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Introduction

Reversible K-ion intercalation in CrSe, cathodes for
potassium-ion batteries: combined operando PXRD
and DFT studiest

Weihao Li, 2 Johannes Déhn,? Jinyu Chen,°® Manuel Dillenz, ©°

Mohsen Sotoudeh, ©° David M. Pickup,® Shunrui Luo, ©f Ryan Parmenter,®
Jordi Arbiol, © 9 Maria Alfredsson, ©© Alan V. Chadwick,® Axel GroR, & °h
Maider Zarrabeitia @ *<@ and Alexey Y. Ganin® *

In the pursuit of more affordable battery technologies, potassium-ion batteries (KIBs) have emerged as
a promising alternative to lithium-ion systems, owing to the abundance and wide distribution of
potassium resources. While chalcogenides are uncommon as intercalation cathodes in KIBs, this study's
electrochemical tests on CrSe, revealed a reversible K* intercalation/deintercalation process. The CrSe,
cathode achieved a KIB battery capacity of 125 mA h g~* at a 0.1C rate within a practical 1-3.5 V vs. K*/K
operation range, nearly matching the theoretical capacity of 127.7 mA h g~ Notably, the battery
retained 85% of its initial capacity at a high 1C rate, suggesting that CrSe, is competitive for high-power
applications with many current state-of-the-art cathodes. In-operando PXRD studies uncovered the
nature of the intercalation behavior, revealing an initial biphasic region followed by a solid-solution
formation during the potassium intercalation process. DFT calculations helped with the possible
assignment of intermediate phase structures across the entire CrSe,—K;oCrSe, composition range,
providing insights into the experimentally observed phase transformations. The results of this work
underscore CrSe,'s potential as a high-performance cathode material for KIBs, offering valuable insights
into the intercalation mechanisms of layered transition metal chalcogenides and paving the way for
future advancements in optimizing KIB cathodes.

Notably, the K" has an even smaller Stokes radius than Li",
enabling rapid diffusion in common electrolytes, such as
propylene carbonate.”® This property leads to superior rate

The surge in global demand for portable electronics and electric
vehicles has intensified the need for cost-effective, environ-
mentally friendly battery solutions.'® Potassium-ion batteries
(KIBs) have emerged as a compelling alternative to traditional
lithium-ion systems, leveraging the abundance and wide
distribution of potassium resources across the globe.*® KIBs
offer several advantages over their lithium-ion counterparts.
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capabilities in KIBs compared to lithium-ion batteries (LIBs).
Additionally, the larger K-ion radius allows it to remain within
interstitial sites, preventing long-term degradation commonly
observed in LIBs where small Li ions often substitute transition
metals within the lattice.® Furthermore, since potassium does
not form alloys with Al, cheaper and lighter Al-foils can be
routinely used as current collectors in KIBs."

Despite significant progress in KIB research over the past
decade, the field remains in its nascent stages compared to the
more established LIBs. Key efforts have been focused on metal
oxide-based cathodes," with optimization processes such as
doping' aimed at achieving performance comparable to LIBs.
Prussian blue analogues with 3D frameworks'” have also
garnered attention, particularly where safety is a concern.
However, challenges, such as volume changes,* low density,"
and poor electronic conductivity resulting in low coulombic
efficiency (CE)*® still need to be addressed.

In this context, metallic and semiconducting layered tran-
sition metal chalcogenides (TMCs) offer promising systems for
KIB cathode development. Compared to oxides, TMCs display

This journal is © The Royal Society of Chemistry 2024


http://crossmark.crossref.org/dialog/?doi=10.1039/d4ta05114a&domain=pdf&date_stamp=2024-11-16
http://orcid.org/0000-0002-0388-7490
http://orcid.org/0000-0002-4901-154X
http://orcid.org/0000-0002-0970-5336
http://orcid.org/0000-0003-4910-4604
http://orcid.org/0000-0002-0695-1726
http://orcid.org/0000-0002-2843-1641
http://orcid.org/0000-0003-4037-7331
http://orcid.org/0000-0003-1305-2136
http://orcid.org/0000-0002-3754-5819
https://doi.org/10.1039/d4ta05114a
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ta05114a
https://pubs.rsc.org/en/journals/journal/TA
https://pubs.rsc.org/en/journals/journal/TA?issueid=TA012045

Open Access Article. Published on 23 Hydref 2024. Downloaded on 08/01/2026 12:32:25.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

wider interlayer spacing, making them attractive hosts for the
relatively large K'. While many binary TMCs studied to date
demonstrate conversion-type reactions leading to complete
degradation of the host material,*** notable exceptions like
TiS, (ref. 21) and KCrS, (ref. 22) have shown promising revers-
ible intercalation behavior. In particular, the KCrS, system has
demonstrated the ability to cycle repeatedly between ~K, 4,CrS,
and ~K, sCrS, without side reactions. However, due to such
a small intercalation range, the battery showed a relatively low
capacity of only ~68 mA h g™" at a very slow rate of 0.05C.

This is significantly lower than the expected theoretical
capacity of ~231 mA h g '. To address these limitations,
increasing the polarizability of the anion could alleviate drastic
phase transitions and improve the extent of the intercalation
reaction during charge-discharge cycles. This suggests that
replacing S with Se could lead to improved KIB performance.
Remarkably, CrSe, has not been studied in KIBs to date despite
being demonstrated to readily intercalate K' to KCrSe,*
Therefore, this work used the excellent opportunity to investi-
gate whether the K' intercalation process in CrSe, can be
pushed to its theoretical limit while delivering competitively
high battery performance along the way.

Results and discussion

To understand intercalation process of K* into CrSe,, we carried
out periodic density functional theory (DFT) calcualtions which
are shown to yield reliable information about batteries.*® In
particular, we have determined the density of states (DOS) to
elucidate the electronic structures of CrSe, and KCrSe,.
Furthermore, we have performed a computational screening
study®**® to identify the crystal structure as a function of K
loading. The geometries of CrSe, and KCrSe, in the respective
space groups P3m1 and C2/m were optimized with the strongly
constrained and appropriately normed (SCAN) meta-
generalized gradient approximation,” and the DOS were
calculated with the hybrid functional suggested by Heyd, Scu-
seria, and Ernzerhof (HSE06)* as described in ESI Note 1.1 The
partial DOS for each compound (Fig. 1) and the contribution of
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the relevant bands are in line with previous computational
studies.>*3"3>

In both materials, the filled valence band, which starts at
about —6 eV, is in the spin-up direction predominantly of Cr(d)
character but exhibits significant Se contributions, suggesting
a partially covalent nature of the bonding as found for other
layered materials.**** Interestingly, the lowest unoccupied
states of CrSe, and the highest occupied states of KCrSe, are
dominated by Se in both spin states. Hence, in contrast to other
layered cathode materials like LiCoO,, where the redox reaction
is driven by oxidation/reduction of the transition metal,***>3¢
the present observations indicate anionic contributions to the
redox process in KCrSe,. Notably, there are no contributions of
K to the valence band of KCrSe,, confirming the full ionization
to K" during intercalation. We noted metallic behavior in the
case of CrSe,, while KCrSe, is a semiconductor with a band gap
of 1.57 eV, suggesting that the electronic conductivity of the
intercalated material is impaired compared to the pristine
material.

The DFT calculations point out that due to the semi-
conducting behavior of KCrSe,, a KIB based on CrSe, would
benefit from conductive additives. Therefore, we designed an
efficient synthesis which allows for the direct addition of
graphite to CrSe, without affecting the materials’ properties, as
discussed at length elsewhere®® and ESI Note 1. The oxidation
states of the elements in pristine CrSe, and CrSe, with an
optimal addition of 10 wt% of graphite are identical, as evi-
denced by a perfect overlap of the Cr K-edge XANES profiles
(Fig. 2a).

A +6.45 eV shift of the Cr-edge relative to that of Cr foil is
close to the shift of +5.79 eV measured in the four valent
chromium metal in CrSe;.*” This seems to confirm the valence
state of Cr to be +4. Similarly, the analysis of Se K-edge XANES
spectra (Fig. S11) confirmed the same Se oxidation state for both
samples. Bond lengths and fitting parameters from EXAFS data
are summarized in Tables S1 and S2.f In both CrSe, samples,
the length of the Cr-Se bond is 2.47 A. Overall, the results are in
good agreement with the literature,®® confirming that the
addition of graphite for improved conductivity does not change
the chemical identity of CrSe,.
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Fig. 1 The partial density of states of the valence bands of (a) CrSe, and (b) KCrSe,. The Fermi energy Ef is given by a dashed line.
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(a) Cr K-edge XANES profile of pure CrSe; (black) and CrSe, with 10 wt% of graphite (red). (b) LeBail refinement of the experimental PXRD

profile (CuK,) for a CrSe, with 10 wt% of graphite against relevant structure models for CrSe, and graphite. Experimental data are shown as black
crosses; the calculated profile is shown by a solid red line. The difference between the calculated and experimental data is shown as a blue
profile. Magenta and orange vertical bars represent the Bragg positions of the CrSe, and graphite phases. (c) SEM image of CrSe, with 10 wt% of
graphite. (d) HRTEM image of CrSe, with 10 wt% of graphite. (€) HRTEM magnified detail of the yellow squared region in (d) showing the CrSe,
crystalline structure. (f) Power spectra (Fourier Transform) applied to (e), with the corresponding crystal structure indexing.

The powder X-ray diffraction (PXRD) analysis (Fig. 2b)
confirmed that the sample consists of pure CrSe, and graphite
phases without any additional impurities. This is in line with
expectations since the precursor consisted of only KCrSe, and
graphite phases (Fig. S2). The LeBail refinement (carried out
instead of the Rietveld refinement due to strong preferred
orientation within the sample) of the PXRD data (Fig. 2b)
against a model for CrSe, (Space group (SG): P3m1) and graphite
(SG: P63mc) showed an excellent match between the experi-
mental data and the calculated profiles, further confirming that
the sample contains only two phases. The refined unit cell
parameters (a = 3.3886(3) A, ¢ = 5.9172(3) A for CrSe, and a =
2.4610(8) A, ¢ = 6.6950(1) A for graphite) are consistent with
those in the literature (Table S37) further confirming that the
addition of graphite does not affect the crystal structure of
CrSe,. Since the characterization by EXAFS and PXRD showed
that the pristine CrSe, and CrSe, with 10 wt% of graphite
samples are chemically equivalent, from this point, we refer to
the graphite-containing samples simply as CrSe, since only
these were used in the cell testing work.

The SEM revealed a lamellar morphology of the sample
(Fig. 2c and S37), while the elemental mapping by EDX revealed
perfectly overlapped Cr and Se maps (Fig. S41), confirming

31278 | J. Mater. Chem. A, 2024, 12, 31276-31283

homogenous CrSe, phase distributed within the graphite
matrix. HRTEM revealed that the sample is highly crystalline
(Fig. S51). From the crystalline domain in Fig. 2d, the CrSe,
lattice fringe distances were measured to be 2.108 A, 2.051 A,
and 2.867 A, while the angles between the first and the next
measured spots corresponded to 39.15° and 109.6°, respec-
tively. With the former structural information, we could index
the power spectrum (Fourier Transform) and assign the found
crystal structure to the trigonal CrSe, phase, as visualized along
its [201] zone axis. Furthermore, the simulations revealed that
the crystal structure of the studied region is fully consistent with
the one expected for CrSe, (SG: P3m1 with a = 3.3931 A and ¢ =
5.9150 A), which matched well with the PXRD results. Further-
more, the individual EDX maps of Cr and Se are perfectly
overlapped further confirming the homogeneity of the sample
on a nearly atomic level (Fig. S51).

The electrochemical measurements were carried out using
CrSe, as a cathode and K metal as an anode with 1 M KPFg in
EC: DMC as an electrolyte (ESI Note 11 for details). The cyclic
voltammetry (CV) measurements at 0.1 mV s~ (Fig. 3a) revealed
several peaks, pointing to a complex intercalation behavior.
However, a near-perfect overlap of the profiles on the first and
second discharge/charge clearly suggests a reversible

This journal is © The Royal Society of Chemistry 2024
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Fig. 3 (a) CV profiles of CrSe, recorded at 0.1 mV s, (b) GCD profiles of CrSe, recorded at 0.1C scan rate at 20 °C + 2 °C. (c) GCD profiles of
CrSe; and (d) corresponding contour plot of in operando PXRD data. The Miller indexes of key reflections of the expected phases are provided

within the figure.

intercalation/deintercalation process without any evidence of
blockages or decomposition of CrSe,.

Galvanostatic charge/discharge (GCD) profiles (Fig. 3b) at
a relatively low charge/discharge rate of 0.1C (corresponding to
12.77 mA g~ ") further confirmed the intercalation of K* into
CrSe,.

The cell delivered a capacity of 125 mA h g~ on the second
discharge, which is very close to the theoretical capacity of
127.7 mA h g . In this regard, CrSe, outperforms a range of
state-of-the-art cathodes for KIBs reported up to date (Table
S47).223%-41 Notably, the shapes of the GCD profiles are markedly
different from those observed for the KCrS, battery, which was
only partially reversible and, as a result, delivered only
68 mA h g~ " at a 0.05C.?

Additional tests were conducted on pure graphite, which
demonstrated negligible capacity contribution of less than
1.4 mA g~ ! within the 1.0-3.5 V potential range (Fig. S71). The
comprehensive study for choosing 10 wt% as the optimal ratio

This journal is © The Royal Society of Chemistry 2024

is discussed at length elsewhere.” The details of the sample
preparation are summarized in ESI Note 1.}

Furthermore, following the approach discussed at length in
the previous study,* we calculated (ESI Note 1, Fig. S8 and S97)
the values of the apparent diffusion coefficients Dg; = 7.3 X
10" em® s (for the deintercalation from Stage 3 to Stage 2)
and D¢, = 3.8 x 107" ecm® s™* (for the deintercalation from
Stage 2 to Stage 1) were higher than in KCrS, (6 x 10~** cm?
s7').22 These values were of the same order of magnitude as
state-of-the-art Prussian blue cathodes (5 x 10™* x 107'° em?
s™1),® suggesting that KCrSe, is a promising K-based cathode
material.

The results from the rate capacity experiments upon cycling
at various C-rates (Fig. S101) showed that the battery retained
85% of the initial capacity even when cycled at a relatively high
1C rate, showing promising electrochemical behaviour for high-
power applications. Moreover, the battery retained 80% of the
initial capacity after 70 cycles investigated in a galvanostatic

J. Mater. Chem. A, 2024, 12, 31276-31283 | 31279
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mode at a 0.1C rate (Fig. S1171). This is similar to previously
reported layered cathode materials (Table S4t). However, upon
further cycling the cell exhibited capacity fading (Fig. S117). To
understand this issue, a comprehensive assessment of electro-
lytes commonly used in KIB research was conducted, revealing
that none outperformed the 1 M KPFq in 1:1 EC: DMC elec-
trolyte (Fig. S12%1). The significant impact of electrolyte
composition on battery performance strongly suggests that
further optimization could lead to improved cycling stability.
Previous studies have reported on the detrimental effects of
electrolyte instability on cycling performance, particularly due
to erosion of the solid-electrolyte interphase.** Recent strategies
to mitigate this issue include the use of sacrificial agents such
as K,C,0,.*°

In addition, the coulombic efficiency (CE) value of 97% is
delivered, which is gradually trending down until reaching the
minimum of ca. 95% on cycle 50. Nevertheless, in the following
cycles the CE is gradually improved to almost reach 100% (see
Fig. S117). These CE values are in the range of the commonly
observed in KIBs, e.g., between 94 and 98%.%*

Future work aimed at optimization of the electrolyte
composition may help to solve the issue of capacity fading upon
cycling and goes beyond the scope of this preliminary investi-
gation. Additionally, solvothermal synthesis that has the
potential to produce hierarchical compounds could lead to
optimization,***® which can improve both the performance and
scalability of cathode material production.®

Since CrSe, has not been previously reported as a battery
cathode, it is essential to understand the intercalation
processes that drive battery performance in this material.
Therefore, in-operando PXRD datasets were recorded on CrSe,
alongside the experimentally measured GCD profiles at a 0.2C
rate (Fig. 3c). The extent of K* ion intercalation as the value of x
in K,CrSe, can be evaluated from a comparison between
experimental and theoretical capacity (Fig. S131). This leads to
several stages corresponding to different phase assemblies.
During the initial Stage I the (101) peaks in CrSe, are visible but
of significantly less intensity than expected from a theoretical
pattern. It is evident that the CrSe, has a strong (00[) prefer-
ential orientation, as evident from the excess in the intensity of
the (002) peaks (Fig. 3c). As intercalation progresses, the
formation of the plateau in the electrochemical data is accom-
panied by the gradual disappearance of the (002) peak from
CrSe, and the appearance of new peaks at ~33° of 2Theta
consistent with Phase 1, suggesting a biphasic reaction, and
corresponding to a ~K, sCrSe, composition from the electro-
chemical data (Fig. S131). The identity of Phase 1 is discussed
later in the text as it required DFT calculations to identify its
probable crystal structure. Upon further charging to Stage II,
coinciding with a change in the gradient of the curve at ~2.3 V
vs. K'/K, the peaks at ~33° 2Theta degrees diverge toward
higher 2Theta values from the initial position, suggesting that
unknown solid-solutions, such as Ky 5.,CrSe, (denoted as Phase
2), is formed. Phase 2, with its crystal structure later assigned by
DFT, is retained until the voltage reaches ~2 V vs. K'/K, corre-
sponding to a ~K,gCrSe, composition according to the elec-
trochemical data (Fig. S131). Below this voltage, Phase 3 is

31280 | J Mater. Chem. A, 2024, 12, 31276-31283
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retained (consistent with the change in the gradient of the
discharge curve slope indicated as Stage III) until the maximum
capacity consistent with the composition K; ,CrSe, is achieved.
Despite a significantly preferred orientation within the sample
with only (003) peaks of appreciable intensity, we could match
the boundaries Phase 3 and the c-parameter with the previously
reported K,gCrSe, and K, ,CrSe, compositions.”® The same
behavior is observed on discharge as well as the additional
charge-discharge cycle (Fig. 3d), confirming the reversibility of
the K' storage mechanism.

As mentioned above, to identify the possible crystal struc-
tures of Phase 1 and Phase 2, we needed to perform periodic
DFT calculations for the crystal structures within the entire
range of K,CrSe, (x = 0-1). To create potential configurations,
we used supercells with 24 to 48 atoms, which were generated by
introducing interstitials and vacancies into the crystal struc-
tures of CrSe, (SG: P3m1) and KCrSe, (SG: C2/m). Additionally,
we considered the prototype phase consistent with the structure
of NaCrSe, (SG: R3m).*** After having removed symmetrically
equivalent geometries, we considered 75 input structures in
space group P3m1, 130 input structures in space group C2/m,
and 55 input structures in space group R3m. A DFT geometry
optimization with the functional suggested by Perdew, Burke,
and Ernzerhof (PBE) was conducted on these input structures as
described in ESI Note 1,1 and the formation energies for the
one-dimensional chemical space K,CrSe, (x = 0-1) are plotted
in Fig. 4a.

The convex hull of stability has been determined and is
highlighted in Fig. 4. In agreement with the experimental
observations described above, the calculations revealed that
energetically favorable configurations for K, sCrSe, are consis-
tent with the monoclinic unit cell (SG: C2/m), while for
Ko.,5CrSe, the most stable structure was found within P3m1
space group. The diffraction patterns of the most stable phases
calculated with the PBE functional are shown in Fig. S14.}

To reassess these computational results, we additionally per-
formed geometry optimizations with the advanced SCAN func-
tional on a set of 52 vacancy structures, which had turned out to
be energetically most favorable in the previously conducted PBE
calculations (See ESI Note 11 for more details). The meta-GGA
SCAN has been found to yield significantly improved formation
energies compared to generalized gradient approximation-based
functionals™ and is, therefore, expected to provide more reliable
results than PBE on the cost of higher computational effort.

The formation energies for this second set of calculations are
plotted in Fig. 4b. The calculations revealed only one stable
structure with a monoclinic symmetry for K, ;CrSe, with the
simulated structure displayed in Fig. S15.7 As mentioned above,
despite significant preferred orientation, it appears that the
(009) peak of this stable structure fits very well with the peak at
~33.3° of 2Theta from the in-operando data (Fig. 3c) while the
(-206) and (20-6) peaks could be potentially attributed to
experimental peaks at ~34.5° of 2Theta. Based on this assess-
ment, once CrSe, is completely transformed into K, sCrSe,,
additional K' ion intercalation results in the formation of
a series of solid-solutions accompanied by a gradual decrease in
(009) peak. This decrease is consistent with the plot of the c-

This journal is © The Royal Society of Chemistry 2024
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Fig. 4 Formation energies E¢ of the one-dimensional phase space K,CrSe, (0 =< x = 1) evaluated with (a) the PBE functional and (b) the SCAN
functional. The compounds on the convex hull of stability are highlighted in red.

parameters for the DFT-deducted phases along the energy hull
(Fig. S167). Notably, DFT calculations predict that these phases
are metastable. Therefore, it is unsurprising that previous
researchers were unable to detect them (Table S671) in ex situ
experiments.” Despite possible metastability, it appears that all
the K* ion intercalated phases remain intact during the cycling
process. As mentioned above, the significantly preferred
orientation of the sample with respect to the plane did not allow
for complete indexing of Phase 1 and Phase 2. This, however,
provides an opportunity for future follow-up work, given the
relatively good performance of the CrSe, battery.

Conclusion

In summary, CrSe, emerges as a promising cathode material for
KIBs, achieving a capacity of 125 mA h g~" at 0.1C rate, nearly
matching its theoretical capacity. In-operando PXRD studies and
DFT calculations reveal three distinct phases during K" interca-
lation, providing crucial insights into the potassiation process,
such as an initial biphasic region followed by a solid-solution
one. CrSe, exhibits reversible intercalation/deintercalation and
outperforms its sulfur counterpart, KCrS,. While these results are
encouraging, challenges persist, including the need to enhance
long-term cycling stability and fully comprehend structural
changes during intercalation. Future research should prioritize
electrolyte composition optimization, investigation of interme-
diate phase structures, and exploration of doping effects to
improve the electronic conductivity of the fully intercalated
semiconducting K, (CrSe, phase. Despite these hurdles, this
work significantly advances the development of efficient and
sustainable energy storage solutions. It demonstrates that
research into TMC-based cathodes for KIBs could create
substantial impact on the pursuit of alternatives to LIBs, paving
the way for more sustainable energy storage technologies.
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