chen, X., Exploring the Conformers of an 
Organic Molecule on a Metal Cluster with Bayesian Optimization. Journal of Chemical 
Information and Modeling 2023, 63 (3), 745-752.
47. Bush, H. E.;  Nguyen, N. P.;  Farr, T.;  Loutzenhiser, P. G.; Ambrosini, A., Air separation 
via a two-step solar thermochemical cycle based on (Ba,La)xSr1-xFeO3-δ: Thermodynamic 
analysis. Solid State Ionics 2021, 368, 115692.
48. Neath, A. A.; Cavanaugh, J. E., The Bayesian information criterion: background, 
derivation, and applications. WIREs Computational Statistics 2012, 4 (2), 199-203.
49. Schwarz, G., Estimating the Dimension of a Model. The Annals of Statistics 1978, 6 (2), 
461-464, 4.
50. O'Hagan, A., Kendall's Advanced Theory of Statistic 2B Chapter 7. John Wiley & Sons: 
2010; Vol. 2B.
51. Hillert, M.; Staffansson, L., Regular-solution model for stoichiometric phases and ionic 
melts. Acta chem. scand. 1970, 24 (10), 3618-3626.
52. Hillert, M., The compound energy formalism. Journal of Alloys and Compounds 2001, 320 
(2), 161-176.
53. Sundman, B.;  Chen, Q.; Du, Y., A Review of Calphad Modeling of Ordered Phases. 
Journal of Phase Equilibria and Diffusion 2018, 39 (5), 678-693.
54. Redlich, O.; Kister, A. T., Algebraic Representation of Thermodynamic Properties and the 
Classification of Solutions. Industrial & Engineering Chemistry 1948, 40 (2), 345-348.
55. Hillert, M., Some properties of the compound energy model. Calphad 1996, 20 (3), 333-
341.
56. Spencer, P., A brief history of CALPHAD. Calphad 2008, 32 (1), 1-8.
57. Ji, Y.;  Abernathy, H. W.; Chen, L.-Q., Thermodynamic models of multicomponent 
nonstoichiometric solution phases using internal process order parameters. Acta Materialia 2022, 
223, 117462.
58. Cacciamani, G., An introduction to the calphad method and the compound energy 
formalism (CEF). Tecnologia em Metalurgia, Materiais e Mineração 2016, 13 (1), 16-24.
59. Madin, O. C.;  Boothroyd, S.;  Messerly, R. A.;  Fass, J.;  Chodera, J. D.; Shirts, M. R., 
Bayesian-Inference-Driven Model Parametrization and Model Selection for 2CLJQ Fluid Models. 
Journal of Chemical Information and Modeling 2022, 62 (4), 874-889.
60. Gregory, P., Bayesian Logical Data Analysis for the Physical Sciences: A Comparative 
Approach with Mathematica® Support. Cambridge University Press: Cambridge, 2005.
61. Deringer, V. L.;  Bartók, A. P.;  Bernstein, N.;  Wilkins, D. M.;  Ceriotti, M.; Csányi, G., 
Gaussian Process Regression for Materials and Molecules. Chemical Reviews 2021, 121 (16), 
10073-10141.
62. Schulz, E.;  Speekenbrink, M.; Krause, A., A tutorial on Gaussian process regression: 
Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology 2018, 85, 1-
16.
63. Kass, R. E.; Raftery, A. E., Bayes factors. Journal of the american statistical association 
1995, 90 (430), 773-795.
64. Montoya, J. A.;  Díaz-Francés, E.; Sprott, D. A., On a criticism of the profile likelihood 
function. Statistical Papers 2009, 50 (1), 195-202.
65. Fan, J.;  Zhang, C.; Zhang, J., Generalized likelihood ratio statistics and Wilks 
phenomenon. The Annals of statistics 2001, 29 (1), 153-193.

Page 27 of 28 Journal of Materials Chemistry A



28

66. Wilks, S. S., The large-sample distribution of the likelihood ratio for testing composite 
hypotheses. The annals of mathematical statistics 1938, 9 (1), 60-62.
67. Woolf, B., The log likelihood ratio test (the G‐test). Annals of human genetics 1957, 21 
(4), 397-409.
68. Kent, J. T., Robust properties of likelihood ratio tests. Biometrika 1982, 69 (1), 19-27.
69. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and 
semiconductors using a plane-wave basis set. Computational Materials Science 1996, 6 (1), 15-
50.
70. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy 
calculations using a plane-wave basis set. Physical Review B 1996, 54 (16), 11169.
71. Sun, J.;  Ruzsinszky, A.; Perdew, J. P., Strongly Constrained and Appropriately Normed 
Semilocal Density Functional. Physical Review Letters 2015, 115 (3), 036402.
72. Hubbard, J., Electron Correlations in Narrow Energy Bands. Proceedings of the Royal 
Society of London. Series A, Mathematical and physical sciences 1963, 276 (1365), 238-257.
73. Dudarev, S. L.;  Botton, G. A.;  Savrasov, S. Y.;  Humphreys, C. J.; Sutton, A. P., Electron-
energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical 
Review B 1998, 57 (3), 1505-1509.
74. Sai Gautam, G.; Carter, E. A., Evaluating transition metal oxides within DFT-SCAN and 
$\text{SCAN}+U$ frameworks for solar thermochemical applications. Physical Review Materials 
2018, 2 (9), 095401.

Page 28 of 28Journal of Materials Chemistry A


