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Large language models (LLMs) have emerged as powerful tools in chemistry, significantly impacting
molecule design, property prediction, and synthesis optimization. This review highlights LLM capabilities
in these domains and their potential to accelerate scientific discovery through automation. We also
review LLM-based autonomous agents: LLMs with a broader set of tools to interact with their
surrounding environment. These agents perform diverse tasks such as paper scraping, interfacing with
automated laboratories, and synthesis planning. As agents are an emerging topic, we extend the scope
of our review of agents beyond chemistry and discuss across any scientific domains. This review covers
the recent history, current capabilities, and design of LLMs and autonomous agents, addressing specific

challenges, opportunities, and future directions in chemistry. Key challenges include data quality and
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1 Introduction

The integration of Machine Learning (ML) and Artificial Intelli-
gence (AI) into chemistry has spanned several decades.'™
Although applications of computational methods in quantum
chemistry and molecular modeling from the 1950s-1970s were
not considered Al, they laid the groundwork. Subsequently in the
1980s expert systems like DENDRAL'"*> were expanded to infer
molecular structures from mass spectrometry data."* At the same
time, Quantitative Structure-Activity Relationship (QSAR) Models
were developed® that would use statistical methods to predict the
effects of chemical structure on activity."” In the 1990s, neural
networks, and associated Kohonen Self-Organizing Maps were
introduced to domains such as drug design,'®" as summarized
well by Yang et al.®* and Goldman and Walters,* although they
were limited by the computational resources of the time. With an
explosion of data from High-Throughput Screening (HTS),****
models then started to benefit from vast datasets of molecular
structures and their biological activities. Furthermore, ML algo-
rithms such as Support Vector Machines and Random Forests
became popular for classification and regression tasks in chem-
informatics," offering improved performance over traditional
statistical methods.*
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Deep learning transformed the landscape of ML in chemistry
and materials science in the 2010s.** Recurrent Neural
Networks (RNNs),>2® Convolutional Neural Networks
(CNNs)***> and later, Graph Neural Networks (GNNs),>*"** made
great gains in their application to molecular property predic-
tion, drug discovery,* and synthesis prediction.*’ Such methods
were able to capture complex patterns in data, and therefore
enabled the identification of novel materials for high-impact
needs such as energy storage and conversion.**>

In this review, we explore the next phase of Al in chemistry,
namely the use of Large Language Models (LLMs) and autono-
mous agents. Inspired by successes in natural language processing
(NLP), LLMs were adapted for chemical language (e.g, Simplified
Molecular Input Line Entry System (SMILES)*) to tackle tasks
from synthesis prediction to molecule generation.**** We will then
explore the integration of LLMs into autonomous agents as illus-
trated by M. Bran et al.*’ and Boiko et al.,”® which may be used for
data interpretation or, for example, to experiment with robotic
systems. We are at a crossroads where Al enables chemists to solve
major global problems faster and streamline routine lab tasks.
This enables, for instance, the development of larger, consistent
experimental datasets and shorter lead times for drug and mate-
rial commercialization. As such, language has been the preferred
mechanism for describing and disseminating research results and
protocols in chemistry for hundreds of years.*

1.1 Challenges in chemistry

We categorize some key challenges that can be addressed by Al
in chemistry as: property prediction, property-directed molecule

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Al-powered LLMs accelerate chemical discovery with models
that address key challenges in property prediction, property directed
molecule generation, and synthesis prediction. Autonomous agents
connect these models and additional tools thereby enabling rapid
exploration of vast chemical spaces.

generation, and synthesis prediction. These categories, as
illustrated in Fig. 1 can be connected to a fourth challenge in
automation. The first task is to predict a property for a given
compound to decide if it should be synthesized for a specific
application, such as an indicator,* light harvester,* or cata-
lyst.>* To achieve better models for property prediction, high-
quality data is crucial. We discuss the caveats and issues with
the current datasets in Section 3.1 and illustrate state-of-the-art
findings in Section 3.2.

The second task is to generate novel chemical structures that
meet desired chemical profiles or exhibit properties.® Success
in this area would accelerate progress in various chemical
applications, but reliable reverse engineering (inverse design)*
is not yet feasible over the vast chemical space.*® For instance,
inverse design, when coupled with automatic selection of novel
structures (de novo molecular design) could lead to the devel-
opment of drugs targeting specific proteins while retaining
properties like solubility, toxicity, and blood-brain barrier
permeability.*® The complexity of connecting de novo design
with property prediction is high and we show how state-of-the-
art models currently perform in Section 3.3.

Once a potential target molecule has been identified, the
next challenge is predicting its optimal synthesis using inex-
pensive, readily available, and non-toxic starting materials. In
a vast chemical space, there will always be an alternative
molecule “B” that has similar properties to molecule “A” but is
easier to synthesize. Exploring this space to find a new molecule
with the right properties and a high-yield synthesis route brings
together these challenges. The number of possible stable
chemicals is estimated to be up to 10'%°.57-% Exploring this vast
space requires significant acceleration beyond current
methods.®® As Restrepo®” emphasizes, cataloguing failed
syntheses is essential to building a comprehensive dataset of
chemical features. Autonomous chemical resources can accel-
erate database growth and tackle this challenge. Thus, auto-
mation is considered a fourth major task in chemistry.®>* The
following discussion explores how LLMs and autonomous
agents can provide the most value. Relevant papers are dis-
cussed in Section 3.4.

This review is organized within the context of these cate-
gories. The structure of the review is as follows. Section 2
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provides an introduction to transformers, including a brief
description of encoder-only, decoder-only and encoder-decoder
architectures. Section 3 provides a detailed survey of work with
LLMs, where we connect each transformer architecture to the
areas of chemistry that it is best suited to support. We then
progress into a description of autonomous agents in Section 4,
and a survey of how such LLM-based agents are finding appli-
cation in chemistry-centered scientific research, Section 5. After
providing some perspective on future challenges and opportu-
nities in Section 6, and we conclude in Section 7. We distinguish
between “text-based” and “mol-based” inputs and outputs, with
“text” referring to natural language and “mol” referring to the
chemical syntax for material structures, as introduced by Zhang
et al.*®

2 Large language models

The prior state-of-the-art for sequence-to-sequence (seq2seq)
tasks had been the Recurrent Neural Network (RNN),*” typically
as implemented by Hochreiter and Schmidhuber.®® In a seq2seq
task, an input sequence, such as a paragraph in English, is
processed to generate a corresponding output sequence, such
as a translation into French. The RNN retains “memory” of
previous steps in a sequence to predict later parts. However, as
sequence length increases, gradients can become vanishingly
small or explosively large,*”° preventing effective use of earlier
information in long sequences. Due to these limitations, RNNs
have thus fallen behind Large Language Models (LLMs), which
primarily implement transformer architectures, introduced by
Vaswani et al.”* LLMs are deep neural networks (NN) charac-
terized by their vast number of parameters and, though trans-
formers dominate, other architectures for handling longer
input sequences are being actively explored.””” A detailed
discussion of more generally applied LLMs can be found else-
where.” Since transformers are well-developed in chemistry
and are the dominant paradigm behind nearly all state-of-the-
art sequence modeling results, they are a focus in this review.

2.1 The transformer

The transformer was introduced in, “Attention is all you need”
by Vaswani et al.”* in 2017. A careful line-by-line review of the
model can be found in “The Annotated Transformer”.”” The
transformer was the first seq2seq model based entirely on
attention mechanisms, although attention had been a feature
for RNNs some years prior.”® The concept of “attention” is
a focus applied to certain words of the input, which would
convey the most importance, or the context of the passage, and
thereby would allow for better decision-making and greater
accuracy. However, in a practical sense, “attention” is imple-
mented simply as the dot-product between token embeddings
and a learned non-linear function, which will be described
further below.

2.1.1 Context window. Large language models are limited
by the size of their context window, which represents the
maximum number of input tokens they can process at once.
This constraint arises from the quadratic computational cost of

Chem. Sci., 2025, 16, 2514-2572 | 2515


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sc03921a

Open Access Article. Published on 09 Rhagfyr 2024. Downloaded on 22/08/2025 07:25:31.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

the transformer's attention mechanism, which restricts effec-
tive input to a few thousand tokens.” Hence, LLM-based agents
struggle to maintain coherence and capture long-range depen-
dencies in extensive texts or complex dialogues, impacting their
performance in applications requiring deep contextual under-
standing.®® These limitations and strategies to overcome them
are better discussed in Section 4.

2.1.2 Tokenization. In NLP tasks, the natural language text
sequence, provided in the context window, is first converted to
a list of tokens, which are integers that each represent a frag-
ment of the sequence. Hence the input is numericized accord-
ing to the model's vocabulary following a specific tokenization
scheme.®*

2.1.3 Input embeddings. Each token is then converted into
a vector in a process called input embedding. This vector is
a learned representation that positions tokens in a continuous
space based on their semantic relationships. This process
allows the model to capture similarities between tokens, which
is further refined through mechanisms like attention (discussed
below) that weigh and enhance these semantic connections.

2.1.4 Positional encoding. A positional encoding is then
added, which plays a major role in transformer success. It is
added to the input embeddings to provide information about
the order of elements in a sequence, as transformers lack
a built-in notion of sequence position. Vaswani et al.”* reported
similar performance with both fixed positional encoding based
on sine and cosine functions, and learned encodings. However,

Output Probabilities
| Softmaixx

a) Linear

Vector

Masked
Multi-Head
Attention

/ d)

™ owpnt |
Embedding |

ﬁilnpaii N
| Embedding |

Fig. 2

—_
CC(C)IC@@H](C(=0)O)N + C1=CC(=CC=C1CIC@@H](C(=0)0IN)O

—
CC(C)[C@@H](C(=0)0)N + C1=CC(=CC=C1CIC@@H(C(=0JOINIO |

LValine + L-tyrosine —
CC(C)[C@@H](C(=0)O)N + C1=CC(=CC=C1C[C@@H](C(=0)OJN)O |

View Article Online

Review

many options for positional embeddings exist.*® In fixed posi-
tional encoding, the position of each element in a sequence is
encoded using sine and cosine functions with different
frequencies, depending on the element's position. This encod-
ing is then added to the word's vector representation (generated
during the tokenization and embedding process). The result is
a modified vector that encodes both the meaning of the word
and its position within the sequence. These sine and cosine
functions generate values within a manageable range of —1to 1,
ensuring that each positional encoding is unique and that the
encoding is unaffected by sequence length.

2.1.5 Attention. The concept of “attention” is central to the
transformer's success, especially during training. Attention
enables the model to focus on the most relevant parts of the
input data. It operates by comparing each element in
a sequence, such as a word, to every other element. Each
element serves as a query, compared against other elements
called keys, each associated with a corresponding value. The
alignment between a query and a keys, determines the strength
of their connection, represented by an attention weight.®” These
weights highlight the importance of certain elements by scaling
their associated values accordingly. During training, the model
learns to adjust these weights, capturing relationships and
contextual information within the sequence. Once trained, the
model uses these learned weights to integrate information from
different parts of the sequence, ensuring that its output remains
coherent and contextually aligned with the input.
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(a) The generalized encoder—decoder transformer: the encoder on the left converts an input into a vector, while the decoder on the right

predicts the next token in a sequence. (b) Encoder—decoder transformers are traditionally used for translation tasks and, in chemistry, for reaction
prediction, translating reactants into products. (c) Encoder-only transformers provide a vector output and are typically used for sentiment
analysis. In chemistry, they are used for property prediction or classification tasks. (d) Decoder-only transformers generate likely next tokens in
a sequence. In chemistry, they are used to generate new molecules given an instruction and description of molecules.
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The transformer architecture is built around two key
modules: the encoder and the decoder. Fig. 2a provides
a simplified diagram of the general encoder-decoder trans-
former architecture. The input is The input is tokenized, from
the model's vocabulary,®* embedded and positionally enco-
ded, as described above. The encoder consists of multiple
stacked layers (six layers in the original model),”* with each layer
building on the outputs of the previous one. Each token is
represented as a vector, that gets passed through these layers. At
each encoder layer, a self-attention mechanism is applied,
which calculates the attention between tokens, as discussed
earlier. Afterward, the model uses normalization and adds the
output back to the input through what's called a residual
connection. Residual connection is represented in Fig. 2a by the
“by-passing” arrow. This bypass helps prevent issues with van-
ishing gradients,*”® ensuring that information flows smoothly
through the model. The final step in each encoder layer is
a feed-forward neural network with an activation function (such
as ReLU,*® SwiGLU,* GELU,” etc.) that further refines the
representation of the input.

The decoder works similarly to the encoder but with key
differences. It starts with an initial input token - usually
a special start token — embedded into a numerical vector. This
token initiates the output sequence generation. Positional
encodings are applied to preserve the token order. The decoder
is composed of stacked layers, each containing a masked self-
attention mechanism that ensures the model only attends to
the current and previous tokens, preventing access to future
tokens. Additionally, an encoder-decoder attention mechanism
aligns the decoder's output with relevant encoder inputs, as
depicted by the connecting arrows in Fig. 2a. This alignment
helps the model focus on the most critical information from the
input sequence. Each layer also employs normalization,
residual connections, and a feed-forward network. The final
layer applies a softmax function, converting the scores into
a probability density over the vocabulary of tokens. The decoder
generates the sequence autoregressively, predicting each token
based on prior outputs until an end token signals termination.

2.2 Model training

The common lifetime of an LLM consists of being first pre-
trained using self-supervised techniques, generating what is
called a base model. Effective prompt engineering may lead to
successful task completion but this base model is often fine-
tuned for specific applications using supervised techniques
and this creates the “instruct model”. It is called the “instruct
model” because the fine-tuning is usually done for it to follow
arbitrary instructions, removing the need to specialize fine-
tuning for each downstream task.’* Finally, the instruct model
can be further tuned with reward models to improve human
preference or some other non-differentiable and sparse desired
character.”” These concepts are expanded on below.

2.2.1 Self-supervised pretraining. A significant benefit
implied in all the transformer models described in this review is
that self-supervised learning takes place with a vast corpus of
text. Thus, the algorithm learns patterns from unlabeled data,
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which opens up the model to larger datasets that may not have
been explicitly annotated by humans. The advantage is to
discover underlying structures or distributions without being
provided with explicit instructions on what to predict, nor with
labels that might indicate the correct answer.

2.2.2 Prompt engineering. The model's behavior can be
guided by carefully crafting input prompts that leverage the
pretrained capabilities of LLMs. Since the original LLM remains
unchanged, it retains its generality and can be applied across
various tasks.”® However, this approach relies heavily on the
assumption that the model has adequately learned the neces-
sary domain knowledge during pretraining to achieve an
appropriate level of accuracy in a specific domain. Prompt
engineering can be sensitive to subtle choices of language;
small changes in wording can lead to significantly different
outputs, making it challenging to achieve consistent results and
to quantify the accuracy of the outputs.*

2.2.3 Supervised fine-tuning. After this pretraining, many
models described herein are fine-tuned on specific downstream
tasks (e.g., text classification, question answering) using
supervised learning. In supervised learning, models learn from
labeled data, and map inputs to known outputs. Such fine-
tuning allows the model to be adjusted with a smaller, task-
specific dataset to perform well on that downstream task.

2.2.4 LLM alignment. A key step after model training is
aligning the output with human preferences. This process is
critical to ensure that the large language model (LLM) produces
outputs that are not only accurate but also reflect appropriate
style, tone, and ethical considerations. Pretraining and fine-
tuning often do not incorporate human values, so alignment
methods are essential to adjust the model's behavior, including
reducing harmful outputs.®

One important technique for LLM alignment is instruction
tuning. This method refines the model by training it on datasets
that contain specific instructions and examples of preferred
responses. By doing so, the model learns to generalize from
these examples and follow user instructions more effectively,
leading to outputs that are more relevant and safer for real-
world applications.”®®” Instruction tuning establishes a base-
line alignment, which can then be further improved in the next
phase using reinforcement learning (RL).%®

In RL-based alignment, the model generates tokens as
actions and receives rewards based on the quality of the output,
guiding the model to optimize its behavior over time. Unlike
post-hoc human evaluations, RL actively integrates preference
feedback during training, refining the model to maximize
cumulative rewards. This approach eliminates the need for
token-by-token supervised fine-tuning by focusing on complete
outputs, which better capture human preferences.***

The text generation process in RL is typically modeled as
a Markov Decision Process (MDP), where actions are tokens,
and rewards reflect how well the final output aligns with human
intent."” A popular method, Reinforcement Learning with
Human Feedback (RLHF),'* leverages human input to shape
the reward system, ensuring alignment with user preferences.
Variants such as reinforcement learning with synthetic feed-
back (RLSF),"* Proximal Policy Optimization (PPO),'"* and

Chem. Sci., 2025, 16, 2514-2572 | 2517
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REINFORCE™* offer alternative strategies for assigning rewards
and refining model policies.**'*>**"1% A broader exploration of
RL's potential in fine-tuning LLMs is available in works by Cao
et al.'® and Shen et al.*®

There are ways to reformulate the RLHF process into a direct
optimization problem with a different loss. This is known as
reward-free methods. Among the main examples of reward-free
methods, we have the direct preference optimization (DPO),"*°
Rank Responses to align Human Feedback (RRHF),""" and
Preference Ranking Optimization (PRO).* These models are
popular competitors to PPO and other reward-based methods
due to its simplicity. It overcomes the lack of token-by-token
loss signal by comparing two completions at a time. The
discussions about which technique is superior remain very
active in the literature."*?

Finally, the alignment may not be to human preferences but
to downstream tasks that do not provide token-by-token
rewards. For example, Bou et al.*** and Hayes et al.** both use
RL on a language model for improving its outputs on a down-
stream scientific task.

2.3 Model types

While the Vaswani Transformer™ employed an encoder-
decoder structure for sequence-to-sequence tasks, the encoder
and decoder were ultimately seen as independent models,
leading to “encoder-only”, and “decoder-only” models
described below.

Examples of how such models can be used are provided in
Fig. 2b-d. Fig. 2b illustrates the encoder-decoder model's
capability to transform sequences, such as translating from
English to Spanish or predicting reaction products by mapping
atoms from reactants (amino acids) to product positions (a
dipeptide and water). This architecture has large potential on
sequence-to-sequence transformations.'*®"” Fig. 2c¢ highlights
the strengths of an encoder-only model in extracting properties
or insights directly from input sequences. For example, in text
analysis, it can assign sentiment scores or labels, such as
tagging the phrase “Chemistry is great” with a positive senti-
ment. In chemistry, it can predict molecular properties, like
hydrophobicity or pKa, from amino acid representations,
demonstrating its applications in material science and
cheminformatics.'****® Finally, Fig. 2d depicts a decoder-only
architecture, ideal for tasks requiring sequence generation or
completion. This model excels at inferring new outputs from
input prompts. For instance, given that “chemistry is great,” it
can propose broader implications or solutions. It can also
generate new peptide sequences from smaller amino acid
fragments, showcasing its ability to create novel compounds.
This generative capacity is particularly valuable in drug design,
where the goal is to discover new molecules or expand chemical
libraries.****1>3

2.3.1 Encoder-only models. Beyond Vaswani's trans-
former,” used for sequence-to-sequence tasks, another signifi-
cant evolutionary step forward came in the guise of the
Bidirectional Encoder Representations from Transformers, or
“BERT”, described in October 2018 by Devlin et al® BERT

2518 | Chem. Sci, 2025, 16, 2514-2572
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utilized only the encoder component, achieving state-of-the-art
performance on sentence-level and token-level tasks, out-
performing prior task-specific architectures.’” The key differ-
ence was BERT's bidirectional transformer pretraining on
unlabeled text, meaning the model processes the context both
to the left and right of the word in question, facilitated by
a Masked Language Model (MLM). This encoder-only design
allowed BERT to develop more comprehensive representations
of input sequences, rather than mapping input sequences to
output sequences. In pretraining, BERT also uses Next Sentence
Prediction (NSP). “Sentence” here means an arbitrary span of
contiguous text. The MLM task randomly masks tokens and
predicts them by considering both preceding and following
contexts simultaneously, inspired by Taylor.” NSP predicts
whether one sentence logically follows another, training the
model to understand sentence relationships. This bidirectional
approach allows BERT to recognize greater nuance and richness
in the input data.

Subsequent evolutions of BERT include, for example, RoB-
ERTa, (Robustly optimized BERT approach), described in 2019
by Liu et al."”®* RoBERTa was trained on a larger corpus, for more
iterations, with larger mini-batches, and longer sequences,
improving model understanding and generalization. By
removing the NSP task and focusing on the MLM task, perfor-
mance improved. RoBERTa dynamically changed masked
positions during training and used different hyperparameters.
Evolutions of BERT also include domain-specific pretraining
and creating specialist LLMs for fields like chemistry, as
described below (see Section 3).

2.3.2 Decoder-only models. In June 2018, Radford et al.***
proposed the Generative Pretrained Transformer (GPT) in their
paper, “Improving Language Understanding by Generative
Pretraining”. GPT used a decoder-only, left-to-right unidirec-
tional language model to predict the next word in a sequence
based on previous words, without an encoder. Unlike earlier
models, GPT could predict the next sequence, applying
a general language understanding to specific tasks with smaller
annotated datasets.

GPT employed positional encodings to maintain word order
in its predictions. Its self-attention mechanism prevented
tokens from attending to future tokens, ensuring each word
prediction depended only on preceding words. Hence
a decoder-only architecture represents a so-called causal
language model, one that generates each item in a sequence
based on the previous items. This approach is also referred to as
“autoregressive”, meaning that each new word is predicted
based on the previously generated words, with no influence
from future words. The generation of each subsequent output is
causally linked to the history of generated outputs and nothing
ahead of the current word affects its generation.

2.3.3 Encoder-decoder models. Evolving further, BART
(Bidirectional and Auto-Regressive Transformers) was intro-
duced by Lewis et al. in 2019."*” BART combined the context
learning strengths of the bidirectional BERT, and the autore-
gressive capabilities of models like GPT, which excel at gener-
ating coherent text. BART was thus a hybrid seq2seq model,
consisting of a BERT-like bidirectional encoder and a GPT-like

© 2025 The Author(s). Published by the Royal Society of Chemistry
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autoregressive decoder. This is nearly the same architecture as
Vaswani et al.;”* the differences are in the pretraining. BART was
pretrained using a task that corrupted text by, for example,
deleting tokens, and shuffling sentences. It then learned to
reconstruct the original text with left-to-right autoregressive
decoding as in GPT models.

2.3.4 Multi-task and multi-modal models. In previous
sections, we discussed LLMs that take natural language text as
input and then output either a learned representation or
another text sequence. These models traditionally perform
tasks like translation, summarization, and classification.
However, multi-task models are capable of performing several
different tasks using the same model, even if those tasks are
unrelated. This allows a single model to be trained on multiple
objectives, enhancing its versatility and efficiency, as it can
generalize across various tasks during inference.

Multi-task models, such as the Text-to-Text Transfer Trans-
former (T5) developed by Raffel et al'*® demonstrate that
various tasks can be reframed into a text-to-text format, allowing
the same model architecture and training procedure to be
applied universally. By doing so, the model can be used for
diverse tasks, but all with the same set of weights. This reduces
the need for task-specific models and increases the model's
adaptability to new problems. The relevance of this approach is
particularly significant as it enables researchers to tackle
multiple tasks without needing to retrain separate models,
saving both computational resources and time. For instance,
Flan-T5 (ref. 129) used instruction fine-tuning with chain-of-
thought prompts, enabling it to generalize to unseen tasks,
such as generating rationales before answering. This fine-
tuning expands the model's ability to tackle more complex
problems. More advanced approaches have since been
proposed to build robust multi-task models that can flexibly
switch between tasks at inference time.***%?

Additionally, LLMs have been extended to process different
input modalities, such as image and sound, even though they
initially only processed text. For example, Fuyu'** uses linear
projection to adapt image representations into the token space
of an LLM, allowing a decoder-only model to generate captions
for figures. Expanding on this, next-GPT*** was developed as an
“any-to-any” model, capable of processing multiple modalities,
such as text, audio, image, and video, through modality-specific
encoders. The encoded representation is projected into
a decoder-only token space, and the LLM's output is processed
by a domain-specific diffusion model to generate each modal-
ity's output. Multitask or multimodel methods are further
described below as these methods start to connect LLMs with
autonomous agents.

3 LLMs for chemistry and
biochemistry

The integration of large language models (LLMs) into chemistry
and biochemistry is opening new frontiers in molecular design,

property prediction, and synthesis. As these models evolve, they
increasingly align with specific chemical tasks, capitalizing on
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the strengths of their architectures. Specifically, encoder-only
models excel at property prediction,”* decoder-only models
are suited for inverse design,"® and encoder-decoder models
are applied to synthesis prediction.’” However, with the devel-
opment improvement of decoder-only models™®® and the
suggestion that regression tasks can be reformulated as a text
completion task,”® decoder-only models started being also
applied for property prediction.****** This section surveys key
LLMs that interpret chemical languages like SMILES and InChl,
as well as those that process natural language descriptions
relevant to chemistry.

We provide a chronological perspective on the evolution of
LLMs in this field (Fig. 4), presenting broadly on the design,
functionality, and value of each model. Our approach primarily
centers on models that use chemical representations like
SMILES strings as inputs, but we also examine how natural
language models extract valuable data from scientific literature
to enhance chemical research.

Ultimately, this discussion underscores the potential for
mol-based and text-based LLMs to work together, addressing
the growing opportunity for automation in chemistry. This sets
the stage for a broader application of autonomous agents in
scientific discovery. Fig. 3 illustrates the capabilities of different
LLMs available currently, while Fig. 4 presents a chronological
map of LLM development in chemistry and biology.

Of critical importance, this section starts by emphasizing the
role of trustworthy datasets and robust benchmarks. Without
well-curated, diverse datasets, models may fail to generalize
across real-world applications. Benchmarks that are too
narrowly focused can limit the model's applicability, preventing
a true measure of its potential. While natural language models
take up a smaller fraction of this section, these models will be
increasingly used to curate these datasets, ensuring data quality
becomes a key part of advancing LLM capabilities in chemistry.

3.1 Molecular representations, datasets, and benchmarks

Molecules can be described in a variety of ways, ranging from
two-dimensional structural formulas to more complex three-
dimensional models that capture electrostatic potentials.
Additionally, molecules can be characterized through proper-
ties such as solubility, reactivity, or spectral data from tech-
niques like NMR or mass spectrometry. However, to leverage
these descriptions in machine learning, they must be converted
into a numerical form that a computer can process. Given the
diversity of data in chemistry-based machine learning, multiple
methods exist for representing molecules,****** highlighting
this heterogeneity. Common representations include molecular
graphs,”*** 3D point clouds, and quantitative feature
descriptors.**>*7'% In this review, we focus specifically on
string-based representations of molecules, given the interest in
language models. Among the known string representations, we
can cite JUPAC names, SMILES,* DeepSMILES,'** SELFIES,'*
and InChl,'* as recently reviewed by Das et al.'**

Regarding datasets, there are two types of data used for
training LLMs, namely training data and evaluation data.
Training data should be grounded in real molecular structures
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Fig. 3 Classification of LLMs in chemistry and biochemistry according to their application.

to ensure the model develops an accurate representation of
what constitutes a valid molecule. This is similar to how natural
language training data, such as that used in models like GPT-4,
must be based on real sentences or code to avoid generating
nonsensical outputs. Fig. 5 shows a comparison of the number
of tokens in common chemistry datasets with those used to
train LLaMA2, based on literature data.'®>*** With this in mind,
we note the largest chemical training corpus, which largely
comprises hypothetical chemical structures, amounts to
billions of tokens, almost two orders of magnitude fewer than
the trillions of tokens used to train LLaMA2. When excluding
hypothetical structures from datasets like ZINC,** (Fig. 5), the
number of tokens associated with verifiably synthesized
compounds is over five orders of magnitude lower than that of
LLaMA2's training data. To address this gap, efforts such as the
Mol-instructions dataset, curated by Fang et al.,”’° prioritize
quality over quantity, providing ~2M biomolecular and protein-
related instructions. Mol-instructions'’® was selectively built

2520 | Chem. Sci, 2025, 16, 2514-2572

from multiple data sources,”®”''# with rigorous quality
control. Given the success of literature-based LLMs, one may
naturally assume that large datasets are of paramount impor-
tance for chemistry. However, it is crucial not to overlook the
importance of data quality. Segler et al'®" demonstrated that
even using the Reaxys dataset, a very small, human-curated
collection of chemical reactions, was sufficient to achieve
state-of-the-art results in retrosynthesis. Therefore, the issue is
not merely a lack of data, but rather a lack of high-quality data
that may be the pivotal factor holding back the development of
better scientific LLMs. Ultimately, the focus must shift from
sheer quantity to the curation of higher-quality datasets to
advance these models.

To evaluate the accuracy of these models, we compare their
performance against well-established benchmarks. However, if
the benchmarks are not truly representative of the broader
chemistry field, it becomes difficult to gauge the expected
impact of these models. Numerous datasets, curated by the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Illustration of how Large Language Models (LLMs) evolved
chronologically. The dates display the first publication of each model.

scientific community, are available for this benchmarking.**>#
Among them, MoleculeNet,* first published in 2017, is the most
commonly used labeled dataset for chemistry. However, Mole-
culeNet has several limitations: it is small, contains errors and
inconsistencies, and lacks relevance to a larger number of real-
world chemistry problems.*****” Pat Walters, a leader in ML for
drug discovery, has emphasized, “I think the best way to make
progress on applications of machine learning to drug discovery
is to fund a large public effort that will generate high-quality
data and make this data available to the community”.'®®
Walters provides several constructive critiques noting, for
example, that the QM7, QMS8, and QM9 datasets, intended for
predicting quantum properties from 3D structures, are often

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

1012
1oLt

1010

[
<

Tokens [Log Scale]

=
o
B

=
2

Fig. 5 Number of training tokens (on log scale) available from various
chemical sources compared with typical LLM training runs. The
numbers are drawn from ZINC,*** PubChem,*¢ Touvron et al.**’
ChEMBL,*® and Kinney et al.*®°

misused with predictions based incorrectly on their 1D SMILES
strings, which inadequately represent 3D molecular conforma-
tions. He also suggests more relevant benchmarks and also
datasets with more valid entries. For example, he points to the
Absorption, Distribution, Metabolism, and Excretion (ADME)
data curated by Fang et al.,’® as well as the Therapeutic Data
Commons (TDC)**** and TDC-2."* These datasets contain
measurements of real compounds, making them grounded in
reality. Moreover, ADME is crucial for determining a drug
candidate's success, while therapeutic results in diverse
modalities align with metrics used in drug development.

Here, we hypothesize that the lack of easily accessible, high-
quality data in the correct format for training foundational
chemical language models is a major bottleneck to the devel-
opment of the highly desired “super-human” Al-powered digital
chemist. A more optimistic view is presented by Rich and
Birnbaum'?* They argue that we do not need to wait for the
creation of new benchmarks. Instead, they suggest that even the
currently available, messy public data can be carefully curated
to create benchmarks that approximate real-world applications.
In addition, we argue that extracting data from scientific
chemistry papers might be an interesting commitment to
generating data of high quality, grounded to the truth, and on
a large scale.” Some work has been done in using LLMs for
data extraction.'° Recently, a few benchmarks following
these ideas were created for evaluating LLMs' performance in
biology (LAB-Bench'”) and material science (MatText,**® MatSci-
NLP" and MaScQA>*).

3.2 Property prediction and encoder-only Mol-LLMs

Encoder-only transformer architectures are primarily composed
of an encoder, making them well-suited for chemistry tasks that
require extracting meaningful information from input
sequences, such as classification and property prediction. Since
encoder-only architectures are mostly applied to capturing the
underlying structure-property relationships, we describe here
the relative importance of the property prediction task. Sultan
et al*** also discussed the high importance of this task, the
knowledge obtained in the last years, and the remaining
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Table 1 Encoder-only scientific LLMs. The release date column displays the date of the first publication for each paper. When available, the

publication date of the last updated version is displayed between parentheses

LLM Model size” Training data Architecture Application Release date
CatBERTa*”? 355M OpenCatalyst2020 (OC20) RoOBERTa Property prediction 2023.09 (2023.11)
SELFormer**? ~86M ~2M compounds from ChEMBL RoBERTa Property prediction 2023.04 (2023.06)
ChemBERTa-2 5-46M 77M SMILES from PubChem RoBERTa Property prediction 2022.09
(ref. 122)
MaterialsBERT>** 110M 2.4M material science BERT NER and property 2022.09 (2023.04)
abstracts + 750 annotated extraction
abstract for NER
SolvBERT>?® b 1M SMILES of solute-solvent BERT Property prediction 2022.07 (2023.01)
pairs from CombiSolv-QM and
LogsS from Boobier et al.>%®
ScholarBERT?"” 340M, 770M Public.Resource.Org, Inc. BERT Property prediction 2022.05 (2023.05)
BatteryBERT>%® ~110M ~400k papers from RSC, Elsevier BERT Document classification 2022.05
and Springer
MatBERT>%° 110M Abstracts from solid state BERT NER 2022.04
articles and abstracts and
methods from gold nanoparticle
articles
MatSciBERT>"° 110M ~150k material science paper BERT NER and text 2021.09 (2022.05)
downloaded from Elsevier classification
Mol-BERT*'® 110M ~4B SMILES from ZINC15 and BERT Property prediction 2021.09
ChEMBL27
MolFormer®"" b PubChem and ZINC BERT Property prediction 2021.06 (2022.12)
ChemBERT>"? 110M ~200k extracted using BERT NER 2021.06
ChemDataExtractor
MOoIBERT*" ~85M ChemBench BERT Property prediction 2020.11
ChemBERTa** 10M SMILES from PubChem ROBERTa Property prediction 2020.10
BioMegatron®* 345M, 800M, Wikipedia, CC-Stories, Real-News, Megatron-LM NER and QA 2020-10
1.2B and OpenWebtext
PubMedBERT*"* 110M 14M abstracts from PubMed BERT NER, QA, and document  2020.07 (2021.10)
classification
Molecule attention b ZINC15 Encoder with Property prediction 2020.02
transformer>'® GCN features
SMILES-BERT*"” b ~18M SMILES from ZINC BERT Property prediction 2019.09
BlueBERT?'® 110M PubMed and MIMIC-III BERT NER, and document 2019.06
classification
ClinicalBERT*"’ 110M MIMIC-III BERT Patient readmission 2019.04
probability
SciBERT>*° 110M 1.14M papers from Semantic BERT NER and sentence 2019.03 (2019.11)
Scholar classification
BioBERT**! 110M PubMed and PMC BERT NER and QA 2019.01 (2019.09)

“ “Model Size” is reported as the number of parameters. ® The authors report they not used as many encoder layers as it was used in the original

BERT paper. But the total number of parameters was not reported.

challenges regarding molecular property prediction using
LLMs. A table of encoder-only scientific LLMs is shown in Table
1.

3.2.1 Property prediction. The universal value of chemistry
lies in identifying and understanding the properties of
compounds to optimize their practical applications. In the
pharmaceutical industry, therapeutic molecules interact with
the body in profound ways.?***** Understanding these interac-
tions and modifying molecular structures to enhance those
therapeutic benefits can lead to significant medical advance-
ments.”* Similarly, in polymer science, material properties
depend on chemical structure, polymer chain length, and
packing,*® and a protein's function similarly depends on its
structure and folding. Historically, chemists have identified

2522 | Chem. Sci., 2025, 16, 2514-2572

227 and screened them

new molecules from natural products
against potential targets®® to test their properties for diseases.
Once a natural product shows potential, chemists synthesize
scaled-up quantities for further testing or derivatization,>**->*
a costly and labor-intensive process.*®>*** Traditionally, chem-
ists have used their expertise to hypothesize the properties of
new molecules derived from those natural products, hence
aiming for the best investment of synthesis time and labor.
Computational chemistry has evolved to support the chemical
industry in more accurate property prediction.*** Techniques
such as quantum theoretical calculations and force-field-based
molecular dynamics offer great support for property prediction
and the investigation of molecular systems, though both
require substantial computational resources.***?** Property
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prediction can now be enhanced through machine learning
tools,'*21242 and more recent advancements in LLMs lead to
effective property prediction without the extensive computa-
tional demands of quantum mechanics and MD calculations.
Combined with human insight, AI can revolutionize material
development, enabling the synthesis of new materials with
a high likelihood of possessing desired properties for specific
applications.

3.2.2 Encoder-only Mol-LLMs. Encoder-only models are
exemplified by the BERT architecture, which is commonly
applied in natural language sentiment analysis to extract deeper
patterns from prose.”** The human chemist has been taught to
look at a 2D image of a molecular structure and to recognize its
chemical properties or classify the compound. Therefore,
encoder-only models would ideally convert SMILES strings,
empty of inherent chemical essence, into a vector representa-
tion, or latent space, which would reflect those chemical prop-
erties. This vector representation can then be used directly for
various downstream tasks.

While encoder-only LLMs are predominantly used for prop-
erty prediction, they are also applicable for synthesis classifi-
cation. Schwaller et al.*** used a BERT model to more accurately
classify complex synthesis reactions by generating reaction
fingerprints from raw SMILES strings, without the need to
separate reactants from reagents in the input data, thereby
simplifying data preparation. The BERT model achieved higher
accuracy (98.2%) compared to the encoder-decoder model
(95.2%) for classifying reactions. Accurate classification aids in
understanding reaction mechanisms, vital for reaction design,
optimization, and retrosynthesis. Toniato et al>** also used
a BERT architecture to classify reaction types for downstream
retrosynthesis tasks that would enable the manufacture of any
molecular target. Further examples of BERT use include self-
supervised reaction atom-to-atom mapping.*****” These chem-
ical classifications would accelerate research and development
in organic synthesis, described further below.

Beyond synthesis classification, encoder-only models like
BERT have shown great promise for molecular property
prediction, especially when labeled data is limited. Recognizing
this, Wang et al. introduced a semi-supervised SMILES-BERT
model, which was pretrained on a large unlabeled dataset
with a Masked SMILES Recovery task.>*® The model was then
fine-tuned for various molecular property prediction tasks,
outperforming state-of-the-art methods in 2019 on three chosen
datasets varying in size and property. This marked a shift from
using BERT for reaction -classification towards property
prediction and drug discovery. Maziarka et al.>*® also claimed
state-of-the-art performance in property prediction after self-
supervised pretraining in their Molecule Attention Trans-
former (MAT), which adapted BERT to chemical molecules by
augmenting the self-attention with inter-atomic distances and
molecular graph structure.

Zhang et al.>* also tackled the issue of limited property-
labeled data and the lack of correlation between any two data-
sets labeled for different properties, hindering generalizability.
They introduced multitask learning BERT (MTL-BERT), which
used large-scale pretraining and multitask learning with
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unlabeled SMILES strings from ChEMBL,'*® which is a widely-
used database containing bioactive molecules with drug-like
properties, designed to aid drug discovery. The MTL-BERT
approach mined contextual information and extracted key
patterns from complex SMILES strings, improving model
interpretability. The model was fine-tuned for relevant down-
stream tasks, achieving better performance than state-of-the-art
methods in 2022 on 60 molecular datasets from ADMETlab>*°
and MoleculeNet.>®

In 2021, Li and Jiang"*® introduced Mol-BERT, pretrained on
four million unlabeled drug SMILES from the ZINC15 (ref. 251)
and ChEMBL27 (ref. 168) databases to capture molecular
substructure information for property prediction. Their work
leveraged the underutilized potential of large unlabeled data-
sets like ZINC, which contains over 230 million commercially
available compounds, and is designed for virtual screening and
drug discovery. Mol-BERT consisted of three components:
a PretrainingExtractor, Pretraining Mol-BERT, and Fine-Tuning
MOol-BERT. It treated Morgan fingerprint fragments as “words”
and complete molecular compounds as “sentences,” using
RDKit and the Morgan algorithm for canonicalization and
substructure identification. This approach generated compre-
hensive molecular fingerprints from SMILES strings, used in
a Masked Language Model (MLM) task for pretraining. Mol-
BERT was fine-tuned on labeled samples, providing outputs
as binary values or continuous scores for classification or
regression, and it outperformed existing sequence and graph-
based methods by at least 2% in ROC-AUC scores on Tox21,
SIDER, and ClinTox benchmark datasets.>®

Ross et al*? introduced MoLFormer, a large-scale self-
supervised BERT model, with the intention to provide molec-
ular property predictions with competitive accuracy and speed
when compared to density functional theory calculations or wet-
lab experiments. They trained MoLFormer with rotary posi-
tional embeddings on SMILES sequences of 1.1 billion unla-
beled molecules from ZINC,>*' and PubChem,'® another
database of chemical properties and activities of millions of
small molecules, widely used in drug discovery and chemical
research. The rotary positional encoding captures token posi-
tions more effectively than traditional methods,”* improving
modeling of sequence relationships. MoLFormer outperformed
state-of-the-art GNNs on several classification and regression
tasks from ten MoleculeNet*® datasets, while performing
competitively on two others. It effectively learned spatial rela-
tionships between atoms, predicting various molecular prop-
erties, including quantum-chemical properties. Additionally,
the authors stated how MoLFormer represents an efficient and
environment-friendly use of computational resources, claiming
a reduced GPU usage in training by a factor of 60 (16 GPUs
instead of 1000).

With ChemBERTa, Chithrananda et al.** explored the impact
of pretraining dataset size, tokenization strategy, and the use of
SMILES or SELFIES, distinguishing their work from other BERT
studies. They used HuggingFace's RoOBERTa transformer,>** and
referenced a DeepChem®® tutorial for accessibility. Their results
showed improved performance on downstream tasks (BBBP,
ClinTox, HIV, Tox21 from MoleculeNet*®) as the pretraining
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dataset size increased from 100k to 10M. Although ChemBERTa
did not surpass state-of-the-art GNN-based baselines like
Chemprop (which used 2048-bit Morgan Fingerprints from
RDKit),** the authors suggested that with expansion to larger
datasets they would eventually beat those baselines. The
authors compared Byte-Pair Encoder (BPE) with a custom
SmilesTokenizer and its regular expression developed by**®
while exploring tokenization strategies. They found the Smi-
lesTokenizer slightly outperformed BPE, suggesting more rele-
vant sub-word tokenization is beneficial. No difference was
found between SMILES and SELFIES, but the paper highlighted
how attention heads in transformers could be visualized with
BertViz,>*® showing certain neurons selective for functional
groups. This study underscored the importance of appropriate
benchmarking and addresses the carbon footprint of Al in
molecular property prediction.

In ChemBERTa-2, Ahmad et al.*** aimed to create a founda-
tional model applicable across various tasks. They addressed
a criticism that LLMs were not so generalizable because the
training data was biased or non-representative. They addressed
this criticism by training on 77M samples and adding a Multi-
Task Regression component to the pretraining. ChemBERTa-2
matched state-of-the-art architectures on MoleculeNet.>® As
with ChemBERT4, the work was valuable because of additional
exploration, in this case into how pretraining improvements
affected certain downstream tasks more than others, depending
on the type of fine-tuning task, the structural features of the
molecules in the fine-tuning task data set, or the size of that
fine-tuning dataset. The result was that pretraining the encoder-
only model is important, but gains could be made by consid-
ering the chemical application itself, and the associated fine-
tuning dataset.

In June 2023, Yuksel et al.>* introduced SELFormer, building
on ideas from ChemBERTa2 (ref. 122) and using SELFIES for
large data input. Yuksel et al.>*® argue that SMILES strings have
validity and robustness issues, hindering effective chemical
interpretation of the data, although this perspective is not
universally held.*®” SELFormer uses SELFIES and is pretrained
on two million drug-like compounds, fine-tuned for diverse
molecular property prediction tasks (BBBP, SIDER, Tox21, HIV,
BACE, FreeSolv, ESOL, PDBbind from MoleculeNet).** SELF-
ormer outperformed all competing methods for some tasks and
produced comparable results for the rest. It could also
discriminate molecules with different structural properties. The
paper suggests future directions in multimodal models
combining structural data with other types of molecular infor-
mation, including text-based annotations. We will discuss such
multimodal models below.

In 2022, Yu et al.>*” published SolvBERT, a multi-task BERT-
based regression model that could predict both solvation free
energy and solubility from the SMILES notations of solute—
solvent complexes. It was trained on the CombiSolv-QM data-
set,”*® a curation of experimental solvent free energy data called
CombiSolv-Exp-8780,>*°*°> and the solubility dataset from
Boobier et al.**® SolvBERT's performance was benchmarked
against advanced graph-based models****** This work is
powerful because there is an expectation that solvation free
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energy depends on 3-dimensional conformational properties of
the molecules, or at least 2D properties that would be well
characterized by graph-based molecular representations. It
shows an overachieving utility of using SMILES strings in
property prediction, and aligns with other work by Winter
et al.”® regarding activity coefficients. SolvBERT showed
comparable performance to a Directed Message Passing Neural
Network (DMPNN) in predicting solvation free energy, largely
due to its effective clustering feature in the pretraining phase as
shown by TMAP (Tree Map of All Possible) visualizations.
Furthermore, SolvBERT outperformed Graph Representation Of
Molecular Data with Self-supervision (GROVER)*** in predicting
experimentally evaluated solubility data for new solute-solvent
combinations. This underscores the significance of SolvBERT's
ability to capture the dynamic and spatial complexities of
solvation interactions in a text-based model.

While models like SolvBERT have achieved impressive
results in solvation free energy prediction, challenges such as
limited labeled data continue to restrict the broader application
of transformer models in chemistry. Recognizing this issue,
Jiang et al. introduced INTransformer in 2024,**° a method
designed to enhance property prediction by capturing global
molecular information more effectively, even when data is
scarce. By incorporating perturbing noise and using contrastive
learning to artificially augment smaller datasets, INTransformer
delivered improved performance on several tasks. Ongoing
work continues to explore various transformer strategies for
smaller datasets. Again using contrastive learning, which
maximizes the difference between representations of similar
and dissimilar data points, but in a different context, Mole-
culeSTM>*®” uses LLM encoders to create representations for
SMILES and for descriptions of molecules extracted from Pub-
Chem.?*® Similar work was performed by Xu et al.** The authors
curated a dataset with descriptions of proteins. Subsequently, to
train ProtST, a protein language model (PLM) was used to
encode amino acid sequences and LLMs to encode the
descriptions.

In this section, we outlined the advancements of encoder-
only models like BERT and their evolution for property predic-
tion and synthesis classification. Chemists traditionally
hypothesize molecular properties, but these models, ranging
from Mol-BERT to SolvBERT, showcase the growing efficiency of
machine learning in property prediction. Approaches such as
multitask learning and contrastive learning, as seen in
INTransformer, offer solutions to challenges posed by limited
labeled data.

3.3 Property directed inverse design and decoder-only mol-
LLMs

Decoder-only GPT-like architectures offer significant value for
property-directed molecule generation and de novo chemistry
applications because they excel at generating novel molecular
structures by learning from vast datasets of chemical
compounds. These models can capture intricate patterns and
relationships within molecular sequences, proposing viable
new compounds that adhere to desired chemical properties and

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Decoder-only scientific LLMs. The release date column displays the date of the first publication for each paper. When available, the
publication date of the last updated version is displayed between parentheses

LLM Model size” Training data Architecture Application Release date
Tx-LLM>"* b TDC datasets PaLM-2 Property prediction and 2024.06
retrosynthesis
BioMedLM?*"? 2.7B PubMed abstracts and full articles GPT QA 2024.03
LlasMol*”? ~7B SMollInstruct Galactica, Property prediction, 2024.02
LLaMa, Mistral molecule captioning, (2024.08)
molecule generation,
retrosynthesis, name
conversion
BioMistral*”* 7B PubMed Central (PMC) Mistral QA 2024.02
(2024.08)
BiMediX*” 8x 7B 1.3M Arabic-English instructions Mixtral QA 2024.02
(BiMed)
EpilepsyLLM>”® 7B Data from the Japan Epilepsy LLaMa QA 2024.01
Association, Epilepsy Information
Center, and Tenkan Net
CheXagent””” 7B 28 Publicly available datasets, Mistral QA, image understanding 2024.01
including PMC, MIMIC,
wikipedia, PadChest, and BIMCV-
COVID-19
ChemSpaceAL*”® b ChEMBL 33, GuacaMol v1, GPT Molecule generation 2023.09
MOSES, and BindingDB 08-2023 (2024.02)
BioMedGPT- 7B and 10B 5.5M Bbiomedical papers from LLaMA2 QA 2023.08
LM*>”® S20RC
Darwin?® 7B SciQ and web of science LLaMA QA, property prediction, 2023.08
NER, and molecule
generation
cMolGPT*® b MOSES GPT Molecule generation 2023.05
PMC-LLaMA*#! 7B and 13B MedC-k and MedC-I LLaMA QA 2023.04
(2024.04)
GPTChem'*? 175B Curation of multiple classification ~ GPT-3 Property prediction and 2023.02
and regression benchmarks inverse design (2024.02)
Galactica'®? 125M, 1.3B, The galactica corpus, a curation Decoder-only QA, NER, document 2022.11
6.7B, 30B, 120B with 62B scientific documents summarization, property
prediction
BioGPT*#? 355M 15M of title and abstract from GPT-2 QA, NER, and document 2022-09
PubMed classification (2023.04)
SMILES-to- 6.5M Synthetic data generated with the GPT-3 Property prediction 2022.06
properties- thermodynamic model COSMO- (2022.09)
transformer®®® RS
ChemGPT** ~1B 10M molecules from PubChem GPT-neo Molecule generation 2022.05
(2023.11)
Regression ~27M ChEMBL, MoleculeNet, USPTO, XLNet Property prediction, 2022.02
transformer*’ etc. molecule tuning, molecule (2023.04)
generation
MolGPT>* 6M MOSES and GuacaMol GPT Molecule generation 2021.10
Adilov2021 13.4M 5M SMILES from ChemBERTa's GPT-2 Property prediction and 2021.09
(ref. 285) PubChem-10M molecule generation

“ “Model Size” is reported as the number of parameters. “PubMed” refer to the PubMed abstracts dataset, while PMC (PubMed Corpus) refers to the
full-text corpus dataset. ” The total number of parameters was not reported.

constraints. This enables rapid exploration and innovation
within an almost infinite chemical space. Moreover, such large
general-purpose models can be fine-tuned with small amounts
of domain-specific scientific data,">*”° allowing them to
support specific applications efficiently. In this section, we first
describe property-directed inverse design from a chemistry
perspective and then examine how decoder-only LLMs have
propelled inverse design forward. A table of decoder-only
scientific LLMs is shown in Table 2.

© 2025 The Author(s). Published by the Royal Society of Chemistry

3.3.1 Property directed inverse design. Nature has long
been a rich source of molecules that inhibit disease prolifera-
tion, because organisms have evolved chemicals for self-
defense. Historically, most pharmaceuticals are derived from
these natural products,*****” which offer benefits such as cell
permeability, target specificity, and a vast chemical diversity.”*®
However, the high costs and complexities associated with high-
throughput screening and synthesizing natural products limit
the exploration of this space.?®%>%®
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While natural products have been a valuable starting point,
we are not confined to their derivatives. Al, particularly gener-
ative LLMs, allows us to go beyond nature and explore a much
larger chemical space. In silico molecular design enables rapid
modification, akin to random mutation,*®® where only valid,
synthesizable molecules that meet predefined property criteria
remain in the generated set.>*>*° This approach allows us to test
modifications in silico, expanding exploration beyond the
boundaries of natural products.

The true innovation of Al-driven molecular design, however,
lies in its ability to directly generate candidate molecules based
on desired properties, without the need for iterative stepwise
modifications.”* This “inverse design” capability allows us to
start with a target property and directly generate candidate
molecules that meet the predefined property requirements.
Generative LLMs applied to sequences of atoms and functional
groups offer a powerful opportunity for out-of-the-box explora-
tion, tapping into the vast chemical space that extends far
beyond the confines of nature. This accelerates the path from
concept to viable therapeutic agents, aligning seamlessly with
decoder-only LLM architectures.

3.3.2 Decoder-only Mol-LLMs. One of the first applications
of decoder-only models in chemistry was Adilov's (2021)
“Generative pretraining from Molecules”.”®® This work pre-
trained a GPT-2-like causal transformer for self-supervised
learning using SMILES strings. By introducing “adapters”
between attention blocks for task-specific fine-tuning,** this
method provided a versatile approach for both molecule
generation and property prediction, requiring minimal archi-
tectural changes. It aimed to surpass encoder-only models, such
as ChemBERTa,* with a more scalable and resource-efficient
approach, demonstrating the power of decoder-only models in
chemical generation.

A key advancement then came with MolGPT,** a 6-million-
parameter decoder-only model designed for molecular genera-
tion. MolGPT introduced masked self-attention, enabling the
learning of long-range dependencies in SMILES strings. The
model ensured chemically valid SMILES representations,
respecting structural rules like valency and ring closures. It also
utilized salience measures for interpretability, aiding in pre-
dicting SMILES tokens and understanding which parts of the
molecule were most influential in the model's predictions.
MOoIlGPT outperformed many existing Variational Auto-Encoder
(VAE)-based approaches,>*=* in predicting novel molecules
with specified properties, being trained on datasets like
MOSES?®*** and GuacaMol.*”

While MolGPT's computational demands may be higher
than traditional VAEs, its ability to generate high-quality, novel
molecules justifies this trade-off. MolGPT demonstrated strong
performance on key metrics such as validity, which measures
the percentage of generated molecules that are chemically valid
according to bonding rules; uniqueness, the proportion of
generated molecules that are distinct from one another; Frechet
ChemNet Distance (FCD),** which compares the distribution of
generated molecules to that of real molecules in the training
set, indicating how closely the generated molecules resemble
real-world compounds; and KL divergence,***> a measure of how
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the probability distribution of generated molecules deviates
from the true distribution of the training data. These metrics
illustrate MoIGPT's ability to generate high-quality, novel
molecules while maintaining a balance between diversity and
similarity to known chemical spaces. A brief summary of
advancements in transformer-based models for de novo mole-
cule generation from 2023 and 2024 follows, which continue to
refine and expand upon the foundational work laid by models
like MoIGPT.

Haroon et al.*** further developed a GPT-based model with
relative attention for de novo drug design, showing improved
validity, uniqueness, and novelty. This work was followed by
Frey et al,”® who introduced ChemGPT to explore hyper-
parameter tuning and dataset scaling in new domains.
ChemGPT's contribution lies in refining generative models to
better fit specific chemical domains, advancing the under-
standing of how data scale impacts generative performance.
Both Wang et al.** and Mao et al.**® presented work that sur-
passed MoIGPT. Furthermore, Mao et al**® showed that
decoder-only models could generate novel compounds using
IUPAC names directly.

This marked a departure from typical SMILES-based
molecular representations, as IUPAC names offer a standard-
ized, human-readable format that aligns with how chemists
conceptualize molecular structures. By integrating these
chemical semantics into the model, iupacGPT** bridges the gap
between computational predictions and real-world chemical
applications. The IUPAC name outputs are easier to under-
stand, validate, and apply, facilitating smoother integration
into workflows like regulatory filings, chemical databases, and
drug design. Focusing on pretraining with a vast dataset of
IUPAC names and fine-tuning with lightweight networks,
iupacGPT excels in molecule generation, classification, and
regression tasks, providing an intuitive interface for chemists in
both drug discovery and material science.

In a similar vein, Zhang et al.>” proposed including target 3D
structural information in molecular generative models, even
though their approach is not LLM-based. However, it serves as
a noteworthy contribution to the field of structure-based drug
design. Integrating biological data, such as 3D protein struc-
tures, can significantly improve the relevance and specificity of
generated molecules, making this method valuable for future
LLM-based drug design. Similarly, Wang et al**® discussed
PETrans, a deep learning method that generates target-specific
ligands using protein-specific encoding and transfer learning.
This study further emphasizes the importance of using trans-
former models for generating molecules with high binding
affinity to specific protein targets. The significance of these
works lies in their demonstration that integrating both human-
readable formats (like IUPAC names) and biological context
(such as protein structures) into generative models can lead to
more relevant, interpretable, and target-specific drug candi-
dates. This reflects a broader trend in Al-driven chemistry to
combine multiple data sources for more precise molecular
generation, accelerating the drug discovery process.

In 2024, Yoshikai et al**” discussed the limitations of
transformer architectures in recognizing chirality from SMILES

© 2025 The Author(s). Published by the Royal Society of Chemistry
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representations, which impacts the prediction accuracy of
molecular properties. To address this, they coupled a trans-
former with a VAE. Using contrastive learning from NLP to
generate new molecules with multiple SMILES representations,
enhancing molecular novelty and validity. Kyro et al.>”® pre-
sented ChemSpaceAL, an active learning method for protein-
specific molecular generation, efficiently identifying molecules
with desired characteristics without prior knowledge of inhibi-
tors. Yan et al’' proposed the GMIA framework, which
improves prediction accuracy and interpretability in drug-drug
interactions through a graph mutual interaction attention
decoder. These innovations represent significant strides in
addressing key challenges in molecular generation, such as
chirality recognition, molecular novelty, and drug-drug inter-
action prediction. By integrating new techniques like VAEs,
contrastive learning, and active learning into transformer-based
models, they have improved both the accuracy and interpret-
ability of molecular design.

Building on these developments, Shen et al.*'* reported on
AutoMolDesigner, an open-source tool for small-molecule
antibiotic design, further emphasizing the role of automation
in molecular generation. This work serves as a precursor to
more complex models, such as Taiga'** and cMolGPT,* which
employ advanced methods like autoregressive mechanisms and
reinforcement learning for molecular generation and property
optimization.

For a deeper dive into decoder-only transformer architecture
in chemistry, we highlight the May 2023 “Taiga” model by
Mazuz et al.,*** and cMolGPT by Wang et al.*® Taiga first learns
to map SMILES strings to a vector space, and then refines that
space using a smaller, labeled dataset to generate molecules
with targeted attributes. It uses an autoregressive mechanism,
predicting each SMILES character in sequence based on the
preceding ones. For property optimization, Taiga employs the
REINFORCE algorithm,'® which helps refine molecules to
enhance specific features. While this reinforcement learning
(RL) approach may slightly reduce molecular validity, it signif-
icantly improves the practical applicability of the generated
compounds. Initially evaluated using the Quantitative Estimate
of Drug-likeness (QED) metric,*? Taiga has also demonstrated
promising results in targeting IC50 values,'*® the BACE
protein,®*® and anti-cancer activities they collected from
a variety of sources. This work underscores the importance of
using new models to address applications that require a higher
level of chemical sophistication, to illustrate how such models
could ultimately be applied outside of the available benchmark
datasets. It also builds on the necessary use of standardized
datasets and train-validation-test splitting, to demonstrate
progress, as explained by Wu et al.*® Yet, even the MoleculeNet
benchmarks®® are flawed, and we point the reader here to
a more detailed discussion on benchmarking,'®® given that
a significant portion of molecules in the BACE dataset have
undefined stereo centers, which, at a deeper level, complicates
the modeling and prediction accuracy.

While models like Taiga demonstrate the power of autore-
gressive learning and reinforcement strategies to generate
molecules with optimized properties, the next step in molecular
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design incorporates deeper chemical domain knowledge. This
approach is exemplified by Wang et al.*® They introduced
c¢MoIGPT, a conditional generative model that brings a more
targeted focus to drug discovery by integrating specific protein—-
ligand interactions, which underscores the importance of
incorporating chemical domain knowledge to effectively navi-
gate the vast landscape of drug-like molecules. Using self-
supervised learning and an auto-regressive approach,
cMolGPT generates SMILES guided by predefined conditions
based on target proteins and binding molecules. Initially
trained on the MOSES dataset®”* without target information, the
model is fine-tuned with embeddings of protein-binder pairs,
focusing on generating compound libraries and target-specific
molecules for the EGFR, HTR1A, and S1PR1 protein
datasets.***"

Their approach employs a QSAR model® to predict the
activity of generated compounds, achieving a Pearson correla-
tion coefficient over 0.75. However, despite the strong predictive
capabilities, this reliance on a QSAR model, with its own
inherent limitations, highlights the need for more extensive
experimental datasets. cMolGPT*® tends to generate molecules
within the sub-chemical space represented in the original
dataset, successfully identifying potential binders but strug-
gling to broadly explore the chemical space for novel solutions.
This underscores the challenge of generating diverse molecules
with varying structural characteristics while maintaining high
binding affinity to specific targets. While cMolGPT advances the
integration of biological data and fine-tuned embeddings for
more precise molecular generation, models like Taiga and
c¢MolGPT differ in their approach. Taiga'" employs reinforce-
ment learning to optimize generative models for molecule
generation, while cMolGPT uses target-specific embeddings to
guide the design process. Both highlight the strengths of
decoder-only models but emphasize distinct strategies; Taiga
optimizes molecular properties through autoregressive
learning, and cMolGPT focuses on conditional generation
based on protein-ligand interactions.

In contrast, Yu et al*”® follow a different approach with
LlaSMol,?”* which utilizes pretrained models (for instance
Galactica, LlaMa2, and Mistral) and performs parameter effi-
cient fine-tuning (PEFT) techniques®'®*'* such as LoRa.*** PEFT
enables fine-tuning large language models with fewer parame-
ters, making the process more resource-efficient while main-
taining high performance. LlaSMol demonstrated its potential
by achieving state-of-the-art performance in property prediction
tasks, particularly when fine-tuned on benchmark datasets like
MoleculeNet.>®

There continue to be significant advancements being made
in using transformer-based models to tackle chemical predic-
tion tasks with optimized computational resources, including
more generalist models, such as Tx-LLM,** designed to
streamline the complex process of drug discovery. For addi-
tional insights on how these models are shaping the field, we
refer the reader to several excellent reviews,'***?'32% with Goel
et al.*** highlighting the efficiency of modern machine learning
methods in sampling drug-like chemical space for virtual
screening and molecular design. Goel et al.*** discussed the
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effectiveness of generative models, including large language
models (LLMs), in approximating the vast chemical space,
particularly when conditioned on specific properties or receptor
structures.

We provide a segue from this section by introducing the
work by Jablonka et al.,*** which showcases a decoder-only GPT
model that, despite its training on natural language rather than
specialized chemical languages, competes effectively with
decoder-only LLMs tailored to chemical languages. The authors
finetuned GPT-3 to predict properties and conditionally
generate molecules and, therefore, highlight its potential as
a foundational tool in the field. This work sets the stage for
integrating natural language decoder-only LLMs, like GPT, into
chemical research, where they could serve as central hubs for
knowledge discovery.

Looking ahead, this integration foreshadows future devel-
opments that pair LLMs with specialized tools to enhance their
capabilities, paving the way for the creation of autonomous
agents that leverage deep language understanding in scientific
domains. Decoder-only models have already significantly
advanced inverse molecular design, from improving property

View Article Online
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prediction to enabling target-specific molecular generation.
Their adaptability to various chemical tasks demonstrates their
value in optimizing drug discovery processes and beyond. As
models like LlaSMol and ¢MolGPT continue to evolve, inte-
grating chemical domain knowledge and biological data, they
offer exciting opportunities for more precise molecular gener-
ation. The growing potential for combining large language
models like GPT-4 with specialized chemical tools signals
a future where Al-driven autonomous agents could revolu-
tionize chemical research, making these models indispensable
to scientific discovery.

3.4 Synthesis prediction and encoder-decoder Mol-LLMs

The encoder-decoder architecture is designed for tasks involving
the translation of one sequence into another, making it ideal for
predicting chemical reaction outcomes or generating synthesis
pathways from given reactants. We begin with a background on
optimal synthesis prediction and describe how earlier machine
learning has approached this challenge. Following that, we
explain how LLMs have enhanced chemical synthesis prediction
and optimization. Although, our context below is aptly chosen to

Table 3 Encoder—decoder scientific LLMs. The release date column displays the date of the first publication for each paper. When available, the
publication date of the last updated version is displayed between parentheses

LLM Model size” Training data Architecture Application Release date
BioT5+'"” 252M ZINC20, UniRef50, 33M PubMed T5 Molecule captioning, molecule 2024.02
articles, 339k mol-text pairs from generation, property (2024.08)
PubChem, 569k FASTA-text pairs prediction
from Swiss-prot
nacho (ref. 187) 250M MoleculeNet, USPTO, ZINC T5 Property prediction, molecule 2023.11
generation, question (2024.05)
answering, NER
ReactionT5 220M ZINC and ORD T5 Property prediction and 2023.11
(ref. 326) reaction prediction
BioT5 (ref. 116) 252M ZINC20, UniRef50, full-articles T5 Molecule captioning, property 2023-10
from BioRxiv and PubMed, mol- prediction (2024.12)
text-TUPAC information from
PubChem
MOLGEN*?’ b ZINC15 BART Molecule generation 2023.01
(2024.03)
Text+Chem T5 60M, 220M 11.5M or 33.5M samples curated T5 Molecule captioning, product 2023.01
(ref. 328) from Vaucher et al.,**® Toniato prediction, retrosynthesis, (2023.06)
et al.,”*> and CheBI-20 molecule generation
MolT5 (ref. 330) 60M, 770M C4 dataset T5 Molecule captioning and 2022.04
molecule generation (2022.12)
T5Chem'”? 220M USPTO T5 Product prediction, 2022.03
retrosynthesis, property
prediction
Text2Mol**! b CheBI-20 SciBERT w/ Molecule captioning and 2021.11
decoder conditional molecule
generation
ChemFormer'®® 45M, 230M 100M SMILES from ZINC-15 BART Product prediction, property 2021.07
prediction, molecular (2022.01)
generation
SMILES b ChEMBL24 Transformer Property prediction 2019.11
transformer®*®
Molecular 12M USPTO Transformer Product prediction 2018.11
transformer>*® (2019.08)

“ “Model Size” is reported as the number of parameters. ” The total number of parameters was not reported.
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be synthesis prediction, other applications exist. For example,
SMILES Transformer (ST)** is worth a mention, historically,
because it explored the benefits of self-supervised pretraining to
produce continuous, data-driven molecular fingerprints from
large SMILES-based datasets. A list of encoder-decoder scientific
LLMs is shown in Table 3.

3.4.1 Synthesis prediction. Once a molecule has been
identified through property-directed inverse design, the next
challenge is to predict its optimal synthesis, including yield.
Shenvi**? describe how the demanding and elegant syntheses of
natural products has contributed greatly to organic chemistry.
However, in the past 20 years, the focus has shifted away from
complex natural product synthesis towards developing new
reactions applicable for a broader range of compounds, espe-
cially in reaction catalysis.*®* Yet, complex synthesis is
becoming relevant again as it can be digitally encoded, mined
by LLMs,*** and applied to new challenges. Unlike property
prediction, reaction prediction is particularly challenging due
to the involvement of multiple molecules. Modifying one reac-
tant requires adjusting all others, with different synthesis
mechanisms or conditions likely involved. Higher-level chal-
lenges exist for catalytic reactions and complex natural product
synthesis. Synthesis can be approached in two ways. Forward
synthesis involves building complex target molecules from
simple, readily available substances, planning the steps
progressively. Retrosynthesis, introduced by E. J. Corey in
1988,*** is more common. It involves working backward from
the target molecule, breaking it into smaller fragments whose
re-connection is most effective. Chemists choose small, inex-
pensive, and readily available starting materials to achieve the
greatest yield and cost-effectiveness. As a broad illustration, the
first total synthesis of discodermolide®*® involved 36 such steps,
a 24-step longest linear sequence, and a 3.2% yield. There are
many possible combinations for the total synthesis of the target
molecule, and the synthetic chemist must choose the most
sensible approach based on their expertise and knowledge.
However, this approach to total synthesis takes many years.
LLMs can now transform synthesis such that structure-activity
relationship predictions can be coupled in lock-step with
molecule selection based on easier synthetic routes. This third
challenge of predicting the optimal synthesis can also lead to
the creation of innovative, non-natural compounds, chosen
because of such an easier predicted synthesis but for which the
properties are still predicted to meet the needs of the applica-
tion. Thus, these three challenges introduced above are
interconnected.

3.4.2 Encoder-decoder mol-LLMs. Before we focus on
transformer use, some description is provided on the evolution
from RNN and Gated Recurrent Unit (GRU) approaches in
concert with the move from template-based to semi-template-
based to template-free models. Nam and Kim®*° pioneered
forward synthesis prediction using a GRU-based translation
model. In contrast, Liu et al*’ reported retro-synthesis
prediction with a Long Short-Term Memory (LSTM) based
seq2seq model incorporating an attention mechanism,
achieving 37.4% accuracy on the USPTO-50K dataset. The re-
ported accuracies of these early models highlighted the
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challenges of synthesis prediction, particularly retrosynthesis.
Schneider et al.**® further advanced retrosynthesis by assigning
reaction roles to reagents and reactants based on the product.

Building on RNNs and GRUs, the field advanced with the
introduction of template-based models. In parallel with the
development of the Chematica tool***** for synthesis mapping,
Segler and Waller*** highlighted that traditional rule-based
systems often failed by neglecting molecular context, leading
to “reactivity conflicts”. Their approach emphasized trans-
formation rules that capture atomic and bond changes, applied
in reverse for retrosynthesis. Trained on 3.5 million reactions,
their model achieved 95% top-10 accuracy in retrosynthesis and
97% for reaction prediction on a validation set of nearly 1
million reactions from the Reaxys database (1771-2015).
Although not transformer-based, this work laid the foundation
for large language models (LLMs) in synthesis. However,
template-based models depend on explicit reaction templates
from known reactions, limiting their ability to predict novel
reactions and requiring manual updates to incorporate new
data.

Semi-template-based models offered a balance between rigid
template-based methods and flexible template-free approaches.
They used interpolation or extrapolation within template-
defined spaces to predict a wider range of reactions and to
adjust based on new data. In 2021, Somnath et al.*** introduced
a graph-based approach recognizing that precursor molecule
topology is largely unchanged during reactions. Their model
broke the product molecule into “synthons” and added relevant
leaving groups, making results more interpretable.*** Training
on the USPTO-50k dataset,**® they achieved a top-1 accuracy of
53.7%, outperforming previous methods.

However, the template-free approaches align well with
transformer-based learning approaches because they learn ret-
rosynthetic rules from raw training data. This provides signifi-
cant flexibility and generalizability across various types of
chemistry. Template-free models are not constrained by
template libraries and so can uncover novel synthetic routes
that are undocumented or not obvious from existing reaction
templates. To pave the way for transformer use in synthesis,
Cadeddu et al*** drew an analogy between fragments in
a compound and words in a sentence due to their similar rank
distributions. Schwaller et al.**® further advanced this with an
LSTM network augmented by an attention-mechanism-based
encoder-decoder architecture, using the USPTO dataset.**®
They introduced a new “regular expression” (or regex) for
tokenizing molecules, framing synthesis (or retrosynthesis)
predictions as translation problems with a data-driven,
template-free sequence-to-sequence model. They tracked
which starting materials were actual reactants, distinguishing
them from other reagents like solvents or catalysts, and used
the regular expression to uniquely tokenize recurring reagents,
as their atoms were not mapped to products in the core reac-
tion. This regex for tokenizing molecules is commonly used
today in all mol-based LLMs.

In 2019, going beyond the “neural machine” work of Nam
and Kim,*® Schwaller et al**® first applied a transformer for
synthesis prediction, framing the task as translating reactants
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and reagents into the final product. Their model inferred
correlations between chemical motifs in reactants, reagents,
and products in the dataset (USPTO-MIT,*** USPTO-LEF,**
USPTO-STEREO*#). It required no handcrafted rules and accu-
rately predicted subtle chemical transformations, out-
performing all prior algorithms on a common benchmark
dataset. The model handled inputs without a reactant-reagent
split, following their previous work,**® and accounted for
stereochemistry, making it valuable for universal application.
Then, in 2020, for automated retrosynthesis, Schwaller et al.***
developed an advanced Molecular Transformer model with
a hyper-graph exploration strategy. The model set a standard for
predicting reactants and other entities, evaluated using four
new metrics. “Coverage” measured how comprehensively the
model could predict across the chemical space, while “class
diversity” assessed the variety of chemical types the model
could generate, ensuring it was not limited to narrow subsets of
reactions. “Round-trip accuracy” checked whether the retro-
synthetically predicted reactants could regenerate the original
products, ensuring consistency in both directions. “Jensen-
Shannon divergence” compared the predicted outcomes to
actual real-world distributions, indicating how closely the
m