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Synchronized oscillations, traveling waves, and jammed clusters induced
by steric interactions in active filament arrays

Raghunath Chelakkota‡, Michael F. Haganb, Arvind Gopinathc∗

Autonomous active, elastic filaments that interact with each other to achieve cooperation and synchrony underlie many critical
functions in biology. The mechanisms underlying this collective response and the essential ingredients for stable synchronization
remain a mystery. Inspired by how these biological entities integrate elasticity with molecular motor activity to generate sustained
and stable oscillations, a number of synthetic active filament systems have been developed that mimic oscillations of these biological
active filaments. Here, we describe the collective dynamics and stable spatiotemporal patterns that emerge in such biomimetic
multi-filament arrays, under conditions where steric interactions may impact or dominate the collective dynamics. To focus on the
effect of steric interactions, we study the system using Brownian dynamics simulations, without considering long-ranged hydrodynamic
interactions. The simulations treat each filament as a connected chain of self-propelling colloids. We demonstrate that short-range
steric inter-filament interactions and filament roughness are sufficient - even in the absence of inter-filament hydrodynamic interactions
- to generate a rich variety of collective spatiotemporal oscillatory, traveling and static patterns. We first study the collective dynamics
of two- and three-filament clusters and identify parameter ranges in which steric interactions lead to synchronized oscillations and
strongly occluded states. Generalizing these results to large one-dimensional arrays, we find rich emergent behaviors, including
traveling metachronal waves, and modulated wavetrains that are controlled by the interplay between the array geometry, filament
activity, and filament elasticity. Interestingly, the existence of metachronal waves is non-monotonic with respect to the inter-filament
spacing. We also find that the degree of filament roughness significantly affects the dynamics – specifically, filament roughness gen-
erates a locking-mechanism that transforms traveling wave patterns into statically stuck and jammed configurations. Our simulations
suggest that short-ranged steric inter-filament interactions could combine with complementary hydrodynamic interactions to control
the development and regulation of oscillatory collective patterns. Furthermore, roughness and steric interactions may be critical to
the development of jammed spatially periodic states; a spatiotemporal feature not observed in purely hydrodynamically interacting
systems.
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1 Introduction
The emergence of oscillations in single or arrayed elastic fila-
mentous structures, such as the graceful rhythmic movements
of ciliary beds, is a common motif in biology1–5. A striking ex-
ample is ciliary arrays in the mammalian respiratory tract, in
which individual filaments communicate through direct interac-
tions and through the surrounding fluid to generate metachronal
traveling waves crucial for mucociliary clearance. In these sys-
tems, emergent collective oscillations and waves are strongly af-
fected by multiple effects, including the elasticity of the under-
lying filamentous structures, modes of activation due to molecu-
lar motors, coupling between neighboring filaments, and bound-
aries6–18. Due to the complexity and many-body nature of these
systems, disentangling the contributions of each of these effects
to the system dynamics is highly challenging.

Inspired by the manner in which these biological active fila-
mentous carpets integrate elasticity with biological motor activ-
ity to generate sustained oscillations, a number of reconstituted
or synthetic active filament systems have been developed19–31.
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Here activity is imbued either by motors acting externally on fila-
ments to generate elastic forces19–21, or by using internally pro-
pelled filaments constructed of beads that are powered by surface
chemical reactions or responses to external fields. At a conceptual
level, within this class of synthetic systems, oscillations arise due
to the interplay between geometry, filament elasticity, and activ-
ity. These oscillatory patterns are mainly due to non-linear buck-
ling instabilities through which active energy pumped into the
system is continuously dissipated by viscous dissipation. Mecha-
nisms underlying the onset and sustaining of oscillations in these
bio-inspired and biomimetic synthetic cilia are thus very different
from biological cilia and flagella. However, these simple driving
mechanisms generate cilia-like responses, and are thus ideal for
use in micron-sized pumping and propelling devices. As a result,
instabilities in active filament systems have been the subject of
several recent theoretical and computational inquiries. Contin-
uum as well as discrete agent-based models have been used to
investigate the emergence of oscillations in single filaments, and
coupling-induced synchronization in systems of two rotating fila-
ments32,33,35–37,40–46.

However, an equally important set of problems – the collective
behaviors of many elastic active filaments – have yet to be in-
vestigated in detail. In this case, key questions are as follows:
First, how do autonomously beating individual filaments alter
their oscillatory dynamics in response to interactions with their
neighbors? In particular, under what conditions do such systems
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exhibit stationary states characterized by propagating spatiotem-
poral patterns and waves? Second, how are the properties of fil-
ament waveforms regulated by the geometric, elastic, and active
aspects of the collective system?

In these low Reynolds number viscous environment charac-
terizing the fluid flows generated by the moving filaments, ac-
tively driven, collective systems, two types of inter-filament in-
teractions are expected to play a crucial role in addition to sin-
gle filament properties such as elasticity and activity. The first
type comprises fluid-mediated medium- and long-range elasto-
hydrodynamic interactions47 that alter the viscous drag on fila-
ments and couple to their spatiotemporal response. Recent an-
alytical studies36–38 have analyzed the onset of synchronization
of clusters, arrays, and carpets of active filaments grafted to a
rigid impenetrable planar wall. Full multi-filament and filament-
wall hydrodynamic interactions were considered using singularity
methods built on slender body theory. Stable, oscillatory states in
which filaments oscillated with the same frequency with a vary-
ing phase angle were determined to bifurcate from a stationary
state. Other computational studies and phenomenological mod-
els that used the simpler resistivity approximation to treat fluid-
mediated interactions48–52 have also demonstrated that hydrody-
namic interactions can lead to stable collective and synchronized
responses. Similarly, models for systems of two or more rotat-
ing cilia have elucidated the role of hydrodynamic interactions
in yielding in-phase or out of phase stable states53,54. However,
to focus on hydrodynamic effects, many of these studies consider
models in which elasticity is neglected or highly simplified and
contact (steric) interactions are neglected51,55. Moreover, fila-
ment roughness is not considered in these systems when the fila-
ments are treated as lines with zero thickness.

The second type of interaction includes short-range effects,
such as steric interactions, screened electrostatic interactions, and
frictional effects from filament roughness. Recent studies suggest
that steric interactions and collective fluid mechanical effects both
play important roles in biologically relevant multi-filament arrays,
such as in the passive arrayed brush-like structures in the glycoca-
lyx47 and active ciliary carpets in the mucociliary tract56. These
studies also identify important roles of surface-attached features
and networked structures. For instance, Button et. al.56 proposed
a Gel-on-Brush model of the mucus clearance system, in which
the periciliary layer is occupied by membrane-spanning mucins
and large mucopolysaccharides that are tethered to cilia and mi-
crovilli. They hypothesize that the tethered macromolecules pro-
duce inter-molecular repulsions, which stabilize the layer against
compression by an osmotically active mucus layer.

Here in this article, we use agent-based Brownian Dynamics
(BD) simulations to investigate the roles of (non-viscous) steric
interactions in emergent collective dynamics in filament clusters.
To focus on how steric interactions enable or hinder synchronized
and collective states, we neglect long-ranged hydrodynamic inter-
actions in our BD simulations. We consider each filament to in-
teract with its neighbors via a steric potential with an interaction
length-scale σ that is comparable to, but may differ from, the in-
trinsic geometric filament thickness — the segment length `0. By
adjusting the ratio of these two scales, we vary the inter-filament
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Fig. 1 (a) Typical arrangement of clamped, active filaments in the 1D ar-
ray used in the simulations. Filaments are arranged along the x axis, with
each filament parallel to the y direction in the undeformed state. Each
active filament of length L is comprised of Nm connected spherical self-
propelling beads (discs), with each pair separated by distance ∆ in the
undeformed state. (b) Schematic of smooth (left) and rough (right) fila-
ment structures. Both filaments are comprised of beads with the same
bead size (diameter) `0; however the smooth filament has a larger effec-
tive steric interaction lengthscale σ > `0. The intrinsic elasticity of the fila-
ments (set by the parameters B and KE) are the same in both cases; how-
ever, the overlapping spheres make the effective surface of the smooth
filament less corrugated than that of its rough counterpart. Active tan-
gential compressive forces called follower forces 33 act along the filament
backbone and are indicated as red arrows. (c) Schematic of the local
hydrodynamics that is included in the model. Segments of the deforming
filament experience a viscous drag force as they move. The drag on a
test bead that moves with velocity drα/dt is illustrated; the drag force is
evaluated using resistive force theory (RFT) 37 and is linear in the local fil-
ament velocity and proportional to the mobility µ−1. Components normal
and tangential to the local filament tangent may be deconstructed into
components along the x and y directions as shown in the sketch. Note
that hydrodynamic interactions between different filaments are neglected
in this model.

interactions between the regimes of smooth (σ > `0) or rough fila-
ments (σ = `0). Thus, we study the combined effects of excluded
volume and filament roughness on collective behaviors of active
filament arrays. These geometries are directly motivated by col-
loidal chains comprised of connected self-propelling or activated
colloidal spheres that have been studied in recent experiments
22,26. In some of these systems, the forces animating the colloidal
chain are imposed externally by electrical or magnetic fields. In
other cases, the beads comprising the chain are each chemically
modified such that they self-propel when immersed in a suitable
medium. The geometry we study is also relevant to the brush-like
structure in mucocilia56. The mechanisms by which cilia beat and
oscillate are very different from those considered in this work.
Nonetheless, at an abstract level, the interplay between activity,
elasticity, and dissipation provides the underlying mechanism that
enables the initiation and sustainment of stable collective states.

The layout of the article is as follows. We first introduce our
computational model for an active filament system in §2; in brief,
we analyze small filament clusters (2-3 filaments) or large peri-
odic arrays (300 filaments) immersed in a viscous fluid at con-
stant temperature (Figure 1(a)). Each filament or chain com-
prises elastically coupled active beads that confer bending and
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extensional rigidities, and is geometrically fixed at one end. The
other end is free, and this degree of freedom allows each fila-
ment to independently and autonomously oscillate or move in a
plane via active buckling instabilities. The intrinsic frequency and
amplitude of beating by individual filaments is controlled by the
interplay between the filament geometry, elasticity, fluid dissipa-
tion, and activity. In the absence of inter-filament interactions,
adjacent filaments beat with the same frequency but are gener-
ally out of phase. We conclude this section by summarizing re-
sults for the dynamics of a single filament, and commenting on
the role of hydrodynamics in this context. In §3, we analyze the
collective dynamics and emergent steric-driven coupling in small
clusters comprising 2 or 3 smooth filaments. Building on this, we
then analyze the dynamics of large arrays comprised of smooth
filaments in §4. We next probe the effect of filament roughness
within the framework of the steric model introduced in §2, by set-
ting σ ≈ `0, resulting in large gradients of the excluded-volume
potential between adjacent filaments. Effectively, beads in neigh-
boring filaments interlock as they move, resulting in higher effec-
tive friction coefficients and significantly reducing their tangen-
tial velocities. This extra friction results in qualitatively different
collective dynamics in comparison to the smooth filaments. Fur-
thermore, this modality of collective motion is unique and does
not occur in systems for which hydrodynamics is the only mode of
inter-filament interactions. The final set of results (§5) explores
relaxing the hard constraint (clamped base) by implementing a
softer constraint (pivoting base). We conclude in §6 and high-
light features that are relevant to previous studies and serve as
motivation for future experimental and computational work. We
briefly discuss current research that incorporates hydrodynamic
interactions and provides an appropriate starting point – when
combined with this work – to study the effects of hydrodynamic
and steric interactions in tandem in these simple model systems.
We note that coupled fluid flow and filament deformation, includ-
ing non-local coupling due to fluid incompressibility, comprises a
complicated highly non-linear problem, especially in the multi-
filament systems studied here.

Our investigation of a model system of filaments comprised of
self-propelling active units reveals novel and important aspects
of emergent dynamics in the limit where short-range repulsive
interactions and/or filament roughness dominate. For example,
our simulations demonstrate that steric interactions enable and
mediate stable oscillatory patterns such as metachronal waves or
finite-ranged wavetrains. Depending on the spacing and geomet-
ric coupling between neighboring filaments, wavetrains may ap-
pear, vanish, and even eventually re-appear. Roughness at the
filament scale provides a crucial locking-mechanism that dramat-
ically changes the form and wave-speed of metachronal waves.
Moreover, our results demonstrate that the anchoring mechanism
at the base of the filament can determine the class of emergent
spatiotemporal patterns. Relaxing the strength of the geometric
constraint at the base and allowing for flexible pivoting results
in jammed static shapes, even though the system itself remains
active and dynamic.

2 Computational Model
The active filament carpet/array comprises N two-dimensional
active filaments (chains) arrayed uniformly in one dimension
along the ex direction and initially aligned along the ey direction
as illustrated in Figure 1(a). The spacing between the filaments,
∆, is treated as an adjustable parameter in the simulations. We
consider sparse carpets comprised of only a few filaments (N = 2
and N = 3) and then a larger carpet with (N = 300) more fila-
ments.

As mentioned earlier, to focus on the role of steric interactions,
we do not consider hydrodynamic interactions and the wall only
serves to keep the base of the filament fixed. Note that in a sys-
tem with full hydrodynamic effects included, fluid flow generated
by beating filaments will alter the motion of the filament37,40,41.
In our case, we neglect these induced fluid flows and consider,
to leading order, just the Stokes drag in the form of viscous re-
sistive force theory expressions on the beads comprising the fila-
ment as they move. Thus each bead in the filament experiences a
Stokes drag force antiparallel to the direction of its motion, with
a constant of proportionality that depends on the bead size and
viscosity of the ambient fluid.

In the following, we introduce potentials that are used to cal-
culate extensional, bending, and steric forces. Dimensional po-
tentials are starred; all potentials are scaled with kBT with T the
thermodynamic temperature of the ambient fluid.

2.1 Interaction potentials

Each active filament is a collection of Nm polar, active spheres
(disks) of effective diameter σ in 2D as shown in Figure 1(b). The
coordinate of the α th sphere is denoted by rα and it is connected
to the neighbouring spheres of the same filament via extensional
and bending potentials as illustrated in Figure 1(c)).

The extensional force between adjacent beads is derived from
the total potential U∗E given by

U∗E
kBT

=
κE`

2
0

2kBT

Nm−1

∑
α=1

Φ
α
E , where Φ

α
E =

( |rα+1− rα |
`0

−1
)2

. (1)

The value of κE is maintained at a value large enough that the ac-
tual distance between each polar particle is nearly `0, making the
chain nearly inextensible. The overall length of the undeformed
filament is thus `= (Nm−1)`0.

The overall resistance to bending is implemented via a three-
body bending potential motivated by the energy for a thin elastic
continuous curve in the noise-less limit,

U∗B(s, t) =
κ

2

∫ `

0
C 2(s)ds (2)

where C is the curvature measured along the centerline of the
curve. We discretize (2) for our model filaments by approximat-
ing the curvature at bead α using C ≈ |db/ds| ≈ |bα+1−bα |/`0,
where bα = (rα−1−rα )/|rα −rα−1| is the unit bond vector that is
anti-parallel to the local tangent.

In the continuous limit (`0 → 0, Nm → ∞, Nm`0 → constant),
bα identifies with the tangent vector t of the continuous model at
arclength s = α`0; thus (bα+1−bα )/σ ≈ dt/ds. Discretizing (2)
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Parameter Interpretation Scaled value
`0 Distance between beads 1

kBT Energy 1
KE Extensional modulus 2 ×104

ε Energy scale in WCA 1
D Translational diffusivity 1
µ Mobility 1
σ Range of WCA potential 4, 1

Table 1 List of parameters held constant in the simulations and their val-
ues in dimensionless units.

using B≡ κ/`0, we write

U∗B
kBT

=
B

2kBT

Nm−1

∑
α=1

Φ
α
B , where Φ

α
B =

( |bα+1−bα |
`0

)2
. (3)

We account for excluded-volume (steric) interactions between
beads in neighboring filaments via a short-range repulsive WCA
(Weeks-Chandler-Anderson) interaction potential. Here, we have
chosen filament lengths and rigidity values such that overlap be-
tween beads in the same element does not occur. With rαβ ≡
|rα − rβ | as the distance between a pair of spheres (α ,β) belong-
ing to different filaments, the net overall steric potential summed
over all segments (beads) is

U∗WCA
kBT

=
ε

kBT

Nm−1

∑
α=1

Φ
α
WCA (4)

where

Φ
α
WCA = ∑

β 6=(α,α−1,α+1)
4



(

σ

rαβ

)12

−
(

σ

rαβ

)6

+1 (5)

if rαβ < 2
1
6 σ and u(r) = 0 otherwise. The index β refers to pairs

of beads in the same filament as well as in neighboring filaments,
thus incorporating all possible steric interactions. In (4), ε = kBT .

The effect of the steric interactions encoded in the interaction
potentials (4) and (5) depends on the softness of the interaction
potential and also on the fine structure and roughness of the inter-
acting filament. The former effect is controlled by the power-law
exponents in the WCA, while the latter can be varied by changing
the ratio `0/σ . Thus the length-scale σ effectively sets the nature
and the scale of the steric excluded volume interactions.

Each disc comprising the filament is self-propelling with a ve-
locity v0bα , in the direction of the local tangent bα of the fila-
ment. This causes local compression, generating follower forces
of magnitude F that follow the local target of the filament. In the
continuous and over-damped limit, this yields a uniform active
force per unit length. Since v0 is a constant for each bead on the
filament, the quantity v0 = µF is also constant for each realiza-
tion and can be interpreted as the magnitude of the active force
exerted by each bead. We note that the magnitude of the total
force for a straight unbent filament ∼ v0Nm/µ, so the effective
force density f = F/`0 ∼ (v0Nm/µ)/(Nm`0).

2.2 Equations of motion

We evolve the position rα of each bead α using Brownian dynam-
ics, with the forces accounting for extensional, bending, steric,
and thermal effects described above. We render equations dimen-
sionless by scaling quantities as follows. We use `0 as the unit of
length, the diffusive relaxation time `2

0/D as unit of time, and kBT
as the unit of energy. In the over-damped limit, the equations of
motion can be written as
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Here ζζζ
∗
α is a delta-correlated noise with zero mean acting on the

disc. With the units of length, time, and energy defined above, the
mobility µ = D/kBT = 1 in dimensionless form. Other parameters
in the dimensionless (reduced) units are listed in Table 1. The
equations of motion in dimensionless form then reduce to

drα
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=−
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B +∇∇∇Φ
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+F bα +

√
2 ζζζ
∗
α (6)

Interpreting the time derivative in the Ito-Stratanovich sense, we
solve Eq. (6) using a time-stepper based on the Euler-Maruyama
scheme. Theory32 shows that the behavior of an isolated ac-
tive filament depends on a single effective activity parameter
β ≡ f `3/κ. In our case the force density f is related to the force
on a bead F by f = F/`0, so that

β ≡ f `3

κ
=

F(Nm−1)3

B
. (7)

2.3 Simulation conditions and parameters

We present simulations for two limiting cases in §3. The first
set considers smooth filaments, with scaled value σ = 4; that is,
the interaction diameter of the filament is about four times larger
than the bond length `0 (Fig. 1). This prevents the geometric
interlocking of neighbouring filaments when they slide past each
other, and thus attenuates the sliding resistance due to the surface
structure of the filament arising from the bead-spring model. The
second set of simulations considers rough filaments with σ ' 1
(§4); as shown below, the corrugated filament surface resists rel-
ative tangential sliding and thus qualitatively alters the collective
filament dynamics.

For all simulations, we keep the filament contour length con-
stant: we set the number of beads Nm = 40 and set a large exten-
sional spring constant κE = 2× 104kBT/`2

0 so that the filament is
practically inextensible. Since the filament dynamics is sensitive
to its bending rigidity, B, we consider three values of B, and thus
three values of β (Table.2, Eq. 7). To mimic situations in which
active filaments are connected by linkers (rigid or flexible) to a
substrate, we usually specify that one end of the active filament
is clamped rigidly at s = 0 (except for Figs. 9 and 10, in which
we allow the end of the filament attached to the wall to freely
pivot). We initialize simulations with each filament in a straight
configuration, for which the active forces are oriented toward the
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β Amax/`0 ω`2
0/D

192 20 1.4×10−2

384 16.5 1.75×10−2

768 14 2.1×10−2

Table 2 Amplitude Amax and frequency ω of oscillations of an isolated
filament for three values of the activity number, β (defined in Eq. 7).

Fig. 2 (a) Fourier transform F (ω) of the end-end distance Lee indicating
distinct frequency peaks at (1) β = 192, (2) β = 384, and (3) β = 768. (b)
The trajectory of the end-segment of a filament with β = 192. Amax de-
notes the maximum displacement of the end-segment along the x direc-
tion, averaged over many oscillatory cycles. Note the figure of 8 patterns
due to geometric symmetries in the problem. (c)) Typical configurations of
an isolated filament during an oscillatory cycle (indices represent times)
for dimensionless activity strength β = f (Nm− 1)3`3

0/B = 384. Note that
`0 = 1 in reduced (simulation) units. The roughness parameter σ is not
relevant for the single filament case.

clamped base, causing a compressive stress along the filament.
We emphasize however that our boundary condition confers re-
strictions to the filament position and conformation at s= 0. Since
hydrodynamics is ignored and we do not solve for fluid velocities,
we do not simulate an actual wall.

For sufficiently large active force magnitude f , since the direc-
tion of F is aligned to the local unit vector along the arc-length of
the filament and directed toward the clamped end, each filament
undergoes a buckling transition and eventually nonlinear oscilla-
tions33,35,36. The follower force mechanism couples the filament
configuration to the active force. Steric interactions between
neighboring filaments significantly alter filament orientations and
thereby the active-follower forces. Thus, filaments within a carpet
undergo different dynamics than the intrinsic beating motions of
isolated filaments.

2.4 Behavior of an isolated filament
Just as a single bead constitutes the irreducible unit element of a
filament, a single chain/filament constitutes the appropriate unit
element to analyze multi-filament clusters and arrays. Here we
summarize our previous simulation results (finite noise) and the
analytical results in the continuum, noiseless limit.

In previous investigations of a similar system32,33, we studied
the spatiotemporal stable dynamics of a single noisy filament un-
der two conditions - clamped at s = 0 and free at s = L, or pivoted
at s = 0 and free at s = L. In33, we allowed the follower force
direction to deviate from the tangent vector. Here, as shown in
equations (1)-(6), we have removed this degree of freedom and
thus the only element of stochasticity is due to thermal diffusion
of the beads comprising the filament.

2.4.1 Previous results for noisy active filaments

In the case of a single clamped filament, the spatiotemporal re-
sponse obtained from equations (1)-(6) depends solely on the
dimensionless parameter β . Roughness does not play a role in
this limit, as it is relevant only when multiple filaments interact-
ing sterically. For β < βc, the filament remains nearly straight
with small amplitude fluctuations in the contour due to noise,
with βc ≈ 76.2 (consistent with the exact value determined by
a linear stability analysis in the noiseless limit D = 032). For
β > βc, the straight filament yields to an oscillating state. When
β � βc, interplay between active energy injected into the oscil-
lating filament, the elasticity of the filament, and dissipation in
the ambient fluid sets the frequency of oscillation and the maxi-
mum amplitude of the oscillations. Scaling arguments then pro-
vide estimates for the frequency of oscillations33 ω ∼ κ/(η`4) β

4
3

where η is the viscosity of the ambient fluid. Furthermore, the
oscillating filament has a well-defined amplitude whose maxi-
mum value Amax varies monotonically with β for the range of
parameters we consider. Since the filament is clamped at one
end, the lateral motion of the filament is maximal at the free end
with the tip executing a figure-of-eight pattern, with amplitude
∼ (Nm− 1)`0/β

1
3 . The filament tip has width σ , and thus moves

a distance ∼ Amax ≡ (Nm − 1)`0/β
1
3 . Since we ignore hydrody-

namic coupling between the filaments, two filaments separated
by a distance ∆ > Amax will behave predominantly as isolated fil-
aments. The extent of steric coupling is quantified by geometric
dimensionless parameters δ and δmax:

δ ≡ ∆−σ

`0
, (8)

δmax ≡ Amax−σ

`0
=

[
(Nm−1)

β
1
3
− σ

`0

]
. (9)

For β � 1, we see that two filaments are closely spaced if δ ∼ 1
and loosely spaced when δ ∼ δmax. In Figure 2(a)-(c) we present
the oscillatory dynamics of a clamped filament in the limit δ �
δmax. For sufficiently large activity (β = 192) the filament under-
goes regular oscillatory motion (Fig 2(a,b)), with a peak in the
power spectrum at a frequency that depends on β (Figure 2(a)).
Moreover, the end-segment of the filament oscillates between
two maximum values, whose amplitude is denoted by Amax Fig-
ure 2(b)). In the present work, the drag force acting on the fil-
aments is calculated with local Resistive Force Theory (RFT), and
thus hydrodynamic interactions (HI) between different parts of
the filament are neglected.
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2.4.2 Non-local hydrodynamics in single filaments

We also computationally and theoretically analyzed an isolated
active filament that is pivoted at s = 0. In this scenario, beyond
a critical value β ≈ 20.19, the filament undergoes a rotating in-
stability32. Simulations with local RFT drag as well as non-local
hydrodynamics yield filament dynamics that are qualitatively sim-
ilar33.

We have also previously studied the effects of anisotropic bead
mobility and long-ranged, non-local hydrodynamic interactions
between filament segments (see ESM Appendix C33. There, we
used a hybrid simulation technique in which molecular dynamics
simulations for the filament were combined with a mesoscale hy-
drodynamic simulation method, multi- particle collision dynamics
(MPC), for the ambient fluidic environment. We found that in-
cluding non-local hydrodynamic interactions for the driven active
filament leads to slightly smaller lateral amplitudes and increases
the beating frequency. Beating patterns with hydrodynamics in-
teractions are qualitatively similar to non-hydrodynamic simula-
tion results. The frequency scaling with active force density, and
the critical active force required for oscillations are the same in
both cases. Such qualitative similarities in oscillations are re-
ported in similar analytical models as well34. The results for criti-
cal onset of oscillations and the emergent frequency compare well
with the exact calculations with full hydrodynamics36,37. The lat-
ter calculation also include a no-slip rigid wall to which the fila-
ment is grafted36,37.

3 Small clusters of smooth filaments

An array with N� 1 filaments may be understood as a hierarchi-
cal network, comprising of filament pairs, filament triplets, and so
on. Therefore, to understand the emergence of synchronization
at small scales, we first study a two-filament pair and a three-
filament bundle to identify coordination and synchronization at
small scales, followed by a large carpet (N = 300) to learn how
these behaviors extend to larger scales. Except where mentioned
otherwise we consider smooth filaments with σ = 4`0.

3.1 Two-filament pairs

We first consider two filaments with bases that are clamped and
separated by a distance ∆ along the x axis. The clamped boundary
implies that both the position and the angle at the end s = 0 are
fixed. The available space between two active filaments is then
given by δ = (∆−σ)/`0. Since the isolated filament dynamics is
governed by the activity number β , we compare the oscillatory
dynamics of the filaments for three values, β = 768, 384, and
192. Based on the simulation results, we observe three different
class of oscillations, depending on the values of δ and Amax. For
for 1 < δ � δmax both filaments oscillate synchronously. However,
the synchronized oscillations are disrupted at higher separation,
1� δ < δmax. Interestingly, synchronization re-emerges when δ

is increased further, δ ' δmax. The details of this analysis are
explained in SI§I and Fig.S1.

3.2 Three-filament clusters

We next study a group of three filaments (N = 3), with each sep-
arated by δ at the base. This arrangement breaks the symme-
try of the constituent filaments, since the central filament experi-
ences steric hindrance on both sides while the end filaments each
have a neighbor only on one side. Similar to the analysis for two-
filaments, we study the system for three values of β , as a function
of the basal separation δ .

3.2.1 Tightly packed filaments (δ ' 1): synchronization

All filaments interact strongly at δ ' 1. Computing the Lee wave-
form and the end-point trajectory of each filament shows that the
waveform is similar for both the end-filaments while it differs for
the middle filament (in both amplitude and frequency, Fig 3(a)).
The maximum amplitude of Lee(t) attained by the middle filament
is roughly half that of the end-filaments and the associated fre-
quency is almost double. The reason for this difference is evident
from the end segment trajectories (Fig. 3(b)), which show that
the oscillation of the middle filament is occluded by the steric hin-
drance due to both end-filaments. This leads to a low-amplitude,
symmetric pattern for the middle filament. For the end-filaments,
the oscillations are obstructed only in one direction, which leads
to asymmetric patterns. This asymmetry manifests as an addi-
tional low-frequency mode in the Lee waveform.

3.2.2 Intermediate packing (1 < δ < δmax): disruption and
trapping

At intermediate spacing, the filaments have space to deform with-
out contact, and we observe a disruption of regular oscillations
for all three filaments. Since the deformation depends on the
filament softness (∼ 1/β), it is especially pronounced for soft fil-
aments with β = 768, where the oscillatory pattern is highly sen-
sitive to δ at this range as highlighted in Fig 3(c)-(h).

At δ = 7, the Lee(t) time series shown in Fig. 3(c) shows neither
regular oscillations nor synchronization, and the end-segment tra-
jectory does not exhibit a clear pattern (Fig. 3(b)), especially for
the middle filament.

We observe a similar trend in the dx/dt vs x pattern at this spac-
ing (SI§1-B). The regular oscillation is recovered when δ = 10,
while the end-point trajectories of all three filaments are asym-
metric but similar (Fig 3(f)). However, for δ = 12 (Fig 3(h)),
the end-segment trajectory of the middle filament is qualitatively
different compared to the end filaments. While the end-filament
oscillation switches from symmetric to asymmetric patterns and
back, the centre filament always oscillates asymmetrically. The
direction of this asymmetry switches over time, thus resulting
in an overall symmetric, butterfly-like pattern over a large time
(Fig 3(g-h)).

However for stiffer filaments with β = 384 and 192 (SI§1-B),
we do not observe such a disruption in oscillations as for soft fil-
aments. In this case, the middle filament is trapped either below
or the end filaments, restricting its oscillatory amplitude without
disrupting the regular oscillations. When the separation is further
increased to δ ' δmax, the filaments do not interact except for the
maximally bent (minimum Lee) configurations. At this separa-
tion, we observe a reemergence of synchronized oscillations in all
the filaments for all values of β (SI§1-C).
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Fig. 3 Dynamics of three clamped filaments. The time evolution of the end-end length Lee and the end-segment trajectory are shown for inter-filament
separations δ = 1 ((a) & (b)), δ = 7 ((c) & (d)), δ = 10 ((e) & (f)), and δ = 12 ((g) & (h)). All the filaments have activity number β = 768 so that δmax = 10.
The green curves in the second row correspond to the trajectories when noise is negligible. We note that the discreteness of the simulation scheme
results in the green curves not being completely smooth. We also note the similarities in (f) and (h), with a more pronounced asymmetry toward one of
the end filaments for δ = 12.

Fig. 4 The x component of the mean contact force that acts on the middle
filament in a three-filament cluster. (a) Here β = 384 (i) δ = 1, (ii) δ = 8
and (iii) δ = 17 ( δmax' 16.5). Plots for β = 192 are qualitatively similar.

3.3 Going from N ∼ O(1) to N� 1: Anticipating the effect of
contact forces

To anticipate how this time-dependent nature of the steric inter-
actions will effect the collective behavior of N � 1 filaments, we
measure the components fx and fy and magnitude | f | of the con-
tact forces,

〈 fx〉=
1

Nm

Nm

∑
α=1

(FEx
α ··· ex), 〈 fy〉=

1
Nm

Nm

∑
α=1

(FEx
α ··· ey) (10)

derived from the pairwise WCA potential, acting on the middle
filament as a function of time for the soft filament with β = 384
(Fig. 4). For small basal separation (δ = 1), the middle filament
is always in contact with the neighboring filaments and 〈 fx〉 ex-
hibits regular, albeit noisy, oscillations (Fig. 4(i)). When the basal
distance is increased δ ' 10, the periodicity in 〈 fx〉 weakens and
the pattern is more noisy (Fig 4(ii)), which is consistent with the
observed destruction of regular oscillations. At large basal dis-

tances (δ ' 17) the filament interacts with its neighbors only for
a short time during the oscillation cycle, which manifests as reg-
ular pulses in 〈 fx〉 pattern (Fig 4 (iii)). Such periodic pulses lead
to a highly synchronized response over this range of distances.

4 Periodic array of smooth filaments
We now consider a larger system with N = 300 filaments arranged
on a one-dimensional lattice. As above, we consider smooth fila-
ments with uniform spacing δ . We apply periodic boundary con-
ditions in the x direction such that the periodic images of the
end filaments (1st and 300th) are also separated by δ , so that in
the absence of spontaneous symmetry breaking, all filaments are
identical. We choose an intermediate filament rigidity value, with
β = 384.

4.1 Tightly packed filaments (δ ' 1): Slow metachronal
waves

Under tight packing, steric interactions act on each filament
throughout its oscillation cycle, which leads to a high degree of
inter-filament coordination (Fig 5 (a)) (see MOVIE-1 in ESM). As
in the small clusters studied above, we quantify the spatiotem-
poral behavior of the system via the end-end length Lee of each
filament as a function of time. We plot this information in a kymo-
graph in Fig.5 (b), where the spatial points are the basal position
of each filaments. The color code indicates Lee of each filament
with basal anchoring at x. The kymograph (Fig 5 (b)) indicates
a phase-lag synchronization in beating between filaments sepa-
rated by large distances. This manifests as metachronal waves,
propagating in a specific (+x) direction, similar to the travel-
ing waves observed in many biological systems. Due to the high
inter-filament coordination, waveforms of each filament are sim-
ilar (Fig 5 (c)).

However, the waveform and amplitude of Lee are significantly
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Fig. 5 Collective dynamics of clamped filaments. (a) Snapshot of a section of N = 300 closely packed (δ = 1) clamped filaments undergoing synchro-
nized beating at β = 384. Videos of corresponding simulation trajectories are shown in MOVIE-1 in the ESM. (b) Kymograph of the end-end distance
Lee of clamped filaments for δ = 1. The color code indicates the end-end length Lee. The 0 on the y-axis corresponds to the left end of the filament
array. The slanted line indicates propagation of a stable waves in the +x direction. (c) Typical oscillatory pattern of individual filaments for δ = 1. The
filament-filament interaction significantly reduces the filament oscillatory amplitude and frequency compared to isolated filaments. (d) Comparison of
the oscillatory frequency of an individual filament inside the carpet, quantified via the Fourier transform of the end-end distance (Lee) time-series, for
the tightly packed condition δ = 1 (red) and for isolated filaments with no inter-filament interactions δ � δmax (purple), at β = 384.

Fig. 6 Kymographs of force components due to inter-filament repulsive
interactions on sections of a filament, in a dense array of N = 300 smooth
filaments with δ = 1. (a) The x component, (b) y component, and (c)
magnitude | f |.

Fig. 7 (a) Kymograph of the end-end length Lee in system of N = 300
clamped filaments for the spacing parameter δ = 5 with β = 384. Videos
of corresponding simulation trajectories are shown in MOVIE-2 in the
ESM. The 0 on the y-axis corresponds to the left end of the filament
array. The disordered pattern in the kymograph indicates a lack of syn-
chronization in filament oscillations. (b) Typical waveform of Lee of an
individual filament from the same arrangement, indicating the disorder in
oscillations.

8 | 1–14

Page 8 of 14Soft Matter



Fig. 8 Collective dynamics of sparsely packed filaments. (a) Kymograph of the end-end length Lee in a system of N = 300 clamped filaments for
the spacing parameter δ = 11 with β = 384. Videos of corresponding simulation trajectories are shown in MOVIE-3 in the ESM. The 0 on the y-axis
corresponds to the left end of the filament array. The thin, slanted patterns correspond to fast-moving waves translating in both the directions. A blown-
up version of the kymograph is shown on the right. (b) Snapshot of a section of filament array, indicating a phase-lag synchronization. (c) Individual
filament oscillation frequencies in a sparsely packed carpet δ = 11 (red) and for isolated filaments δ � δmax.

different from those of an isolated filament. Fig 5(d) compares
the Fourier transforms of the Lee time-series for isolated filaments
and those within the carpet, demonstrating that the steric inter-
actions significantly reduce the oscillation frequency.

Since our results indicate that steric interaction between the
filaments plays a crucial role in the emergence of cooperative os-
cillations, we analyze the dynamics of inter-filament forces acting
on a filament due to inter-filament interactions. Fig. 6 shows ky-
mographs of the components and magnitude of the steric forces.
Since the oscillatory motion alters the local ‘contact’ of a filament
in the array, the contact forces also exhibit spatiotemporal dy-
namics similar to Fig. 5(b). The striped pattern in Fig 6 indicates
a contact propagation from the basal to the distal end of the fil-
ament. However, the periodicity in the pattern is almost double
for the Fy component compared to the Fx component, which is
specific to the filament oscillatory dynamics.

4.2 Intermediate separation: Irregular beating

Increasing the inter-filament spacing leads to disordered filament
dynamics (Fig. 7 (a) and ESM MOVIE-2); the kymograph shows a
lack of phase-lag synchronization or coordinated oscillations of
spatially separated filaments. The lack of coordination results
from irregularities in the beating patterns of individual filaments
induced by interactions with their neighbors (Fig 7 (b)). Thus, the
disappearance of coordinated beating at intermediate filament
separations described above for N = 3 extends to large systems
with N� 1.

4.3 Large separation: Emergence of fast metachronal waves

When the inter-filament spacing is further increased (δ > δmax/2),
the contact interaction becomes ‘pulse’-like and the individual fil-
aments beat with a higher frequency, close to that of an isolated
filament. Interestingly, we observe the reemergence of waves
at these large separations (Fig 8 and ESM MOVIE-2). However,
the wave propagation is qualitatively different than observed for
tightly packed filaments, where filaments are in continuous con-
tact with their neighbors. At large separations, the filaments

which are initially oscillating independently, coordinate their os-
cillatory phase through the ‘pulse’-like interactions. This results
in nucleation of independent waves moving in either directions,
at different regions in the array of filaments. Two oppositely mov-
ing waves meet at a ‘node’ where they annihilate (c.f Fig 8 (a)),
leading to a saw-tooth pattern in the kymograph. Also, the speed
of wave propagation, which is closely linked to the individual fila-
ment beating frequency, is higher compared to the tightly packed
filaments.

A closer examination of the configuration (Fig 8 (b) and
MOVIE-3) indicates that the filaments exhibit a phase-lagged
synchronization, with a much larger phase difference compared
to δ ' 1. Analysis of the frequency spectrum of Lee oscilla-
tions identifies multiple harmonics in the oscillation waveform
(Fig. 8(c)). However, the oscillation frequency of individual fila-
ments at this separation closely matches with that of an isolated
filament (Fig. 8(c)).

5 Periodic array of rough filaments

The previous section discusses the collective dynamics of active
filaments for which the individual beads have an effective inter-
action diameter σ = 4`0 that is larger than the equilibrium sepa-
ration between neighboring beads `0. This arrangement ensures
relatively low resistance to tangential sliding between adjacent
filaments in tightly packed configurations and mimics steric in-
teractions between brush-grafted filaments as in the mucociliary
tract56. In this section, we discuss filaments in which the effective
interaction diameter is comparable to the equilibrium inter-bead
distance (σ ≈ `0), resulting in large gradients of the excluded-
volume potential between adjacent filaments and mimicking fil-
aments with corrugated micro-scale roughness57–59. Effectively,
beads in neighboring filaments interlock as they move, resulting
in higher effective friction coefficients and significantly reducing
their tangential velocities.

Additionally, we explore the role of the geometric constraint
at the base in sustaining and stabilizing oscillations. Surprisingly,
relaxing the hard clamped boundary condition by the softer pivot-
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Fig. 9 Collective dynamics of rough filaments (σ/`0 = 1), with β = 384
and clamped at the base. (a) Typical configuration for tight packing (δ =

1), exhibiting regions with synchronized oscillations. (b) Kymograph of
the end-end distances of the filaments. Vertically aligned stripes indicate
synchronized oscillations. (c) Typical oscillatory pattern of an individual,
rough filament at δ = 1 (red). The oscillatory pattern qualitatively differs
from that observed for smooth filaments with σ/`0 = 4 (blue).

type condition that allows for rotation leads to a new pattern -
stable actively jammed structures.

5.1 Rough filaments with clamped bases
Fig 9 and (ESM-MOVIE-4) present the collective dynamics of
N = 300 clamped active rough filaments. To highlight the effect of
inter-filament interactions, we focus on tight packing with δ = 1.
The activity parameter is β = 384. As in the case of smooth fil-
aments, excluded volume interactions alter the phase of oscilla-
tion of individual filaments (in the array), leading to collective
oscillatory patterns (Fig 9(a)). However, the patterns qualita-
tively differ from those exhibited by smooth filaments at δ = 1
(Fig. 5(b)). Instead of forming long-ranged metachronal waves
that travel across the entire array, the interlocking of neighboring
rough filaments results in clusters of synchronously oscillating fil-
aments with negligible phase differences among filaments within
a cluster. These clusters are separated by smaller regions of fil-
aments that oscillate with a constant phase shift, forming short-
ranged metachronal waves.

The kymograph in Fig 9(b) illustrates this behavior, and indi-
cates a complex collective dynamics of the filaments. The vertical
stripes in the kymograph indicate groups of filaments with syn-
chronized oscillations, while the curved regions in the stripes cor-

respond to shifting in the location of synchronized clusters along
the array. Fig. 9(c) shows the typical oscillatory pattern of indi-
vidual filaments via their end-end length, Lee, which reveals the
modification in oscillatory pattern of individual filaments due to
crowding.

5.2 Rough filaments with a pivoted bases

We now consider filaments with a pivoted boundary condition at
their bases, meaning rotation about the anchoring point is not
energetically penalized. Our previous work showed that indi-
vidual filaments with pivoted boundary conditions undergo ro-
tational motion with a constant frequency (see 32,33,43). Here,
we examine how inter-filament interactions change this behavior
by simulating an array of such filaments at δ = 1 (N = 300) and
δ = 0.3 (N = 600) keeping the domain size the same. As before pe-
riodic boundary conditions are applied to the lateral ends. Note
that since we do not account for excluded volume interactions
between the filaments and anchoring surface in our simulations,
and filaments are either clamped or pivoted at the point s = 0,
the pivoted boundary condition would enable smooth filaments
to slide past each other and point downward. However, for rough
filaments, sliding is sufficiently restricted at small separations that
this inversion does not occur. We therefore focus on rough fila-
ments in the following.

Figures 10 (a-c) and ESM Movie 5 provide a mechanistic pic-
ture of the dramatic changes in collective spatiotemporal patterns
triggered by softening the boundary conditions at the base from
a hard (clamped) condition to a less restrictive pinned condition.
Considering the results shown in Figs 10(a,b) with ESM-Movie5,
we make the following observations. Relaxing the boundary con-
dition quenches the traveling metachronal waves and wavetrains
seen previously; instead, we observe periodically spaced jammed,
static clusters (bundles) of filaments. Moving between these
jammed bundles and reflecting off them are un-jammed filaments
that oscillate. Since the net force inside a static structure must be
zero, each jammed cluster has a nearly symmetric shape; further-
more, the distance between the static clusters depend on both
geometric properties of the array (filament length L and spacing
parameter δ , as well as the activity β). For fixed activity and
length L, decreasing δ results in closer, thicker, and lower aspect
ratio bundles (c.f Fig. 10(a) vs. 10(b)).

Focusing more on the intermediate δ = 1, case we plot in
Fig 10(c), (i) and (ii) the force distributions in the bundles, (iii)
the kymograph of the filament end-end length dynamics, and (iii)
the trace of the free end of a representative oscillating filament
(dashed blue line) compared with a static filament inside the bun-
dle (red). We examine and interpret each of these figures in more
detail below.

To understand the mechanism that drives rough filaments with
pivoted boundary conditions to form jammed clusters, we ana-
lyze the inter-filament forces within jammed clusters. Fig 10(a,b)
maps the net magnitude of the excluded-volume force (|FEx|,
eq. 5) on each bead within the clustered configurations - here
Fig. 10(a) illustrates the force map for δ = 1. The map indi-
cates that the interaction force is largest near the middle of the
jammed cluster, where cluster undergoes maximum compression
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Fig. 10 Collective dynamics of rough filaments with pivoted boundary conditions at the filament bases. Typical configuration for packing densities,
(a)δ = 1.0 with N = 300 filaments, and (b) δ = 0.3 with N = 600 filaments. Periodic boundary conditions are applied at the lateral boundaries, so the
first and the 300th (for δ = 1.0) or the 600th (for δ = 0.3) filament are neighbors. In both cases the filaments form jammed, static clusters, interspersed
among groups of oscillating filaments. Here the colour maps indicate magnitude of total contact forces (F ) on each monomer measured from the WCA
interaction potential, for a configuration with pivoted boundary conditions with β = 384. (c) (i) The x component and, (ii) the y component of the total
contact forces on each bead for the configuration with δ = 1. Note that we show most but not all of the array. (iii) Kymograph of the end-end distance of
the filaments for the δ = 1.0 case. Horizontal stripes indicate the static clusters. (iv) End-end length of a dynamic filament with δ = 1, which oscillates
between two static clusters (blue) and a static filament (red).

due to the active forces.

In addition to the total force, the symmetric internal force dis-
tribution is evident upon examination in Figs 10(c)(i)&(ii), of in-
dividual x and y components of the forces respectively. We ob-
serve that the x component of the contact force is marginally
higher compared to the y component, as the compression due
to the outer filament acts mainly along the x direction. This
is reminiscent of stresses borne by an arch - the distribution of
compressive forces suggests that filaments can relax and unravel
only by further compression given the direction of the active force
thus vertically stabilizing the cluster. Lateral stabilization comes
from the momentum impulses imparted to a cluster along the x-
direction as unjammed oscillating filaments fit against the edge.
Finally, there is also a geometric component due to the connected
bead filament. Closer examination of the arrangement of ac-
tive beads within the jammed cluster shows a nearly hexagonal
packed structure that also resists sliding of beads strongly. Both
these are signatures of roughness playing a dominant role. We
note also that low to moderate noise can cause co-moving steri-
cally interacting filaments to further align as we found in dense
nematic suspensions60. This increased tendency to align com-
bined with the increased bending stiffness of the bundled cluster
stabilizes it from collapsing.

Moving next to the kymograph in Fig.10(c)-(iii), we observe
yellow horizontal stripes corresponding to static clusters and

slanted patterns corresponding to the small regions of oscillat-
ing filaments in between static clusters. Note that not al fila-
ments moving between adjacent bundles behave similarly - fil-
aments may move and then get stuck, keep periodically orscil-
laing and sometimes dislodge jammed filaments from the bun-
dles. Fig 10(c) (blue dashed line) shows the typical oscillatory
pattern of the un-jammed filaments, which is similar to that of
filaments with clamped boundary conditions at roughly similar δ

(δ = 1.3 for the pivoting case and δ = 1 for the clamped case).
In Fig 10(c)-(iv), the red solid line emphasizes that filaments
trapped inside the bundle (well into the interior) are almost non-
moving. The end-end length Lee is invariant in time for such fila-
ments and roughly equal to the filament length.

Beyond δ = 2.0, we find that the clusters are very sparse since
the filaments have more space in between and can rotate past
each other. This response is an artefact caused due to the lack of
an actual physical barrier preventing filaments from completely
sliding and moving around the pivot.

6 Summary and Perspectives

6.1 Summary

We have shown that purely short-ranged contact interactions are
sufficient to drive coordinated beating among large arrays of ac-
tive filaments, in which individual filaments beat due to compres-
sive elastic instabilities. Moreover, such filament arrays exhibit
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a rich panoply of emergent behaviors, depending on the inter-
filament spacing, the many-body nature of the filament-filament
interaction, and how filaments are attached to a surface.

Of particular interest, large arrays of smooth, tightly packed
filaments exhibit highly coordinated oscillations that manifest
as propagating metachronal waves. Coordination and hence
metachronal waves diminish as the inter-filament spacing in-
creases, but then reemerge at large inter-filament separations on
the order of (but less than) the oscillation amplitude. Notably, the
form of the metachronal waves is qualitatively different at small
and large inter-filament spacing.

To understand the origin of the spatiotemporal patterns and
stable states, we have systematically studied the dynamics of
small clusters containing two or three filaments in addition to the
large arrays. In the small tightly packed clusters of smooth fila-
ments, coordination results in highly synchronized oscillations.
Analogous to the large arrays, synchronization decreases with
increasing inter-filament spacing but then reemerges at spac-
ing comparable to the oscillation amplitude. The form of the
metachronal waves in large arrays can be understood from the
changes in amplitude and waveform exhibited by the small clus-
ters at different spacing.

We also find that the nature of spatiotemporal patterns and
type of stable state qualitatively differ depending on whether the
filament-filament interaction is smooth or rough (corrugated) and
how the filament is attached at its base. Rough filaments inter-
lock with their neighbors at tight packing, which inhibits filament
sliding motions. For rough filaments that are clamped at their
base, this results in finite-size highly synchronized clusters, sepa-
rated by regions of filaments undergoing asynchronous meeting.
In contrast, rough filaments that freely pivot at their base form
finite size static clusters with a size and shape that depends on
the control parameters.

6.2 Future extensions

Three possible avenues for further work are evident. First, our re-
sults provide the foundation to study spatiotemporal patterns in
active filament systems with full hydrodynamic interactions, par-
ticularly for colloidal active filaments such as chains comprised
of self-propelling, polar particles, or a bed of colloidal chains im-
mersed in an active fluid such as a bacterial suspension. In the
case of a single filament, previous work using multi-particle col-
lision (MPC) algorithms (Appendix in33) suggests that hydrody-
namic interactions play a minor role, as the extra viscous friction
in a 2D system for relative motions between filament segments
has a logarithmic dependence on separation. For very small gaps
these interactions are subdominant compared to the excluded vol-
ume constraint. Further, results in the noise-less limit37 suggest
that for a single active filament clamped to a no-slip flat surface,
hydrodynamic interactions quantitatively, but not qualitatively,
change the onset of oscillations, frequencies and amplitudes.

However, for multiple filaments hydrodynamic interactions are
anticipated play an important role in triggering and sustaining
elastic instabilities, as predicted for noise-less smooth active fil-
ament clusters and arrays with full hydrodynamics interactions,
but in the absence of steric interactions36–39. Sangini et al. 37

suggests the existence of two unstable modes, in which the fil-
aments respectively beat in-phase or anti-phase. Combining the
results from Sangini et al. 37 with our analysis here, we hypoth-
esize that hydrodynamic interactions and steric interactions offer
two alternate mechanisms to stable states. Phase variations that
lead to wavetrains or metachronal waves are expected to be af-
fected by both physical mechanisms; with the relative importance
determined by the physical system. For example, hydrodynamic
interactions may dominate in biological settings, while steric in-
teractions may need to be considered in the context of active col-
loidal chains.

Second, our results suggest a route to understanding synchro-
nization and collective behavior using reduced dimensional mod-
els. Current studies, focused on interactions between rotating
colloids using extensions of the Kuramoto theory45,46, can per-
haps be extended to studies of synchronization between arrays
of oscillating elastic filaments. The numerical results presented
here demonstrate that propagation of metachronal waves in fil-
ament arrays can arise purely via short-ranged contact interac-
tions. While the present study is limited to a specific model for
the self-regulated beating dynamics of the constituent filaments,
most mechanisms that generate stable, self-regulated beating mo-
tions require coupling between the internal active force and the
filament. Thus, the scope of our prediction extends beyond the
particular mechanism (follower force) studied here, and can be
tested in other classes of models or biomimetic systems.

Finally, our computational model can be combined with
advanced numerical techniques combining MPC with high-
resolution Galerkin methods to analyze viscoelastic interactions
between small filament clusters. These extensions will allow us to
study the transport and capture of small particles by filamentous
sticky beds61, or investigate the role of viscoelasticity62 in me-
diating inter-filament interactions in addition to steric effects ex-
plored in this paper. Viscoelastic effects introduce fluid relaxation
time scales and also a means to temporarily store energy. Such
simulations would be interesting, and especially guide the design
and understanding of biomimetic active multi-filament systems
immersed in non-Newtonian fluids and open new modalities of
particle transport and flow control.
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