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The capture of CO, from air is of utmost importance, not only to reduce
its impact on climate change but also for its utilisation as a tremendous,
renewable source of C1 building blocks for sustainable chemical
synthesis. Novel and known superbase structures are compared in
a new selection of solvents for CO, capture and release. Bicyclic ami-
dine and guanidine superbases with 6-5, 6-6 and 6—7 configurations
and many methylated analogues are investigated. As reported here,
identified superbase/solvent combinations offer a highly efficient,
reversible, and kinetically favourable CO, capture process from air. The
two most beneficial superbase/solvent synergic combinations identi-
fied are 1,5,7-triazabicyclo[4.3.0]non-6-ene (TBN) in butyl acetate and
1,5-diazabicyclo[4.3.0lnon-5-ene (DBN) in acetonitrile. They reach
saturation after 15 min with pure CO, and after 24 hours under open-air
conditions and release CO, with a CO,/superbase molar ratio of 0.41
and 0.25, respectively. Due to the favourable thermodynamics of the
systems, quantitative CO, release for TBN and DBN occurs under mild
conditions at 90 °C and 60 °C within 20 minutes. The required time for
a complete absorption—desorption cycle for both TBN-butyl acetate
and DBN-acetonitrile was only 48.5 and 38.5 minutes respectively.
Superbase—solvent mixtures are recyclable and the system retains its
initial CO, capturing capability after 5 cycles. As this apparently easy
emerging system design allows the direct capture of CO, from air, it has
potential for positive utilization on the global scale.

Introduction

Carbon dioxide is an overly abundant greenhouse gas, partic-
ularly from industrial point sources such as petrochemical, iron
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Direct carbon dioxide (CO,) capture from air is not only imperative for
addressing the escalating climate crisis, but it also holds significant
potential to serve as a sustainable and cost-effective source of C1 building
blocks for the chemical industry. This emerging technology represents
a crucial step towards mitigating the adverse impacts of anthropogenic
carbon emissions and fostering a more sustainable future. On the other
hand, current technologies rely on calcium based adsorbents or aqueous
alkanolamine which require high energy to recover the captured CO, for
industrial applications. With the aim of developing efficient CO, capture
and release at low energy, the use of amidines and guanidine is becoming
an attractive alternative to other processes. Herein, we introduced not only
the importance of the structure of the superbases (amidine or guanidine),
but also the role of the solvent and its synergetic effects on both capture
and release of CO,. The effect of solvent has not been deeply investigated
and plays a dual role in the thermodynamics and kinetics of CO, capture
and release.

and steel manufacturing and the cement industry.”® Reducing
anthropogenic CO, emissions is an important step towards
carbon neutrality but it is insufficient to reach the anticipated
CO, negativity that will be required.® Direct CO, capture from
air is not only necessary but it also has great potential to provide
a clean source of renewable and low cost C1 building blocks for
the chemical industry.”® Contributing to added-value products
such as urea and inorganic carbonates, innovative processing of
methanol and dry reforming with methane to jet fuels have also
attracted much recent interest.®** CO, is also essential in
industrial scale synthesis of cyclic carbonates, polycarbonates,
non-isocyanate polyurethanes (NIPU), and salicylic acid.**™*

Different technologies have been developed to capture CO,
from different sources, whether this is direct air capture (DAC)
or from point sources such as flue gas.”**" Inorganic sorbents
have been used to capture CO, using the calcium oxide-calcium
carbonate loop. However, the recovery process is energy inten-
sive, posing challenges to future use.

With the importance of removing CO, from flue gases as well
as from air, different capture technologies were developed with
many pros and cons for each of these methods.”
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Based on the limitation of solid sorbents, amine in solvent
becomes an attractive alternative, since the reaction of an
amine with CO, is a fundamental interaction in chemistry. This
interaction leads to the formation of stable ionic species such as
carbamate or (bi)carbonate. Currently, the most used absor-
bents for CO, capture in industries are amine-based aqueous
solutions such as monoethanolamine (MEA), diethanolamine
(DEA), diglycolamine (DGA) and N-methyldiethanolamine
(MDEA).>**** These amines strongly bind CO,, and high
temperatures are needed (130 °C) for its recovery. Due to the
high heat capacity of the reaction medium, this step also
requires significant amounts of energy.”® Additionally, these
absorbents face severe challenges with the loss of organic
amines due to high volatility and decomposition during
regeneration.>*”?*

Ionic liquids have improved this system by improving
thermal stability, lowering loss of solution through lower
vapour pressure and by having tuneable polarity in the choice of
ion pairs. The choice of ion pairs also allows control over other
physical and chemical properties. However, negative ions for
ionic liquids tend to be halogenated or toxic, meaning they have
little chance of being scalable to the problem at hand.*

Bicyclic organic amine superbases, particularly amidines
and guanidines, have gained attention as promising alterna-
tives to conventional alkanolamine for the capture of CO,. First,
Jessop et al. studied 1,8-diazabicyclo[5.4.0Jundec-7-ene (DBU)
with hexanol to form a switchable ionic liquid, reaching
a polarity like that of water.***> They were also able to recover
CO, by simply heating the solution.*® Not only does this system
show reversible capture of CO,, but their results show that the
energy consumption of this system is 50% less than that of
a water-MEA mixture.* When amidine or guanidine captures
CO,, in the presence of water, a bicarbonate anion is formed
over the carbamate zwitterion.**** The carbamate zwitterion can
allow for stabilising intramolecular hydrogen bonding to occur,
whereas the bicarbonate exists as separate ions.** An example of
this can be seen in Fig. 1.

Amidine and guanidine superbases were further studied with
different alcohols and hexane revealing further possibilities for
reversible capture of CO,.>***%? A review thoroughly described
the effect of alcohols, ionic liquids, and deep eutectic solvent on

(N\ C */> +HCOy"
/,c

6\{ \(
-CO,, -H,0

Fig. 1 Absorption schematic of CO, using TBN: (A) without water
leading to the formation of zwitterions and (B) with the presence of
water forming bicarbonate.
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CO, capture.*” On the other hand, the use of other organic
solvents is not very well studied for CO, capture. Furthermore,
fundamental understanding of the synergistic solvent effect with
superbases is lacking and further improvement of the superbase
(SB)-CO, capture system remains highly challenging.*’

Herein we report highly reversible and kinetically favourable
CO, capture benefitting from the synergistic SB-solvent
combinations. Even more strikingly, this concept also opens
a window of opportunity to directly capture CO, from air (DAC).
The lowest temperature of CO, release and which combinations
release the most CO, in a capture/release cycle would be
considered optimal. As much as the structure of the SB is the
core of reactivity, the selection of solvent is fundamental to
attain maximum absorption and reversibility.

Results and discussion
CO,, capture and release using different solvents

All in all, we evaluated 10 solvents and 8 superbases, totalling
up to 80 combinations for the reversible capture of CO,. First,
we saturated a 30% weight superbase solution with 15 min of
bubbling pure CO, at room temperature (RT). To identify their
reversibility capability in CO, capture, the release temperature
and duration of CO, released were studied (see the ESI}). Some
solvents were excluded from further study as they, regardless of
the superbase, demonstrated an irreversible binding of CO,,
had limited solubility for the superbases or released CO, above
the boiling point of the solvent. We observed irreversible
behaviour for example with TBU and toluene. Based on these
observations, SB/solvent combinations demonstrated distinct
differences for CO, release. While the structure of the superbase
has a bearing on its ability to bind CO,, the synergetic effects
with the solvent play an important role in both its absorption
and release. Other physicochemical properties of the solvent,
such as viscosity and polarity, also affect the mass transfer of
CO, to the reaction medium. However, the literature regarding
interaction of a solvent with a SB-CO, adduct is sparse, espe-
cially regarding its direct effect on the reversibility of the
reaction.**

For further studies, we focused on five green solvents,
ethanol, ethyl acetate, butyl acetate, propylene carbonate and
acetonitrile.”»** DBU was widely investigated and was used as
a reference point to compare with 7 bicyclic amidines and
guanidines consisting of different ring configurations; 6-5, 6-6
and 6-7. The amidines used in this study were DBU and 1,5-
diazabicyclo[4.3.0]non-5-ene (DBN). The guanidines studied
were  1,5,7-triazabicyclo[4.4.0]dec-5-ene  (TBD), [1,5,7}
triazabicyclo [4.5.0]-undec-5-ene (TBU) and 1,5,7-triazabicyclo
[4.3.0]non-6-ene (TBN). Superbases were also compared with
their N-methyl substituted analogues for their influence on
binding CO,;  7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene
(mTBD) and the racemic mixture of the isomers 7-methyl-
1,5,7-triazabicyclo[4.3.0]non-5-ene (mTBN) and 5-methyl-1,5,7-
triazabicyclo[4.3.0]non-6-ene (mTBN) depending on whether
the methyl group is on the 5 or 6 membered ring, respectively.
1,1,3,3-Tetramethylguanidine (TMG) was included as a repre-
sentative of acyclic guanidines. The three major criteria for

© 2024 The Author(s). Published by the Royal Society of Chemistry
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efficient systems are having a high molar ratio of CO,/SB
released, low reversibility temperature and a rapid release.

In the selected aprotic solvents, the superbases reacted with
pure CO, and formed a white precipitate after 5 minutes. When
heat is applied, any resulting slurries disappear, and CO, gas is
emitted. However, ethanol forms an ionic liquid, and so no
precipitate is observed.*® There is a stark contrast in the SB-CO,
adduct reversibility depending on the solvent used, including
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two exceptions, TBN/ethyl acetate and TBN/acetonitrile being
irreversible (see Tables S2 and S3 in the ESIT).

Compared to acyclic TMG, a bicyclic configuration increases
electron density at the sp,-hybridised nitrogen, which increases
its nucleophilicity and thus binding strength with CO,. From
the series of bicyclic superbases, DBN/acetonitrile and TBN/
butyl acetate are the best candidates when combining time,
temperature and molar ratio of CO, bound and released. Based

Table 1 Selected superbase/solvent combinations and their properties towards the three major criteria: temperatures, time and the amount of

released CO,*

Temperature of

Superbase structure Solvent CO, release (°C) Time“ (min) Molar ratio CO,/SB
(I
N~ °N Butyl acetate 90 20.5 0.41 (£6%)
H
TBN
(20
N/ Acetonitrile 60 20.5 0.25 (£3%)
DBN
g
N/ANJ Acetonitrile 60 39 0.25”
H
TBU®
(I
N)\ N Acetonitrile 60 25 0.16 (+£4%)
|
mTBN
()
N¢I\N Acetonitrile 65 29 0.13 (£6%)
H
TBD
g
N Ethanol 60 17 0.13 (£6%)
DBU
N
A
N N Butyl acetate 65 26 0.05 (+£4%)
|
mTBD
NH
Ao
| ] Ethyl acetate 60 32 0.11 (£6%)
™G

“ The CO, absorption studies used 30 g of a superbase-solvent solution, with a 30% wt superbase. CO, was sparged through the solution for 30
minutes under vigorous stirring. The flask was then placed in a preheated oil bath at the selected temperature. The volume of CO, released was
measured by using a burette system, and accordingly, the amount of CO, released and molar ratio of CO,/superbase were calculated.
b Solubility issues in all selected solvents as TBU partially precipitates out of the solution after releasing CO,.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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on results in Table 1, TBN and DBN, both having 6-5 hetero-
cyclic ring configurations, are markedly faster in CO, release
than bicyclic amidines and guanidines with 6-6 and 6-7 ring
combinations, including classical DBU. The other obvious
benefit of TBN and DBN superbases is a higher molar ratio of
superbase to CO, (Table 1).

The structure of the superbase has a bearing on its ability to
reversibly bind CO,. In the same solvent, the change from an
amidine structure to its guanidine analogue increases the
amount of reversibly released CO, (see the ESI, Table S37).
Despite similar reversibility temperatures, (when considering
differences in solvent) non-methylated guanidines capture
more CO, compared to their methylated analogues (TBD vs.
mTBD). Having a H-bond donor and acceptor nitrogen in near
proximity in a planar configuration, bicyclic guanidines are
considered to bind CO, stronger than the corresponding ami-
dines.* Accordingly, we suggest that the N-methylation of TBD
and TBN annihilates the intramolecular hydrogen bonding, and
the desired zwitterionic SB-CO, interaction is remarkably
decreased. This can be seen by their marked reduction in CO,
adsorption compared to the non-methylated versions (Table 1).

To demonstrate reversibility even under moist conditions
including atmospheric humidity, bicarbonate formation was
forced by adding 1 mL of water to TBN and DBN in their
respective reaction medium. Although the amount of precipi-
tate increased significantly, the CO,/SB ratio remained consis-
tent showing no distinct effect on the reversibility and
temperature needed (see Table S47).

As shown above, besides the structure of the SB as the core of
reactivity, the solvent choice becomes critical for efficient CO,
capture and release (Tables 1, S2 and S3 in the ESIt). Based on
our observations, polar media are beneficial for CO, binding to
a certain extent as, depending on the SB structure, this can sta-
bilise the SB-CO, adduct but at the same time, this can inhibit
reversibility. This solvent effect is clearly illustrated with TBN; the
reversibility is lost in acetonitrile, while in butyl acetate the
capacity to absorb and release CO, is among the best in this study
(ESI, Tables S2 and S3f). To gain further insights into this
phenomenon and the effect of solvent on the reversibility, we
performed DFT calculations to determine the energetics.

DFT calculations

The present computational approach provides reasonably
accurate Gibbs free energy data for the interaction of SB mole-
cules with CO,; however, other important processes involved in
CO, capture/release (CO, transfer from the gas to the solvent
phase, diffusion, and precipitation) are not considered in our
models. For this reason, the computed energetics can only be
used in qualitative terms to interpret the observed trends.

To develop our understanding of the factors that determine
the reversibility of the examined CO, capture/release processes,
we investigated the interaction of SB molecules with CO,
computationally. We considered three different SB/CO, systems
(SB = DBN, TBN and mTBN) using acetonitrile and butyl acetate
as solvent media (see Fig. 2). The applied computational
protocol involved solution phase geometry optimizations

1756 | RSC Sustainability, 2024, 2, 1753-1760
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DBN-CO, TBN-CO, mTBN-CO,
(+1.1; +4.3) (-4.5;-1.9) (+6.2; +9.9)
b)

Y

» 1717

i1.82 . {
1.97 ._\ 1.69

TS TBNH*HCO;-

(19.2;18.1) (-15;-1.0)

Fig. 2 Computed energetics of (a) adduct formation between
superbases and CO,; and (b) HCO3;~ formation via the reaction of TBN
with CO, and H,O. Relative Gibbs free energies computed in aceto-
nitrile and butyl acetate are shown in parentheses (in kcal mol™; with
respect to separated reactants). Structures correspond to those opti-
mized in acetonitrile. Selected bond lengths are in A: dihedral angles
defined by the atoms marked with asterisks are in degrees.

carried out at the wB97X-D/6-311G(d,p) level of DFT, where the
solvent effects were incorporated via the implicit SMD solvation
model.***® Additional single-point electronic energy calcula-
tions were carried out using the LNO-CCSD(T)/CBS method to
provide accurate energetics for the interaction of SB molecules
with CO,.*** The reported energy data refer to solution phase
Gibbs free energies under standard conditions (T = 298.15 K
and ¢ = 1 mol L™"). For further details, see the ESL}

The barriers of SB-CO, adduct formation are predicted to be
fairly low (AG* = 8-14 kcal mol ') suggesting that the rate of CO,
capture is likely diffusion controlled. The thermodynamic
stability data computed for the three zwitterionic SB-CO,
adducts (Fig. 2a) show a notable variation with the superbase
molecule and with the solvent as well. Although the basicities of
the three SB molecules as quantified by using the computed
solution phase proton affinities are very similar (they are within
1.3 keal mol " for both solvents), the stabilities of the SB-CO,
adducts vary in a much broader energy window (>10 kcal mol ™).
In both solvents, TBN-CO, is predicted to be the most stable
adduct followed by DBN-CO, and mTBN-CO, in the stability
order. As expected, adduct formation is found to be more fav-
oured thermodynamically in acetonitrile (by about 3 keal mol ™)
with all the three bases, since it is significantly more polar than
butyl acetate (dielectric constants are 35.7 and 4.62, respectively).

The enhanced stability of TBN-CO, is associated with the
intramolecular H-bonding interaction, which is absent in the
other two adducts.?® On the other hand, the N-methyl substit-
uent in mTBN induces steric hindrance for the ideal planar
arrangement of the guanidine-CO, unit in the adduct that
would allow extended charge delocalization. Consequently,
mTBN-CO, is predicted to be the least favoured zwitterionic
species in the series. The distorted structure of mTBN-CO, is
apparent in Fig. 2a (the highlighted NCNC dihedral angle
deviates significantly from 180°). The adduct formation is

© 2024 The Author(s). Published by the Royal Society of Chemistry
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nearly neutral thermodynamically for DBN/acetonitrile and
TBN/butyl acetate combinations (AG = +1.1 and
—1.9 keal mol ™), which is in accordance with our observations
in the CO, capture/release experiments that these are the two
most efficient systems (Table 1). For the mTBN/CO, system,
computations show slightly higher endergonicity even in
acetonitrile (AG = +6.2 kcal mol ™), but this is likely compen-
sated by the precipitation of the zwitterionic adduct species.
The presented Gibbs free energies of adduct formation by no
means can be regarded as a quantitative measure of the
reversibility of CO, capture; however, the computed trend
accounts well for the observations.

The reaction of TBN and CO, in the presence of water was
investigated computationally as well (Fig. 2b). The results
suggest that the formation of the TBNH'/HCO;~ guanidium-
bicarbonate ion pair in butyl acetate is also kinetically feasible
at room temperature (AG* = 18.1 kcal mol '), although the
computed barrier points to a slower process as compared to that
of TBN-CO, formation (8.9 kcal mol™"). The overall reaction
with water is predicted to be slightly less favoured thermody-
namically (AG = —1.0 kcal mol™") implying that this reaction
will not affect the reversibility of CO, capture with TBN.

Design of experiment

Higher temperatures and higher concentrations are not guaranteed
to increase efficiency, and as such it is important to create a simple
model for the system.* A design of experiment model was created
and followed to cover TBN in butyl acetate (Fig. 3). The three vari-
ables covered were concentration of SB, temperature used to release
CO, and length of exposure time to CO, for absorption. The results
further evidence that higher temperatures do increase the speed
and amount of CO, recovered, as does longer exposure time to CO,.
It can also be observed that lower concentrations of SB allow for
higher ratios of CO, to be captured. This further illustrates the mass
transfer issue that affects the system.

Kinetics

The required time for the absorption for CO, to reach saturation
was measured for TBN-butyl acetate and DBN-acetonitrile and
compared with that of MEA in water as a reference (Fig. 4).

o 30 40 50 60 70 80 90120110 100 g9 g,

48, 2 70 6o
05 €O,/ SB Release
° / mol/mol
£ 04
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™ ‘ 0.0
o - X
2o Time: 25
041 ime: min
128
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0
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o

Fig. 3 Design of experiment surface plot of TBN in butyl acetate after
25 minutes of CO, exposure.
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Fig. 4 Absorption time of DBN, TBN and MEA in their respective
solvents. Reaction conditions: TBN (30% wt) in butyl acetate, DBN
(30% wt) in acetonitrile and MEA (30% wt) in water, at room
temperature.

The required time for TBN-butyl acetate as well as DBN-
acetonitrile to reach saturation is only 15 min, compared to
MEA in water which required more than 4 h. For DBN, the cycle
for the capture and release of CO, takes only 38.8 minutes
compared to that of other systems which require much longer
times per cycle.>**

From the data reported in Table 1 and Fig. 4, it was possible
to determine the yield of CO, recovery per cycle of absorption
and release for the best superbase solvent combination (equa-
tion in the ESIt). For the absorption, the CO,-SB molar ratio for
TBN-butyl acetate reached 0.49 and 0.42 for DBN-acetonitrile.
For the release, the yield of CO, recovery for TBN-butyl acetate
and DBN-acetonitrile are 83.6% and 59.5% respectively showing
that not all carbon dioxide was fully recovered.

Reusability

An important criterion for CO, capture is the reusability of the
SB-solvent system for multiple cycles. For this reason, the
reusability for both TBN and DBN systems was investigated for
five consecutive capture/release cycles (Fig. 5).

After the sequence of 5 cycles, these two systems do not show
any decrease in CO, capture/release capacity. Also, the five
cycles required only tens of minutes compared to hundreds of
minutes when other systems were used, showing the better
efficiency of our system.*>*

CO,, capture from air

To continue our experimental investigations, we examined the
two best candidates also for DAC. Due to low concentration of
atmospheric CO,, saturation of the systems required 24 hours
under ambient conditions. The quantitative release occurs, as
in the case of pure CO,, at 60 °C and in less than 20 min for
DBN. The DFT calculations corroborate our experimental
results; reversal occurs regardless of if the CO, adduct is in the
carbamate or bicarbonate form. The required transition state
energy for the release is nearly the same in the range of 9.3 to
12 keal mol ™. Although the amount of CO, captured is 1/8 of
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Fig. 5 Five consecutive recycling experiments with (a) TBN in butyl
acetate (green) and (b) DBN in acetonitrile (blue).

the amount captured with pure CO,, this full reversibility, low
energy requirement, and fast kinetics makes the system highly
intriguing for DAC.

General considerations and sensitivity of the parameters

In this study, the focus was to investigate the application of
superbases with organic solvents for direct air capture. For this
reason, parameters employed in this study were at standard
pressure and temperature. However, these parameters can
influence the absorption and release of carbon dioxide. First,
the concentration of CO, will play a dramatic role in the kinetics
of absorption. By lowering the concentration from pure CO, to
the 400 ppm level, the time required to reach saturation will
obviously be much longer going from few minutes to hours. As
for the temperature, it is anticipated that a higher temperature
will decrease the absorption capacity of the superbase solvent
mixture. Another important parameter is the humidity from air
which varies in different places around the world. The two
systems presented are shown to be moisture tolerant for 5 cycles
and can both release the captured CO, regardless of if it is
a carbamate or a bicarbonate. On the other hand, these systems
will be tested for multiple cycles and moisture might induce
degradation of the superbases.> If degradation by the presence
of water is observed, to maintain constant activity, dry air
should be favoured. These parameters will be further investi-
gated in future studies during scale up development.

In comparison to MEA, our systems demonstrate lower
corrosion and temperature of release, as well as faster absorp-
tion and desorption regardless of bicarbonate or carbamate ion
formation. For industries this process is expected to have a low
energy cost. As this apparently easy emerging system design
allows the direct capture of CO, from air, it has potential for
positive utilisation on the global scale.

Conclusion

In summary, we have established that bicyclic 6-5 ring config-
urations capture CO, more efficiently than 6-6 and 6-7
configurations. TBN in butyl acetate and DBN in acetonitrile are
shown to be the best systems of those in this study. The solvent
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choice is important as it affects the reversibility and capture of
CO,, either aiding capture or impeding CO, release. DFT
calculations show that both the capture and the release of CO,
are thermodynamically favourable for TBN in butyl acetate,
which is the best system studied regardless of if it forms
a zwitterion or a bicarbonate molecular adduct. The reversibility
of TBN and DBN shows that capture-release of CO, can be
performed for 5 cycles without losing the absorption capacity.

Future studies will consider prolonged repeatability experi-
ments to account for stability, and degradation from moisture
as part of the scale-up considerations. For flue gas applications,
NO, and SO, durability would also need to be considered.
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