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Detection of nuclear materials and their radioisotopes with rapid, and
standoff capability in addition to no sample preparation requirement is
crucial to nuclear nonproliferation, safeguards, and security. In this
work, we demonstrate the first application of ultrafast laser-induced
breakdown spectroscopy to detect tritium (H) during depth
profiling of neutron-irradiated Zircaloy-4 samples.

Detection of radioactive nuclear materials and their isotopes is
very important in numerous fields including nuclear nonpro-
liferation, treaty verification, nuclear security, safeguards, fuel
fabrication, and forensics."” Some of the key required attributes
for nuclear material detection for field analysis are rapid and
non-contact detection with minimal to no sample preparation.
Currently, mass spectrometry tools such as inductively coupled
plasma mass spectrometry (ICP-MS), secondary ion mass
spectrometry (SIMS), thermal ion mass spectrometry (TIMS),
and atom probe tomography (APT) are regularly used for
detecting U, Pu, H, Li and their isotopes.** However, all of these
techniques are laboratory-based and require extensive sample
preparation. Mass spectrometry methods such as ICP-MS are
capable of high precision measurements,® whereas other
instruments, e.g., nanoscale SIMS” and APT,’ can map isotopes
with nanometer-scale spatial resolution. Some of these tech-
niques are not useful for obtaining spatial information (e.g.,
ICP-MS). On the other hand, although the high spatial resolu-
tion is possible with NanoSIMS or APT methods, they are not
capable of surveying large sample areas that may be needed for
post-irradiation examinations of fuel rods or tritium-producing
burnable absorber rod (TPBAR) components.®

Optical spectroscopic tools (e.g., emission, absorption, and
laser-induced fluorescence) can detect all nuclear materials and
some of their isotopes, offering rapid, non-contact analytical
capability of solid material when combined with laser
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ablation.*®* Among these optical methods, laser-induced
breakdown spectroscopy (LIBS) is most frequently used for
isotopic analysis because of its non-intrusive nature and rapid
in-field use."™ So far, LIBS has been successfully demonstrated
for discriminating various nuclear-related materials isotopes
such as U (235U/238U),2'10 Pu (239Pu/240Pu),1“'15 Li (GLi/7Li),12’16 and
H (‘H/*H)."”"*° LIBS has the ability to provide spatially resolved
maps of H isotopes and perform depth profiling. In particular,
when an ultrafast laser is used for ablation, improved spatial
mapping and precision depth profiling capabilities can result,
owing to its limited heat-affected zone in comparison to nano-
second pulsed lasers.>?*

One of the challenges associated with LIBS for isotopic
analysis of light elements is the line broadening. LIBS requires
thermal excitation which happens only at early times of laser-
produced plasma evolution where various plasma broadening
mechanisms dominate. In addition, the spectral resolution of
an emission spectroscopy system is inherently limited by the
instrumental broadening of the spectrograph. Although the
isotopic shifts/splitting (IS) of the H, (656.28 nm) is relatively
large ("H,, — *H,, = 180 pm, 'H,, — *H,, = 240 pm) compared to
transitions of other elements, the H, emission from the plasma
is inherently broadened because of its linear Stark effect. Being
the lightest element in the periodic table, there should be
significant Doppler broadening too in H transitions. Previous
studies highlighted that a flowing inert-gas (e.g., Ar, He) and
reduced pressure environment (=10-50 Torr) provided good
signal-to-noise ratios and narrower linewidths for H isotopic
analysis.">**

Tritium (*H) is a radioactive isotope of hydrogen that is used
in a wide variety of applications, particularly as a fuel in fusion
reactors, and in nuclear devices.?® Given the toxicity of *H to
humans and the environment, standoff sensing methods are
needed, which becomes increasingly important in the context of
post-irradiation examinations in which contact with radioactive
materials should be minimized. *H has a low natural abun-
dance and therefore is produced via neutron irradiation of
lithium-bearing pellets in nuclear reactors according to the
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following reaction: °Li + n — “He + *H. The *H then diffuses
through the pellet to a surrounding Zircaloy-4 tube that acts as
a °H getter.® Measurement of *H stored in the getter using rapid,
standoff methods would greatly enhance understanding of *H
produced during irradiation, and its distribution along the
length and through the thickness of the getter material. In this
work, we report the detection of 'H, *H, and *H from *H-loaded
(i.e., deuterated) and neutron-irradiated Zircaloy-4 using ultra-
fast LIBS. *H-loaded Zircaloy-4 samples were used for the initial
optimization experiments, while *H in the Zircaloy was
monitored/detected using ultrafast LIBS via depth profiling.

The LIBS experiments were carried out using pulses from
a Ti:Sapphire laser (800 nm, =35 fs pulse duration, maximum
energy = 7 m]J). The laser was operated at 5 Hz. The spot size at
the target was kept at =65 pum in diameter. The laser energy was
attenuated using a combination of a half-wave plate and a thin-
film polarizer. Two different cubic vacuum chambers (6 x 6 x 6
inches®) with identical features were used in the present
experiment: (1) for experiments employing *H-loaded Zircaloy-
4, and (2) for irradiated samples because of the radiological
safety constraints. Both chambers contained a pressure gauge,
vacuum pump, and gas lines for controlling the gas environ-
ment and pressure in addition to optical windows for laser
entrance and light collection. Initial experiments were carried
out on a *H-loaded Zircaloy-4 sample with ~4300 ppm >H to
understand the impact of environmental parameters, such as
ambient gas pressure and oxygen chemistry on optical signa-
tures. The *H-loaded sample was prepared using a custom-built
high vacuum system, details of which are provided in our prior
work.? Spatially and depth-wise uniformity of *H loading was
noted in these samples. For *H detection and analysis,
a neutron-irradiated Ni-coated Zircaloy-4 sample was used.
Neutron irradiation was carried out at the Watts Bar Nuclear
Power Plant. The measured dose of the irradiated Zircaloy-4
sample prior to analysis was 11 mR at contact and 0.6 mR at
6 inches. Since neutron flux is expected to vary with space in
a reactor,* the *H production and absorption in the Zircaloy-4
getter sample is also expected to vary spatially as well as with
depth. Both ?H-loaded and irradiated samples are cylindrical
rods.

The samples were positioned in the center of the vacuum
chamber which was pumped using a rotary pump to a base
pressure of 100 mTorr. The chamber was positioned on an x-y
translator to provide a fresh target surface for ablation. Ar was
used as the buffer gas. The pressure inside the chamber con-
taining the *H-loaded sample was varied to evaluate the optimal
conditions of H isotope detection, and ablation depth/pulse.
The chamber containing the irradiated sample was pumped
down to 100 mTorr and then backfilled with argon to 45 Torr
and the ambient environment was kept static during all data
collection.

Spatially integrated, and time-resolved emission features
were analyzed using a 0.75 m spectrograph consisting of 2400
grooves per mm grating (Spectrapro HRS-750, Princeton
Instruments) and an intensified CCD (ICCD) as the detector
(PIMAX4, Princeton Instruments). The measured spectral
resolution at 632.8 nm using a He-Ne laser was =13 pm at full
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width half maximum (FWHM). The thermal emission from the
plasma was collected near normal to the target using a plano-
convex lens and focused onto a fiber bundle for light transport.
For evaluating the plasma dynamics and drilling, an ICCD
positioned orthogonal to the plasma expansion direction was
used and time-resolved images of the plasma plumes were
collected.

In the present work, due to radiological safety concerns
associated with *H, the LIBS measurements of irradiated
samples were conducted in a static background pressure. Hence
any presence of oxygen in the chamber (due to leakage or
presence of H,O) may influence the analytical merits of *H
detection. So, the initial experiments were carried out using H-
loaded Zircaloy-4 samples to understand the ambient pressure
effects on signal intensity, linewidth, and the role of oxygen
presence on H isotopic emission signatures.

Typical spectral features from deuterated Zircaloy-4 plasma
at various Ar pressures in the spectral range 655-658 nm are
given in Fig. 1. The prominent emission lines in the spectra are
ZHa at 656.10 nm, 'H,, at 656.28 nm, Zr I at 656.95 nm and Zr I at
657.66 nm.> The measurements were taken using a gate delay
of 1 ps and with a gate width of 3 ps. The spectral features
clearly show that at higher pressure, the 'H, and *H,, lines are
partially resolved, and the isotopic resolution (peak separation)
improves at reduced pressure. The presence of 'H in the spec-
tral features is partly contributed by contamination on the
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Fig. 1 Spectral emission features from Zircaloy-4 sample showing
2H,, and H, transitions at various Ar background pressure levels.
Additional lines seen in the spectra are contributed by Zr |. The
detection delay time and gate width used were 1 pus/3 ps.
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sample surface and from the environment. The measured
intensity of the H,, line along with its FWHM is provided in
Fig. 2 which shows that *H,, emission intensity peaks at =20-50
Torr Ar pressure levels. The linewidth, which is one of the most
important considerations for isotopic analysis using optical
spectroscopy, increases with pressure because of the plume
confinement.?* The FWHMs of *H and 'H are significantly
broadened compared to Zr I transitions seen in Fig. 1. For
example, at 26 Torr pressure, the measured FWHM of Zr I
transition is near the instrumental limit while the linewidth of
*H,, ~ 80 pm. Since the emission from H and its isotopes peaks
at early times of plasma evolution due to its very high upper
energy level (=12.3 eV), it is difficult to avoid the linear Stark
contribution caused by the higher LPP electron density. Being
the lightest element, the Doppler effect is also significant for H
and its isotopes. For example, for a plasmawith a1 x 10" em*
density and a temperature of 4000 K, the estimated linewidths
caused by Stark and Doppler effects are =15 pm. In addition,
fine spectral components are present in the 'H, and *H,, lines
which span =20 pm.*®

Fig. 2 also shows that the pressure of the ambient medium
has opposing effects on *H,, signal levels and FWHM values
when the background pressure is =30 Torr (i.e., intensity
decreases, and FWHM increases). These trends highlight
important trade-offs in the LIBS analysis of H and its isotopes,
and that reduced pressures are optimal for achieving strong
emission signals with reduced line broadening. The intensity
and linewidth changes with pressure provided in Fig. 2 were
also carried out when the inert gas flowed through the chamber
rather than in static conditions. However, our studies also
showed that a flowing inert gas environment provided a higher
emission intensity of *H,, instead of a static gas environment.
Hence, a study has been carried out to evaluate the role of trace
oxygen in the chamber on 'H,, and *H,, emission intensities.

Fig. 3 reports changes in *H,, and 'H,, emission intensities
with the addition of air partial pressures to the chamber con-
taining 35 Torr Ar, and it clearly shows that the increasing

T T T T T T T T T T 018
2000 Lo.16
. [ ] [ ]
| -0.14
—~ 1500 + w [}
S al L —
s 0.12 €
= | ] - =
S, [ \- -
> 1000 1 0.10 %
2 i =
L Ta 0.08 IL
c
— 500
~0.06
[
od® L 0.04
T T T T 0.02

T T T T T T
0 20 40 60 80 100 120 140 160 180 200
Ar pressure (Torr)

Fig. 2 2H, emission intensity (black squares) and FWHM (red squares)
from deuterated Zircaloy plasma at various Ar pressure levels.
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Fig.3 The changes in 'H, and 2H, intensity with the addition of partial
pressures of air into 35 Torr Ar.

presence of oxygen partial pressure in the chamber deteriorates
the ®H, and 'H, signal intensities. For example, with the
addition of =300 mTorr of oxygen to the chamber, the *H,
signal intensity reduced drastically. The presence of oxygen in
the chamber may initiate plasma chemical reactions that lead
to the formation of molecular species (OH and OD), affecting
the analytical merits of the H isotopic emission signal. Previous
studies employing U also showed similar trends (reduction of U
I with the formation of UO and higher oxides).>”

Ultrafast laser depth profiling of the deuterated Zircaloy-4
sample was carried out to estimate ablation depth per pulse
using gated plasma imaging.*® Images were collected by posi-
tioning an ICCD orthogonal to the plasma expansion direction
and by monitoring the emission from the outer and inner
surfaces of the cylindrical target. The laser energy and laser spot
size used were =5.3 mJ and =65 pm. The emission from the
inner surface of the cylinder appeared after 88 laser shots,
indicating the presence of a drilled-thru hole. Assuming
constant ablation depth per pulse, the estimated ablation effi-
ciency of the Zircaloy target is =2 pm per pulse.

Considering *H is toxic and volatile, the LIBS measurements
of irradiated samples were all carried out in a static 45 Torr Ar
environment. The *H studied here was produced via neutron
irradiation of a ®Li-enriched LiAlO, ceramic pellet which was
surrounded by a Zircaloy-4 tube that acts as a *H getter. This
Zircaloy-4 getter component is Ni-plated to prevent oxidation.®
Hence, a depth profiling study is required to detect *H in the
irradiated Zircaloy-4 getter target. An example of the measure-
ment of *H,, during depth profiling is given in Fig. 4. The *H
signal was not evident at shallow depths where 'H, signal
predominates. The *H, signal was more prominent when the
number of laser shots at the target reached =40 during depth
profiling. Then, the relative intensity of *H,, vs. 'H,, increased
with the increasing number of laser shots. The signal levels
dropped significantly after 80 laser shots. We also noticed the
*H,, signal intensity varies significantly at various locations in
the irradiated target. The strong presence of 'H, in the
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Fig. 4 Emission spectra from irradiated Zircaloy-4 during fs laser
depth profiling. The numbers given in the figures correspond to the
beginning number of laser shots during the depth profiling. The dotted
line represents the spectral position of the *H peak. The 3H peak
appears after 40 laser shots. Each spectrum is averaged over 10 laser
shots.

irradiated target is due to ingress through the TPBAR stainless
steel cladding from the reactor coolant along with
contamination.®

According to the present results, the *H distribution in the
Zircaloy getter sample was highly localized. The lack of *H on
the top of the surface can be attributed to the Ni-plating, which
was used to prevent the oxidation of Zircaloy-4 surfaces during
irradiation in a light-water reactor. Considering the nonuni-
form neutron flux in the reactor, it can be anticipated that the
*H deposition of the irradiated Zircaloy-4 getter sample could
vary significantly along the surface and depth-wise due to the
dynamic environment inside nuclear reactors. In addition, the
permeation of *H into the grain boundaries, the decay of the
generated *H, and the discrete nature of the hydrides in the
Zircaloy may also contribute to nonuniform *H concentration in
the sample.>**°
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Fig. 5 Comparison of emission signatures from deuterated and irra-
diated Zircaloy-4 samples showing all hydrogen isotopic peaks.

Fig. 5 compares emission signatures from deuterated and
irradiated Zircaloy-4 samples. The measured spectral positions
of 'H, *H, and *H are 656.28 nm, 656.1 nm, and 658.03 nm,
respectively. Since the spectral measurements given in Fig. 5
were carried out in 45 Torr Ar background pressure, significant
spectral broadening can be seen and it may hinder measuring
smaller isotopic splitting of *H,~>H,, compared to "H,~>H,, or
'H,-’H,, isotopic splitting. It indicates that a reduced back-
ground pressure environment that provides narrower line-
widths (see Fig. 2) is necessary for analyzing *H,~*H,, isotopic
splitting.

In summary, we report the first demonstration of *H detec-
tion using ultrafast LIBS. We monitored 'H, *H, and *H during
depth profiling of deuterated and neutron-irradiated Zircaloy-4
samples. The *H distribution in the Zircaloy sample was highly
localized and well-resolved isotopic peaks were detected during
depth profiling of irradiated targets. The present study high-
lights the successful use of ultrafast LIBS for the rapid detection
of *H with no sample preparation, with additional capabilities
of spatial mapping and depth profiling.
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