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A User-friendly Graphical User Interface for Dynamic Light Scattering Data Analysis 

Matthew Salazar,1,† Harsh Srivastav,1,‡ Abhishek Srivastava,2,¬ Samanvaya Srivastava1,3,4,* 

Abstract 
Dynamic light scattering (DLS) is a commonly used analytical tool for characterizing the size distribution of colloids in a 
dispersion or a solution. Typically, the intensity of a scattering produced from the sample at a fixed angle from an incident laser 
beam is recorded as a function of time and converted into time autocorrelation data, which can be inverted to estimate the 
distribution of colloid diffusivity to estimate the colloid size distribution. For polydisperse samples, this inversion problem, being 
a Fredholm integral equation of the first kind, is ill-posed and is typically handled using cumulant expansions or regularization 
methods. Here, we introduce a user-friendly graphical user interface (GUI) for analyzing the measured scattering intensity time 
autocorrelation data using both the cumulant expansion method and regularization methods, with the latter implemented using 
various commonly employed algorithms, including NNLS, CONTIN, REPES, and DYNALS. The GUI provides default values for 
all the parameters associated with the data analysis, but, importantly, allows the user to modulate any and all of the fit parameters, 
offering extreme flexibility. Additionally, the GUI also enables a comparison of the size distributions generated by various 
algorithms and an evaluation of their performance. We present the fit results obtained from the GUI for model monomodal and 
bimodal dispersions to highlight the strengths, limitations, and scope of applicability of these algorithms for analyzing time 
autocorrelation data from DLS.

1. Introduction 

Dynamic light scattering (DLS) is a non-destructive 
spectroscopic technique widely used for determining the size 
distribution of suspended colloids in dispersions or solutions.1–

14 Typical applications for this method include measuring the 
size distributions of proteins, micelles, polymers, and 
nanoparticles.4–13 In practice, a laser beam is directed towards a 
sample solution/dispersion and the intensity of the scattered 
light is measured by a photon detector set at a fixed angle from 
the path of the laser and a fixed distance from the scattering 
sample.8,10 Owing to the continuous Brownian motion of the 
scatterers in the sample solutions/dispersions, the intensity of 
the scattered light fluctuates over time. The detector measures 
the fluctuating light intensity as a function of time, which is 
converted into time autocorrelation data and subsequently 
analyzed to obtain a distribution of the scatterer’s diffusion 
coefficient, enabling an estimation of the distribution of the 
scatterer's solvodynamic (typically hydrodynamic) size.8,10 

Several methods have been developed for extracting the 
scatterer size distribution data from the initial intensity-time 
measurements and can be divided into two broad categories: 
method of cumulants and regularization methods.1,3,8,10–12 The 
difference between these two groups of methods is how they 
approach the problem of extracting the diffusion coefficient 
distribution. The method of cumulants,2,15 the simpler method, 
attempts to fit the modified correlation data to a cumulant 
generating function with one to four terms. The cumulants of 
the function provide information on the distribution of the 
diffusion coefficient such as the mean, variance, skew, and 
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kurtosis.15 This method works well for predicting the 
monomodal polydisperse size distributions because the 
algorithm inherently assumes a single mean scatterer size but 
struggles with multimodal size distributions. 

Regularization methods, in contrast, seek to fit a diffusion 
coefficient distribution to the intensity autocorrelation data 
without employing a predefined function for the size 
distribution.1,16,17 The simplest regularization method is the 
non-negative least squares method (NNLS),18 which attempts 
to find the diffusion coefficient distribution that results in the 
smallest absolute difference between the autocorrelation data 
and the corresponding fit while enforcing a constraint that the 
diffusion coefficient distribution, and as such the size 
distribution, cannot contain a negative value. Algorithms such 
as CONTIN,17,19,20 REPES,16 and DYNALS have built upon the 
NNLS algorithm by introducing side constraints to adjust the 
curvature of the size distribution. Regularization methods are 
very flexible algorithms because they do not need a predefined 
function but can run into the issue of producing wide 
distributions and, as such, require some background 
knowledge of the system to narrow down the range of 
diffusion coefficients (or particle sizes). 

Typically, commercial DLS instruments and the software 
packages that accompany them provide inflexible data analysis 
options and do not allow for straightforward ways to compare 
the size distribution predictions from multiple algorithms or 
the ability to tune or constrain the model parameters, with the 
latter being especially relevant for regularization algorithms. 
This “one method fits all data” approach has limited the 
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accuracy and applicability of DLS as it underestimates the 
versatility of all the models and fitting algorithm and their 
respective advantages. Here, we aim to address these software 
shortcomings by developing a user-friendly graphical user 
interface (GUI) to analyze the time autocorrelation data from 
DLS experiments using multiple algorithms, comparisons 
between their particle size distribution predictions, and 
performance evaluation for identifying the optimal algorithm 
for fitting any user generated DLS autocorrelation data. 

This paper is organized as follows – we begin by describing the 
mathematical underpinnings of the two families of algorithms 
for obtaining the size distributions from DLS autocorrelation 
data: the method of cumulants and regularization methods. We 
then briefly overview the experimental methodology and the 
GUI that has been developed. Then, we present the results and 
a discussion on the fits obtained from DLS autocorrelation data 
for model monomodal or bimodal dispersions. Lastly, we 
summarize and discuss the efficacy of various algorithms and 
limitations of DLS to obtain particle size distributions. 

2. Theory 

The DLS setup comprises an incident laser (wavelength 𝜆) at a 
solution/dispersion (solvent viscosity 𝜂 and refractive index 𝑛) 
maintained at temperature 𝑇 and detection of the scattered 
light using a photon-counting detector stationed at a certain 
fixed angle 𝜃 from the incident beam. Scatterers in a 
solution/dispersion elastically scatter the incident laser and 
some of the scattered photons are captured by the 
photodetector. Since the scatterers undergo continuous 
Brownian motion, the flux of the photons captured at the 
detector (i.e., intensity 𝐼) varies with time 𝑡. The number of 
photons measured by the photodetector in a typical DLS 
experiment is used to calculate a normalized time 
autocorrelation function of the scattered light intensity 𝑔! as:1 

𝑔!(𝑞, 𝜏) =
〈𝐼(𝑞, 𝑡)𝐼(𝑞, 𝑡 + 𝜏)〉
〈𝐼(𝑞, 𝑡)〉〈𝐼(𝑞, 𝑡 + 𝜏)〉 (1) 

Here	𝜏 is the correlation time delay and 〈 〉 represent an 
average of intensities over time 𝑡. The wave vector q holds 
information on the experimental conditions and is defined as: 

𝑞 =
4𝜋𝑛
𝜆 sin 8

𝜃
2: (2) 

The autocorrelation of the intensity can be related to the field-
field time autocorrelation function, 𝑔"(𝑞, 𝜏) as: 

𝑔!(𝑞, 𝜏) = 𝐵 + 𝛽|𝑔"(𝑞, 𝜏)|! (3) 

Here the baseline 𝐵 and 𝛽 are the values of 𝑔!(𝑞, 𝜏) as 𝜏 
approaches infinity and zero, respectively. In general, the field-
field time autocorrelation function, 𝑔"(𝑞, 𝜏), can be expressed 
as a Laplace transformation: 

𝑔"(𝑞, 𝜏) = > 𝐺(Γ) exp(−Γτ) 𝑑Γ
#

$
 (4) 

Here Γ is the decay rate and 𝐺(Γ) is the decay rate distribution 
function normalized to unity, i.e., ∫ 𝐺(Γ)𝑑Γ = 1#

$ . With these 

relationships as the foundation, both the cumulant and 
regularization algorithms attempt to extract 𝐺(Γ). Γ, in turn, is 
related to the diffusion coefficient, 𝐷, as: 

Γ = 𝐷𝑞! (5) 

Once the diffusion coefficient distribution is known, the 
distribution of the scatterer hydrodynamics radius, 𝑅, is 
estimated using the Stokes-Einstein equation as: 

𝑅 = 𝑘%𝑇/6𝜋𝜂𝐷 (6) 

Here 𝑘% is the Boltzmann’s constant. 

2.1. Method of Cumulants 

The cumulant method describes the exponential of the decay 
rate using a Taylor series expansion around the exponential 
term of the average decay rate ΓN as: 

exp(−Γτ) = exp(−ΓN𝜏) O1 − (Γ − ΓN)τ	 +
(Γ − ΓN)!

2! 𝜏!

−
(Γ − ΓN)&

3! 𝜏&…S 
(7) 

Substituting the above expression in Eq. 4 results in an 
approximate field-field correlation function: 

lnU𝑔"(𝑞, 𝜏)V ≅ −𝑘"𝜏 +
𝑘!
2! 𝜏

! +
𝑘&
3! 𝜏

& +⋯ (8) 

Substituting Eq. 8 into Eq. 3 and rearranging yields the 
following relationship between coefficients: 

𝑔! −𝐵 = 𝛽𝑔"! = 𝛽 exp 8−𝑘"𝜏 +
𝑘!
2! 𝜏

! +
𝑘&
3! 𝜏

& +⋯: (9) 

The 𝑘'  terms are the cumulants and describe the distribution 
function; 𝑘" is the average, 𝑘! is the variance, 𝑘& is the skew, 
and 𝑘( is the kurtosis of the distribution. 

2.2. Regularization Methods 

Regularization methods do not attempt to fit a predefined 
function and require little manipulation of Eq. 4 to find a decay 
rate distribution. We note, however, that the integral equation 
in Eq. 4 is a Fredholm integral equation of the first kind. It is an 
ill-posed problem, such that small errors or perturbations in the 
𝑔" can result in large fluctuations in 𝐺(Γ). A unique solution to 
the problem does not exist. For this reason, regularization 
approaches generally invoke a side constraint to smoothen the 
size distribution function while achieving minimal deviation of 
the fit from the experimental data. Discretizing the field 
correlation function, 𝑔", through a Riemann sum yields: 

𝑔"(𝑞, 𝜏)) = Y𝐺Z(Γ*)𝑒+,!-"
.

*/"

 (10) 

Where 𝐺Z(Γ*) is the distribution function of the decay rate and 
is normalized to unity, i.e., ∑ 𝐺Z(Γ*)dΓ* = 1.

*/" . The above 
equation can be rewritten using vector notation as: 

𝑔) = 𝐴),*	𝑥* (11) 

𝑔) contains the field correlation data, 𝑥* contains the decay 
rate distribution, 𝐺Z(Γ*), and 𝐴),* is a transfer matrix containing 
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the decay rate and time delay relationship, 𝑒+,!-". Using the 
matrix notation recasts this problem as a minimization 
problem for the decay rate distribution with the following 
objective function: 

𝑉 = a𝐴),*𝑥* − 𝑔)a (12) 

However, because 𝐴 is not necessarily a square matrix and 
there are many possible solutions, a side constraint is typically 
added to make the solution numerically tractable. Although 
this constraint varies based on the specific algorithm, the fitting 
problem can be generalized to take the following form: 

V =	a𝐴),*𝑥* − 𝑔)a
! + 𝛼!	‖𝜔 − Ω𝑥*‖! (13) 

Here 𝛼 is the regularization parameter that dictates the relative 
weight of the side constraint, 𝜔 is a term that stores any prior 
information of the distribution and Ω is a term that contains 
some constraint on the decay rate distribution solution 𝑥*. The 
regularization parameter is chosen by the user and involves a 
trade-off between reducing the normalized error of the fit and 
the restrictions on the fit distribution. As such, an L-curve 
algorithm was developed to provide the user with the optimal 
regularization parameter.21 It is typically assumed that the user 
would have no prior information about the system and 𝜔 is set 
to zero. The value of the other terms for each of the four 
regularization methods used by the GUI is summarized in 
Table 1.  

3. Experimental Methods and GUI 

DLS autocorrelation data from three standard aqueous 
dispersions of monodisperse spherical silica nanoparticles 
(NanoXact Silica Nanospheres, nanoComposix) were utilized 
for the comparison of the algorithms. The diameters of the 
silica nanoparticles, as provided by the vendor (determined by 
transmission electron microscopy), are 47 nm ± 3 nm, 118.5 nm 
± 5.7 nm, and 194 nm ± 16 nm.  The hydrodynamic radii of the 
particles are also provided by the vendor as 27 nm, 68.8, and 
106 nm, respectively. We will refer to these particles as 25 nm, 
65 nm, and 100 nm silica standards in this study. The DLS 
autocorrelation data were obtained on a BI-200SM goniometer 
containing a red laser diode with a wavelength of 637 nm and 
a TurboCorr digital correlator (Brookhaven Instruments, 
Holtsville, NY). The detector was set at an angle of 90° from the 
laser, and all experiments were run at 25 °C. The refractive 

ΩaAlgorithm

00NNLS
Second Derivative of !!variableCONTIN
Second Derivative of !!variableREPES
First Derivative of !!0DYNALS

Table 1. The values of 𝛼 and Ω for the regularization 
methods implemented in the GUI in this work. 

Figure 1. An image of the graphical user interface (GUI) for DLS data analysis. The upper right plot displays the autocorrelation 
data and the fit to the data. The dotted blue and red lines show the bounds used to find the baseline for the calculations. The 
dotted green line represents the beta coefficient used for the calculations. The lower right plot displays the normalized error for 
the fits. The lower left plot displays the size distribution resulting from the selected algorithm. 
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index and the viscosity of water were 1.333 and 1 cP, 
respectively. The 100 nm silica standard was used to compare 
the performance of the algorithm in describing monomodal 
distributions. Different molar mixtures of 100 nm and 25 nm 
silica standards were used to investigate the ability of the 
algorithm to model bimodal distributions. For the CONTIN 
algorithm, a mixture of 25 nm and 65 nm silica standards was 
analyzed to investigate the ability of the algorithm to model a 
bimodal distribution and differentiate between the two similar 
particle sizes. 

A graphic user interface (GUI) was developed in Python to 
analyze the correlation function data and is available for 
download as an executable file from these websites.22,23 A 
screenshot of the GUI is shown in Figure 1. Once the data file 
is loaded into the GUI, it provides an estimate of the value of 𝛽 
and a range for the baseline (𝐵) estimation. If needed, these 
parameters can be adjusted by the user by changing the values 
in the input boxes on the top right, and an updated plot will be 
displayed upon clicking the update button. Below the load data 
button (on the top left), the GUI also has input boxes to allow 
users to provide the parameters used in the data analysis. A 
drop-down menu for the selection of the data analysis 
algorithm allows a selection from four cumulant (linear, 
quadratic, cubic, and quartic) and four regularization 
(CONTIN, NNLS, DYNALS, and REPES) methods. Once an 
algorithm is selected, the GUI provides an estimate of the range 
of the size distributions for the subsequent analysis. If needed, 
the user may adjust this range from prior knowledge of the 
system. For the CONTIN and REPES algorithms, the L-curve 
button allows for the estimation of the optimal regularization 
parameter using the L-curve method. Once satisfactory 
parameters are added, the data analysis updates the correlation 
function plot wherein a fit to the experimental data is 
displayed, along with updated plots depicting the size 
distribution and the normalized error between the 
experimental data and the model fits. The analysis of the data 
can be extracted to a text file by selecting the Export Fit button. 
For creating a size distribution corresponding to the cumulant 
expansions, the parameters from the fits were included in 
Gram-Charlier expansion24,25 on a Gaussian distribution to 
provide a probability distribution function of the decay rate. 

4. Results and Discussion 

We present the results from the analysis of the DLS 
autocorrelation data for monomodal and polymodal 
dispersions with commonly used algorithms using the GUI we 
have developed to highlight its versatility and ease of use. We 
will demonstrate how the GUI allows a comparative study of 
the various algorithms with respect to their accuracy and 
suitability for monomodal and bimodal dispersions. Volume-
based size distributions are reported; intensity- and number-
based size distributions can be estimated in the GUI if needed. 

4.1. Particle Dispersions with Monomodal Size Distributions  

The autocorrelation function data for a 100 nm silica standard 
was imported into the GUI and analyzed using the quadratic 

cumulant expansion and CONTIN algorithms. As shown in 
Figure 2A, both algorithms were able to fit the correlation 
function data very well; the normalized error of both fits was 
less than 10-3, with the quadratic algorithm having a markedly 
larger error at early delay times (𝜏) as compared to the 
CONTIN algorithm (Figure 2B). Even with the slight 

Figure 2. Analysis of DLS data from an aqueous dispersion of 
100 nm particles. (A) The experimental correlation data and fits 
using the quadratic Taylor expansion and CONTIN algorithms 
(𝛼 = 0.78). (B) The normalized error of the fits. (C) The size 
distributions computed by the two algorithms. 
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differences in the normalized error, both algorithms accurately 
modeled the mean particle size with the peaks occurring at a 
hydrodynamic radius of about 100 nm (Figure 2C). However, 
the two algorithms provided different widths of the particle 
size distributions. 

This difference in size distributions can be attributed to how 
each of these two algorithms approach the problem of 
calculating a decay rate distribution. The cumulant algorithms 
attempt to find parameters to fit into a modified Gaussian 
distribution. For the case of quadratic expansion, the algorithm 
attempts to fit a Gaussian distribution with a mean and a 
standard deviation. For the monodispersed sample, the 
standard deviation was found to be two orders of magnitude 
smaller than the mean, resulting in an apparent sharp peak. In 
contrast, the broad distribution predicted by the CONTIN 
algorithm is the result of both the regularization method and 
the side constraint. The CONTIN method attempts to fit the 
distribution of the decay function directly to the data through 
a transformation matrix using least-squares regression and 
does not have a predefined equation, allowing the algorithm 
flexibility in fitting a decay rate distribution while still 
converging rather swiftly (Figure S1). This results in the 
CONTIN algorithm providing a fit with smaller errors 
compared to the cumulant algorithms but can result in an 
artificially wider size distribution. 

The breadth of the size distribution predicted by the CONTIN 
method is also dependent on the weight of the side constraint 
dictated by the regularization parameter 𝛼; changing 𝛼 may 
result in different size distributions corresponding to the same 
autocorrelation data set. The larger the regularization 
parameter, the larger the effect of the side constraint; the 
CONTIN side constraints favor smaller concavity resulting in 
wider distributions at higher regularization values. As 
demonstrated in Figure 3A, as the regularization parameter 
decreases, so does the error, at the expense of a wider 
distribution. We note that fits to the autocorrelation data 
corresponding to different 𝛼 values, varying across three 
orders of magnitude, appear to be very similar (Figure 3B), and 
so do the normalized error values as a function of the delay 
time 𝜏 (Figure 3C). The predicted size distributions, however, 
become markedly broader with increasing 𝛼 (Figure 3D). 

Thus, finding the optimal regularization parameter requires an 
L-curve criterion which was developed to simultaneously 
incorporate the residual norm and the distribution norm. The 

Figure 3. The influence of the regularization parameter on the 
fits using the CONTIN algorithm to the DLS data from an 
aqueous dispersion of 100 nm standards. (A) The L-curve 
showing the variation of the norm of the distribution and the 
residual with varying 𝛼. The optimal regularization parameter 
𝛼 = 0.78 corresponds to the filled data point. (B) The 
experimental autocorrelation data and fits from CONTIN 
algorithm with varying 𝛼. (C) The corresponding normalized 
error between the data and the fits, and (D) the corresponding 
particle size distributions generated by the fits. 
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norm of the distribution and residual values are calculated for 
a range of regularization parameters. These points are then 
scaled to a square plane as described by Castellanos et al.21 and 
two fitting lines were drawn: one through the points with the 

lowest residual values and another through those with the 
lowest distribution norms. The regularization parameter that 
lies closest to the intersection point of these two lines provides 
the best combination of normalized error and distribution 
norm and is deemed to be the optimal regularization 
parameter. We note that Scotti et al.1 showed recently that the 
CONTIN algorithm combined with the L-curve criteria could 
provide suitable performance to determine size distributions 
for colloidal dispersions. As Figure S2 demonstrates, the 
REPES algorithm demonstrates a similar trade-off as the 
CONTIN. As such, for the remainder of this paper, the fit 
results shown correspond to an optimal regularization 
parameter that was found using the L-curve criterion. 

4.2. Particle Dispersions with Polymodal Size Distributions 

Both the cumulant and regularization methods work well for 
systems with monomodal scatterer size distributions, but to be 
useful for experimental datasets, their performance, and 
accuracy of prediction should be investigated for systems with 
polymodal size distributions as well. To this end, 
autocorrelation data from a 5:1 dispersion (by number 
concentration of particles) of 25 nm and 100 nm silica standards 
was analyzed using different methods. The cumulant methods 
were not expected to perform well for such systems, given the 
inherent assumption of a monomodal distribution of the decay 
rate that feeds into them. At the same time, regularization 
methods that do not make any initial assumptions about the 
decay rate distributions are expected to perform better in 
obtaining the expected size distribution. 

Interestingly, the fits obtained from the cumulant methods 
(quadratic cumulant expansion) and the CONTIN 
regularization method do not appear to be very different 
(Figure 4A). The magnitude of the normalized error was also 
less than 10-3 (Figure 4B), although systematic deviations 
between the data and the fits were observed for the cumulant 
methods, indicating the inability of the quadratic cumulant 
method to capture the decay of the 𝑔! with 𝜏 precisely. 

An inspection of the predicted size distributions from the two 
methods (Figure 4C) clearly demonstrates the difference in the 
ability of the cumulant and the regularization methods to 
describe polymodal solutions/dispersions. While the CONTIN 
algorithm predicted a bimodal size distribution with two 
populations, each centered around 30 nm and 100 nm radii, 
respectively. The quadratic cumulant expansion method, 
contrastingly, predicted a monomodal size distribution with a 
~75 nm mean radius. 

These differences can also be explained by the algorithms’ 
approach to fitting the autocorrelation data. The Gaussian 
distribution that the cumulant expansion algorithm is 
attempting to fit inherently assumes there is only one average 
particle size. As such, the algorithm tries to find parameters 
that will best fit the data but will have no physical significance. 
In contrast, the CONTIN algorithm was able to capture the 
bimodal distribution with the two peaks being close to the 

Figure 4. Analysis of DLS data from a bimodal 5:1 aqueous 
dispersion of 25 nm and 100 nm standards. (A) The 
experimental correlation data and fits using the quadratic 
Taylor expansion and CONTIN algorithms (𝛼 = 0.11). (B) The 
normalized error of the fits. (C) The size distributions 
computed by the two algorithms. 
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average size of the individual particles because it possesses the 
flexibility of fitting an arbitrary decay rate distribution instead 
of a predefined function to the autocorrelation data. 

This case study also illustrates the importance of choosing the 
appropriate 𝛽 value, especially for systems with significant 
scattering contributions in the low-𝜏 range. A suboptimal 𝛽 
value can result in slight deviations between the 
autocorrelation data and the fit, resulting in size distribution 
predictions with systematic offsets. An example of such a case 
is presented in Figure S3, where the same data as shown in 
Figure 4 was analyzed but with a slightly lower than optimal 𝛽 
value, leading to an overestimation of the size of the smaller 
particle population. 

 

4.3. Comparing Regularization Methods 

The GUI we developed also enabled a comparison of the 
different regularization methods. As noted in Section 2, NNLS 
is the most primitive regularization method with no side 
constraints, while the DYNALS algorithm is a special case of 
the REPES algorithm with the regularization parameter 𝛼 set to 
0.5. Therefore, we chose to restrict the comparison among the 
regularization methods in their ability to describe model 
dispersions with monomodal and bimodal size distributions to 
the CONTIN and the REPES algorithms only, realizing that 
NNLS and DYNALS algorithms will not perform better than 
either of the chosen algorithms. 

Considering first the dispersion with a monomodal size 
distribution, the autocorrelation data are satisfactorily 
described by both CONTIN and REPES algorithms (Figure 

Figure 5. Comparing the performance of CONTIN and REPES algorithms (A, D) The experimental correlation data and fits using 
the CONTIN and REPES algorithms for (A) an aqueous dispersion of 100 nm standards (𝛼 = 0.78 for CONTIN and 14 for REPES) 
and (D) bimodal 5:1 aqueous dispersion of 25 nm and 100 nm standards (𝛼 = 0.11 for CONTIN and 14 for REPES). (B, E) The 
corresponding normalized errors from the fits. (C, F) The corresponding size distributions computed by the two algorithms.  
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5A). However, systemic errors begin to appear in the fits 
obtained by the REPES algorithm, although they are still 
smaller than the errors produced in the large 𝜏 range (Figure 
5B). The differences between the size distribution predictions 
become apparent in Figure 5C, where REPES was found to 
predict a slightly smaller mean size and broader size 
distribution as compared to the CONTIN algorithm. 

These differences became even more significant for dispersions 
with bimodal size distributions, wherein it became clear that 
not all the regularization methods predict a bimodal 
distribution. Even though the fits to the autocorrelation data 
appeared similar (Figure 5D), the normalized error clearly 
shows the inability of the REPES algorithm to fit the 
autocorrelation data for 𝜏 ≲ 10+! s (Figure 5E). 
Correspondingly, the REPES algorithm was unable to detect 
the bimodal size distribution and predicted a monomodal size 
distribution instead, with a mean size similar to that predicted 
by the quadratic cumulant method (Figure 4B). 

The disparity between the size distributions obtained using the 
CONTIN and REPES regularization methods can be attributed 
to the REPES algorithm employing a minimization function 

that utilizes the experimental 𝑔" (instead of CONTIN 
employing 𝑔!)  and not normalizing the sum of the distribution 
to one in the minimization function but instead normalizing the 
distribution after the minimization. The REPES algorithm (and 
the DYNALS algorithm) is more effective in handling noise in 
the data compared to the CONTIN algorithm16. As such, peaks 
with low intensity will be treated as noise and will not appear 
in the final distribution. In the case of the bimodal sample 
analyzed, the REPES algorithm treats the weak intensity 25 nm 
peak as noise and generates a monodispersed fit similar to 
what the cumulants expansion methods would provide. In 
contrast, the CONTIN algorithm is less aggressive in terms of 
noise cancellation; therefore, it can pick up the smaller intensity 
peaks at the expense of higher noise in the predicted size 
distributions and yield, in this case correctly, a bimodal 
distribution. 

4.4. Pushing the Limits of the DLS Technique and the CONTIN 
Algorithm 

A limitation of the DLS method is the disproportionate 
contribution of larger particles towards the scattering intensity, 
masking the scattering contributions of smaller particles. The 

Figure 6. Testing the performance of CONTIN algorithm (A, D, G) The experimental correlation data and fits using the CONTIN 
algorithm for (A) a bimodal 1:1 aqueous dispersion of 25 nm and 100 nm standards (𝛼 = 0.3), (D) a bimodal 1:5 aqueous dispersion 
of 25 nm and 100 nm standards (𝛼 = 0.78), and (G) a bimodal 5:1 aqueous dispersion of 25 nm and 65 nm standards. (B, E, H) The 
corresponding normalized errors from the respective fits. (C, F, I) The corresponding size distributions. In (G-I), fits, errors, and 
size distributions to the optimal alpha (𝛼=0.043) (solid blue) and a typical alpha (𝛼 =0.5) (dashed black) are shown.  
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Rayleigh scattering intensity of the scattered light is 
proportional to the sixth power of the radius of the scatterers; 
thus, larger particles will dominate the scattering intensity.11 
We note that the scattering intensity is also directly 
proportional to the number density of the scatterers. Thus, 
scattering signals from smaller particles can be increased by 
increasing their concentration in the sample if only the 
tentative estimates of the scatterer sizes are known a priori. 

Earlier, we demonstrated that CONTIN could detect small 
particles in a bidisperse mixture (size ratio 4:1, concentration 
ratio 5:1) when the smaller particles were present in significant 
excess. Here, we push the algorithm further to predict size 
distributions in mixtures with smaller relative concentrations 
of the smaller particles. In Figures 6A-F, we demonstrate the 
results from such fits obtained from our GUI for two bidisperse 
mixtures (size ratio 4:1) with concentration ratios of 1:1 
(Figures 6A-C) and 1:5 (Figures 6D-F), respectively. Clearly, 
good fits to the autocorrelation data were produced (Figures 
6A and 6D, respectively), and the errors produced were small 
(mostly less than 10+&, Figures 6B and 6E). Indeed, the 
CONTIN algorithm was able to predict a bimodal size 
distribution for the 1:1 dispersion of 25 nm and 100 nm 
particles (Figure 6C), although the intensity of the 25 nm peak 
is much smaller here as compared to the 5:1 dispersion (Figure 
5F), appeared at a smaller size than expected, and could easily 
be mistaken for noise. However, as shown in Figure 6F, the 
CONTIN algorithm failed to predict the bimodal distribution 
for the 1:5 dispersion of 25 and 100 nm particles. The algorithm 
instead predicted a monomodal distribution with a peak 
corresponding to the larger particle size. This, again, can be 
attributed to the small contribution to the scattering intensity 
from the smaller particles. 

Another limitation of the CONTIN algorithm can be its 
inability to differentiate between particles of similar-size 
populations. Having demonstrated that, by choosing the 
optimal regularization parameter 𝛼, the CONTIN algorithm 
can enable the detection of bidisperse mixtures with a size ratio 
of 1:4, we endeavored to push the limits of the algorithm by 
testing its ability to differentiate particle populations with a 
size ratio of 5:12 by employing a 5:1 dispersion of 25 and 65 nm 
standards. As is evident in Figures 6G-I, the algorithm was 
indeed able to capture the bidisperse size distribution when 
working with the optimal 𝛼, providing satisfactory fits (Figure 
6G) with minimal errors (Figure 6H) and predicting two 
populations centered around 30 nm and 65 nm, respectively 
(Figure 6I). In contrast, when the algorithm operates at a non-
optimal 𝛼, it is unable to capture the size distribution correctly. 
This difference in the algorithm performance highlights the 
importance of combining prior knowledge of the samples with 
the use of optimal 𝛼 values, especially for samples with 
multiple scatterer populations with similar sizes. 

5. Conclusion 

In this work, a GUI and the underlying numerical calculation 
engine were developed to provide users the ability to 

implement, compare, and evaluate algorithms (including 
cumulant methods and regularization methods such as NNLS, 
CONTIN, REPES, and DYNALS) available for analyzing time 
autocorrelation data obtained from DLS experiments. The 
cumulant and regularization methods (CONTIN and REPES) 
were both shown to accurately describe the average particle 
size of colloidal dispersions containing monomodal size 
distributions. For dispersions with bimodal size distributions, 
however, the cumulant method was shown to be ineffective, 
while the CONTIN algorithm performed satisfactorily in 
capturing the size distribution. The CONTIN algorithm was 
further tested in bimodal dispersions with a size ratio of 1:4 and 
concentration ratios of 5:1, 1:1, and 1:5. While the algorithm 
performed well in the first two cases, it failed to capture the 
bimodal size distribution for the 1:5 concentration dispersion, 
which can be attributed to the significantly small contribution 
of the smaller particles towards the overall scattering from the 
sample. Lastly, we pushed the CONTIN algorithm to detect 
bimodal size distribution in a 5:1 concentration dispersion of 
particles with a size ratio of 1:2.4. The CONTIN algorithm, 
supported by the optimal regularization parameter estimated 
using the L-curve criterion, was able to capture the bimodal 
distribution in this case as well. Our analysis highlights that, 
when coupled with the appropriate data analysis algorithms, 
DLS can serve as a versatile and robust analytical technique in 
diverse applications. However, appropriate care must be 
exercised in choosing the parameters, especially for the 
regularization approaches, to obtain physically relevant 
results. The GUI we have developed here provides a powerful 
software tool for comparing the analysis from multiple 
autocorrelation data fitting algorithms and aids in the selection 
of the appropriate parameters to constrain and support the 
data fitting procedure, enabling real-time data analysis, and 
supporting the optimization of experimental protocols. 
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