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A new hyperelastic lookup table for RT-DC

Lucas Daniel Wittwer, abc Felix Reichel, cd Paul Müller, c Jochen Guck *cd

and Sebastian Aland ab

Real-time deformability cytometry (RT-DC) is an established method that quantifies features like size,

shape, and stiffness for whole cell populations on a single-cell level in real-time. A lookup table (LUT)

disentangles the experimentally derived steady-state cell deformation and the projected area to extract

the cell stiffness in the form of the Young’s modulus. So far, two lookup tables exist but are limited to

simple linear material models and cylindrical channel geometries. Here, we present two new lookup

tables for RT-DC based on a neo-Hookean hyperelastic material numerically derived by simulations

based on the finite element method in square and cylindrical channel geometries. At the same time, we

quantify the influence of the shear-thinning behavior of the surrounding medium on the stationary

deformation of cells in RT-DC and discuss the applicability and impact of the proposed LUTs regarding

past and future RT-DC data analysis. Additionally, we provide insights about the cell strain and stresses,

as well as the influence resulting from the rotational symmetric assumption on the cell deformation and

volume estimation. The new lookup tables and the numerical cell shapes are made freely available.

Cell stiffness emerged as an important phenotypical marker
linked to many biological processes and can reveal pathological
changes of cells.1,2 The emergence of high-throughput techni-
ques to measure single-cell deformability enables the use of cell
deformation as a tool in clinical diagnostics.1,3 In this work, we
concentrate on the microfluidic technique real-time deform-
ability cytometry (RT-DC).4 RT-DC is used for high-throughput
and label-free mechanical characterization of cells and has
been applied in the past to address biological research
questions5–10 and for blood diagnostics.1–3,11

In RT-DC, cells flow through a narrow microfluidic channel
where they get deformed by hydrodynamic stresses from the
flow field around them, reaching a steady state configuration.
On the timescale of an RT-DC measurement, viscous effects
have no influence on the steady state and the deformation is
purely due to the elastic cellular response. The deformed cells
are imaged, and the contour is analyzed in real-time at a
throughput of up to 1000 cells s�1. Based on this stationary
deformation, not only base properties like the cell circumfer-
ence L, projected area A, and volume V are deduced but also

material properties like the cell’s stiffness (elasticity) in the
form of the Young’s modulus. For the latter, the influence of
the cell size, measured by the area A, needs to be decoupled
from the stationary deformation D, here defined as

D ¼ 1� circularity ¼ 1� 2
ffiffiffiffiffiffiffi
pA
p

L
; (1)

which is a measure for the deviation of a shape from a circle
(circularity = 1). Analytical,12 and numerical models13 were
developed to generate lookup tables (LUT), mapping an area-
deformation pair to a unique apparent Young’s modulus E.
Both models and, therefore, lookup tables assume a linear
elastic bulk material for the cells measured in RT-DC. The
actual elastic cellular response depends on the probing time-
scale, and deformability cytometry techniques operating on
different timescales report different Young’s moduli.9

With these LUTs, it is possible to check for structural
differences in cell populations of different sizes where the
deformation parameter alone is not suited to compare cell stiff-
ness. This becomes important when cells undergo size changes,
e.g., during development,5,6 or in disease or treatment.1,3,14

RT-DC measurements are done for various flow rates, chan-
nel widths, and measurement buffer viscosities. Mietke et al.12

showed analytically that isoelasticity lines – the level set for a
fixed Young’s modulus – of the lookup table can be scaled to a
different channel width L0, flow rate Q0 and viscosity of the
buffer medium Z0 for a Newtonian carrier and linear elastic cell
material by E0 = E(Z0Q0L3/ZQL03) and A0 = A(L0/L)2. Here, Z, Q,
and L are the parameters used to generate the lookup tables.
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Thus, the same lookup table can be used for different flow rates,
microfluidic channels, and buffers. Those lookup tables and the
scaling are implemented in dclab,15 the Python library for the
post-measurement analysis of real-time deformability cytometry.

However, these two models use three simplifications. First, the
square cross-section of the channel is assumed to be cylindrical to
employ rotational symmetry. Second, they do not consider the
non-Newtonian shear-thinning nature of the suspension buffers
used in RT-DC, e.g., methyl-cellulose dissolved in phosphate-
buffered saline (MC-PBS).16,17 And last, both assume a small
strain linear elasticity bulk model for the cell. Especially for larger
cells or higher hydrodynamic stresses, the small strain assump-
tion does not hold. Recent work on probing viscoelastic properties
of cells in RT-DC, dynamic real-time deformability cytometry dRT-
DC,18 showed large deformation in the inflow region of the
narrow channel. A numerical study of the viscoelastic behavior
of cells and beads in RT-DC has been conducted in the axisym-
metric case in Schuster et al.19 and in full three-dimensional
channels in Wittwer et al.20 Both studies model the cell as a neo-
Hookean hyperelastic material model. The apparent viscosity Z is
linked to the apparent Young’s modulus by Z = Et, where t is the
relaxation timescale of the cell. But E is only deducible by a lookup
table based on the same material model. Thus, a LUT based on
the neo-Hookean hyperelastic material model is necessary to
deduce the apparent Young’s modulus E and viscosity Z.

Here, we introduce two new improved LUTs – one for a
cylindrical and one for a square channel – to extract the
stiffness of cells in RT-DC based on fully coupled fluid–solid
interaction finite element simulations. We use a hyperelastic
neo-Hookean material to get the cells’ elastic response in a full
three-dimensional square channel with a shear-thinning buffer.
We show that, like the initial analytical and numerical LUTs, the
two proposed LUTs uniquely map every combination of area and
deformation to a Young’s modulus. The scaling concept still holds,
including shear-thinning. The new and improved LUTs for RT-DC
will help reveal stiffness changes between cell types or due to cell
state changes with unprecedented accuracy. Additionally, we report
the resulting strains and hydrodynamic surface stresses acting on
the cells for the first time. And finally, we investigate the systematic
error in volume computation introduced by the widely-used
assumption of rotationally symmetric cell deformation.

1 Methods

We start by describing the computational domain and the new
fluid–solid interaction (FSI) model with a shear-thinning non-
Newtoinan fluid (the buffer) and a hyperelastic neo-Hookean
solid (the cell). Based on this model, we describe the generation
of the new lookup tables by sampling the area-deformation
space. At the end of this section, we describe the experimental
setup used to measure the HL60 cells and PAAm beads in Fig. 6.

1.1 Fluid–solid interaction model

The computational domain, as illustrated in Fig. 1, is split into
the fluid subdomain Of and the subdomain representing the

cell Oc. The subdomains are separated by the interface G.
We model the fluid in the Of by the incompressible Navier–
Stokes equations given by

rf
@u

@t
þ rf u � rð Þu ¼ r � sf in Of (2)

sf = �pI + Z(u)(ru + (ruT)) in Of (3)

rfr�u = 0 in Of (4)

with rf 2 R is the fluid density, u 2 R3 the fluid velocity, p 2 R

the pressure, and I 2 R3�3 the identity matrix. The power-law

rheology model with ZðuÞ ¼ m _gð Þn�12 R accounts for the
velocity-dependent viscosity where m 2 R is the fluid consistency
coefficient, _g is the shear rate and n 2 R the flow behavior index.

Following Mokbel et al.,13 we assume the cells to be incom-
pressible but not linear elastic but as a non-linear neo-Hookean
hyperelastic material described by

rs
@2w

@t2
¼ r � scð ÞT¼ r � FSð ÞT in Oc (5)

where rs 2 R is the cell density, w 2 R3 the displacement
vector, F is the deformation gradient and S is the second
Piola–Kirchhoff stress. The strain energy density of the neo-
Hookean material Ws is

Ws ¼
1

2
m �I1 � 3ð Þ þ 1

2
k Jel � 1ð Þ2 (6)

which is the sum of the isochoric strain energy density (using
the isochoric invariant Ī1) and the volumetric strain energy
density (using the elastic volumetric deformation Jel). In the
case of an incompressible material, the parameters are given by
the Lamé parameter m ¼ E=3 2 R with the Young’s modulus E
and the bulk modulus k 2 R.

On the interface G, we impose the kinematic condition
u = qtw (continuity of velocities) as well as the dynamic condi-
tion nf�sf = �nc�sc (balance of forces). The mechanical model is
described in more detail in Wittwer et al.20

1.2 Finite-element implementation

The above system of equations is discretized and solved by the
finite element method using COMSOL Multiphysics. For the

Fig. 1 Computational domain: (left) Schema of the computational domain
(top view). The origin of the coordinate system is in the center of the cell, the
z-axis is out of plane. The fluid domain Of (darker shade) is enclosed by the
inflow and outflow boundaries Gi and Go, respectively, and the non-slip
boundaries Gw. The fluid surrounds the cell domain Oc with the fluid–solid
interface Gc. In the axisymmetric case, the upper half is considered only.
(right) Schema of the full three-dimensional domain for the square channel
simulations. Using symmetries in the channel geometry, the computational
domain can be reduced to 1/8 of the actual domain, as indicated.
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full three-dimensional simulations of the square channel,
we reduced the computational effort by exploiting the 4-fold
rotational symmetry and 2-fold reflection symmetry of the
rectangular channel cross-section (see Fig. 1 on the right). We
can exploit the rotational symmetry and reduce the computa-
tional domain to a two-dimensional surface for the cylindrical
channel lookup table. The radius R of the cylindrical channel is
adapted to R = 1.094 � lc, where lc is the square channel width,
such that the pressure drop over the cylindrical channel is
equal to the square channel (see the concept of equivalent
channel described in Mietke et al.12). The resulting computa-
tional domain is meshed with a combination of tetrahedral,
prisms and pyramid elements to efficiently reduce the number
of degrees of freedom even further. To resolve the high gradient
in the flow profile on the channel walls and the cell surface, we
added a boundary layer on Gw and Gc. We choose linear
Lagrange elements (P1) to discretize the Navier–Stokes equa-
tion for both the velocity field and pressure and stabilize the
saddle-point problem with streamline and crosswind diffusion.
Linear elements are used to discretize the displacement field of
the hyperelastic material. We did not experience any locking
behavior during our model validation by comparing the
solution with quadratic elements for the solid.

The correct inflow profile ui is precomputed in the absence
of a cell, based on the flow rate, channel width, and the non-
Newtonian parameters of the fluid and used as Dirichlet
boundary condition at the inlet. At the outlet G0, the pressure
is fixed to p0 = 0, and we suppressed any eventual backflow.
To keep the cell centered in the computational domain, we
describe all quantities in a coordinate system that moves with
the cell. We use a proportional integral derivative (PID) con-
troller to adjust the wall speed uw on Gw based on the bary-
centre of the cell. This wall speed is subtracted from the inflow
profile such that the resulting system is the same as if the cell
moves through the channel. The arbitrary Lagrangian–Eulerian
(ALE) description is employed for the deformation of the fluid
domain Of. The grid movement on G is extended into the
interior of the domain and smoothed by treating the vertex
displacements as a neo-Hookean hyperelastic material.

To improve the stability of the simulations, we add an
artificial viscosity to the cell in a Kelvin–Voigt-like manner,
and we monotonically ramp up the inflow profile from u = 0 to
ui. We stop the simulation as soon as the steady state deforma-
tion is reached by measuring the absolute deformation change
dD=dt and set as the stop criteria dD=dt � 1� 10�3. The
artificial viscous term and the ramp-up do not influence the
steady state. The fully bidirectional coupled geometrical non-
linear system is solved with a Newton method in time and the
PARDISO direct solver in space.

1.3 Creation of the new lookup tables

We indirectly sampled the area-deformation space for the new
lookup tables by the radius and Young’s modulus of the cells.
The radii R are chosen equidistant in R2 such that the resulting
projected areas should be in the range of [30 mm2, 290 mm2]

(the actual projected cell area is not conserved). Similar, the
Young’s modulus E A [0.3 kPa, 30 kPa] is equally sampled in
E�1/2. For each R � E combination, we ran two simulations, one
in a square channel with a channel width of lc = 20 mm and one
in an equivalent cylindrical channel (see above). The cell has a
density of rs = 1000 kg m�3 and we set the bulk modulus
k = 2.15 GPa corresponding to the bulk modulus of water,
leading to a quasi-incompressible cell. The artificial cell visc-
osity is set to 10 mPa s. For both lookup tables, the flow rate is
0.04 mL s�1. The fluid parameters are based on 0.6% MC-PBS
(see below). Additionally, we set the density to rf = 1000 kg m�3.

We did several data-cleaning steps for both lookup tables to
ensure that the simulations converge and are not numerical
artifacts. We automatically detect and delete outliers based on
polynomial regression and the random sample consensus
(RANSAC) method. Additionally, we drop all the simulations
with a deformation D r 5 � 10�4, since such deformation
values are not measurable by RT-DC and are close to the perfect
sphere discretized by the mesh. The final lookup tables are
built by linearly interpolating the 22 558 obtained cell shapes
for the cylindrical (2D axisymmetric) channel and 1206 cell
shapes for the square (3D) channel to a uniform grid for fast
lookup.

1.4 Cell culture

The HL60/S4 cell subline (ATCC Cat# CRL-3306, RRID:CV-
CL_II77) was cultured in RPMI 1640 medium with 2 mM
L-Glutamine (Thermo Fisher #A1049101) with 1% penicillin
and streptomycin (Gibco) and 10% heat-inactivated fetal bovine
serum (Sigma Aldrich, catalog no. F4135, lot no. 13C519). Cells
were grown at 37 1C, with 5% CO2, at densities between 105–106

cells per mL with subculturing every 48–72 hours.

1.5 Buffer production for RT-DC

Samples for RT-DC experiments were suspended in a buffer
solution made from 0.594 w/w% methyl cellulose (MC; 4000 cPs,
Alfa Aesar 036, 718.22, CAS#9004-67-5) dissolved in phosphate-
buffered saline (PBS) without Mg2+ and Ca2+ (Gibco Dulbecco
14190144). Buffers were adjusted to have a viscosity of 25 mPa s
when measured in a HAAKE Falling Ball Viscometer type C (Thermo
Fisher Scientific, Dreieich, Germany) using ball number 3 at 24 1C.

The rheology of the 0.6% MC-PBS solutions was measured
with an Anton Paar MCR 502WESP TwinDrive rheometer
(Anton Paar GmbH, Graz, Austria) at 25 1C controlled with a
PTD 180 MD Peltier element (Anton Paar GmbH, Graz, Austria).
At shear rates over 5.000 s�1, the solutions showed power-law
behavior, and the fluid consistency coefficient was found at
m = 0.4057 Pa s and the flow behavior index at n = 0.6039. For
the 0.5% MC-PBS buffer in the scaling validation, we used the
measured fluid consistency coefficient of 0.2671 Pa s and a flow
behavior index of 0.6264. For a detailed description of the
buffer rheology, see Büyükurgancı et al.21

1.6 Cell and beads measurements

Cell and beads experiments were performed with a commercially
available RT-DC device (AcCellerator, Zellmechanik Dresden
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GmbH). The measurement principle of RT-DC is described in
detail in Otto et al.4 Briefly, a microfluidic chip containing the
measurement channels with a cross-section of 20 � 20 mm, that
were simulated in this work, is mounted on an inverted micro-
scope (Axiovert 200 M, ZEISS, Oberkochen, Germany) and flow is
introduced with syringe pumps. Images are captured with a
CMOS camera (Mikrotron, Unterschleissheim, Germany). Syringe
pumps (Cetony Nemesys, Korbussen, Germany) and camera were
controlled with the measurement software ShapeIn (Zellmechanik
Dresden, Dresden, Germany), which analyses contours in real-time.

For the beads experiments, 2.5 mL of polyacrylamide (PAAm)-
beads solution (monomer concentration = 7.9%; for details, see
Girardo et al.22) were resuspended in 47.5 mL of 0.6% MC-PBS
and measured at a flow rate of 0.04 mL s�1.

For cell experiments, 2 mL of HL60-cell solution (5 �
105 cells mL�1) was centrifuged at 188 RCF for 4 minutes. After
the supernatant was removed, the cell pellet was resuspended
in 100 mL of 0.6% MC-PBS for a final cell concentration of
107 cells mL�1 and measured at 0.04 mL s�1.

In both cases, the measured sizes have been pixelation
corrected (see Herold et al.16 for more details), and only cells
and beads with a ratio of convex-hull area to the raw area of
1.0–1.05 are considered.23,24 This step guarantees that noisy
contours that could lead to overestimated deformation values
are not considered in the analysis.

2 Results

The new lookup tables are based on finite element simulations,
where we indirectly sample the area-deformation space by
varying the cell radius and Young’s modulus. Thereby, we get
for each fixed Young’s modulus an isoelasticity line (see Mietke
et al.12) in the area-deformation space. We begin by describing
one of these numerically obtained cell shapes and show the
flow field around the in silico cell and the surface stresses
acting on it. Next, we validate the new LUTs by comparing to
the linear elastic lookup table from Mokbel et al.13 and show
that the scaling still holds. We compare the new lookup tables
in the cylindrical and square channel to the previous lookup
table. Following this, we show the influence of the different
lookup tables on the resulting apparent Young’s modulus. We
conclude this section by reporting the engineering strains and
surface stresses on biological cells and the relative volume error
resulting from the axisymmetric channel assumption in the
steady-state configuration.

2.1 Cell shape and stress distribution

The new proposed LUTs assume a neo-Hookean hyperelastic
material for biological cells and are deduced from full three-
dimensional finite element simulations and two-dimensional
axisymmetric simulations. In Fig. 2, we show one of the three-
dimensional simulations. The in silico cell reaches a bullet-
shaped stationary deformation (see Fig. 2A) due to the hydro-
dynamic stresses from the surrounding fluid. The stationary
configuration of the cell is not rotationally symmetric. The flow

profile around the cell from the front is shown in Fig. 2B. The
stresses on the cell surface can be split into normal (pressure)
and tangential (shear) stress contributions. Fig. 2C shows the
pressure on the cell surfaces and the shear stress distribution.
We subtract the average surface pressure pavg ¼

Ð
A
pdA

�Ð
A
1 dA

since the pressure enters the system as a gradient only and, thus,
the absolute value is not meaningful. The pressure is non-
symmetric, with the highest absolute value at the front of the cell.
Here, we define the shear stress 8P(sc�n)8 where P = I � n # n is
the surface projection, sc the stress tensor of the cell and n the
surface normal. The peak shear stress is located in the regions
closest to the channel wall.

Only the projected area and deformation of the resulting cell
shape are used for the lookup creation. In Fig. 2D, we plot this
projected contour for the cylindrical channel overlaid with the
projected contour in the square channel. The corresponding
deformation values are Dcylindrical = 0.071 and Dsquare = 0.086.
For comparison, the contour of the cell along the diagonal is
shown with a dashed line.

2.2 Model and scaling validation

Next, we validate that the resulting lookup tables are – like the
linear elastic LUT – bijective (no isoelasticity lines cross each
other), and the scaling holds for the hyperelastic material model,
the non-Newtonian shear-thinning buffer as well as the square
channel geometry. Isoelasticity lines for different Young’s moduli
in the cylindrical channel with and without a shear-thinning
buffer are shown in Fig. 3 (left). In Fig. 3 (right), the same is
shown for the square channel with a shear-thinning buffer only.
In both plots, the isoelasticity lines from Mokbel et al.13 for the
linear material model without shear thinning, and cylindrical
channel are added for comparison (dotted lines). All three lookup

Fig. 2 Cell shape, flow field, stress distribution, and cell contours: (A) the
magnitude of the flow field (left to right) in a central cross-section of the
channel (z = 0 mm) with a deformed cell (top view). (B) shows the flow
magnitude perpendicular to the flow direction. (C) The pressure and shear
stress on the cell surface. The pressure is normalized by subtracting the
average surface pressure. (D) The corresponding contour of the cell
(solid line). The dashed line is the contour in the diagonal, as indicated in
(B). The dotted line is the same cell deformed in the equivalent cylindrical
channel. Parameters: r = 7.82 mm, E = 1 kPa, L = 20 mm, Q = 0.04 mL s�1,
buffer characteristics of 0.6% MC-PBS.
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tables are bijective, meaning that for each area-deformation pair,
there is a unique apparent Young’s modulus associated. For small
deformations (read small strains), the linear elastic LUT does
agree with the hyperelastic material based LUTs. For stiff beads,
this is the case for almost all cell sizes. Reducing the cell stiffness
leads to increased divergences of the isoelasticity lines for larger
beads. For soft beads, the isoelasticity lines diverge already
for small bead sizes. This holds true for the cylindrical channel
simulations as well as for the square channel simulations. In the
case of a cylindrical channel, the isoelasticity lines flatten out for
Young’s moduli around 1 kPa for larger cells. In contrast, the
linear elastic material predicts a higher increase in deformation.
The square channel lookup table (Fig. 3 (right)) shows a similar
pattern. There, the isoelasticity lines agree for stiff cells. For softer
cells, the isoelasticity lines diverge already at smaller cell sizes,
and the deformations are larger. For larger cells with Young’s
modulus r1.5 kPa, the isoelasticity lines seem to flatten out too,
but the range in terms of numerically stable simulations is
smaller, resulting in a smaller lookup table than in the cylindrical
channel. Additionally, for the cylindrical channel, we investigate
the influence of shear-thinning on the isoelasticity lines by
comparing to the deformations in a Newtonian fluid with a fixed
apparent viscosity Z = 6 mPa s (see Herold et al.16 for derivation
from a shear-thinning fluid). The resulting isoelasticity lines
are shown again in Fig. 3 (left) as dashed lines. For smaller
cells, shear thinning is negligible for all cell elasticities. Again, a
Newtonian fluid results in a higher deformation for the larger
cells. This leads to an underestimation of the apparent Young’s
modulus for larger cells. Overall, the agreement between the
linear elastic and hyperelastic isoelasticity lines for small strains
validates the new numerical results.

Validating the scaling discussed above12 is non-trivial, as
we include the non-linear shear-thinning behavior of 0.6%

MC-PBS and hyperelastic neo-Hookean material model for the
cell and consider the full three-dimensional geometry. The new
lookup tables are based on a channel side length L = 20 mm, a
flow rate of Q = 0.04 mL s�1 and an apparent viscosity of 0.6%
MC-PBS which results in Z = 6 mPa s. Here, to validate the
scaling numerically, we perform two in silico experiments in
square channels with a side length of L0 = 30 mm, a flow rate of
Q0 = 0.16 mL s�1 and with 0.5% MC-PBS and 0.6% MC-PBS,

resulting in apparent viscosities Z
0
1 ¼ 5:64mPa s and Z

0
2 ¼ 4:76mPa s.

We scaled the Young’s moduli and derived the deformation values
from the adapted simulations. After rescaling the area A0, the
isoelasticity lines in Fig. 4 (left) agree perfectly except at the bound-
ary, indicating that the scaling still holds at least for the most part of
the LUT and only at the boundary it might become inaccurate.

The ratio between the two axial second moments of area is
another dimensionless integral quantity to describe cell defor-
mation, introduced in Mokbel et al.13 We use the definition of
this inertia ratio I implemented in dclab,15 which for horizontally
symmetric shapes is defined by

I ¼
ffiffiffiffiffiffi
Iyy

Ixx

r
; (7)

Ixx ¼
ð
A

ðy� ybÞ2dA; (8)

Iyy ¼
ð
A

ðx� xbÞ2dA; (9)

where A is the projected cell area and (xb, yb) is the cell barycentre.26

Similar to isoelasticity lines in the area-deformation plot, one can
plot the isoelasticity lines in the area-inertia ratio space shown in
Fig. 4 (right). Cells that are more stretched in the direction of the
fluid flow (prolate) have an inertia ratio I 4 1. An inertia ratio I o 1

Fig. 3 Comparison of the stationary deformation for the linear and hyperelastic cells: Isoelasticity lines for different Young’s moduli E A [0.5, 0.75, 1.0,
1.25, 1.5, 2.0, 3.0, 6.0] kPa for the linear elastic material model without shear-thinning (dotted, see Mokbel et al.13), the new hyperelastic material model
with shear-thinning (solid) and without shear-thinning (dashed). On the (left) for the cylindrical (2D-axisymmetric) channel. On the (right) for the square
(full 3D) channel geometry. The black dot corresponds to the simulation shown in Fig. 2. Parameters: L = 20 mm, Q = 0.04 mL s�1, buffer characteristics
of 0.6% MC-PBS for the shear-thinning isoelasticity lines, Z = 6 mPa s for the apparent viscosity of 0.6% MC-PBS in the Newtonian case. Contours of
Mokbel et al.13 extracted from Wittwer et al.25
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means that the cells are more compressed in the flow direction and
elongated perpendicular, thus resembling an oblate. The area-
inertia ratio lookup table is not bijective, as already reported in
Mokbel et al.13 Around an area of 108 mm2, the isoelasticity lines
cross each other, meaning that a unique lookup for the apparent
Young’s modulus is not possible in this region. But, the scaling
does hold too for the inertia ratio as seen in Fig. 4 (right). Thus, the
presented lookup tables can be used for deriving uniquely the
apparent Young’s modulus for a broad range of experimental
setups from the area-deformation space and, to some extent, from
the area-inertia ratio space.

2.3 The New Lookup Tables and the Geometric Influence

Having validated the numerical simulations and the scaling, we
can construct the final lookup tables based on many

simulations. As already described above, the lookup tables
are based on simulations with a channel side length L =
20 mm, a flow rate of Q = 0.04 mL s�1 and 0.6% MC-PBS. The
cylindrical channel simulations are numerically more stable as the
confinement – the ratio between the cell diameter and channel
width – is smaller, i.e., the channel width is larger to account for
the changed pressure drop. For more details of the concept of
equivalent channel between the square and cylindrical channel, see
Mietke et al.12 Fig. 5 shows the region of all simulations for the two
new lookup tables in the area-deformation space as well as area-
inertia ratio space. The space of the cylindrical lookup table spans
[28 mm2, 335 mm2] � [0.377 kPa, 23.753 kPa] and the square
channel [29 mm2, 281 mm2] � [0.469 kPa, 27.669 kPa]. Since the
area is not conserved and not all radius-Young’s modulus pairs
are numerically stable, the resulting LUTs are not rectangular.

Fig. 4 Scaling of the square channel lookup table: isoelasticity lines of the new lookup table (solid) in the square channel compared to rescaled data with
a wider channel geometry and a higher flow rate (dashed), and additionally a different fluid (dotted). The isoelasticity lines and coloring are the same as in
Fig. 5 (left). The Young’s modulus E0 and the projected cell area A0 were scaled to match the new channel geometry, flow rate, and apparent viscosities.
(left) Isoelasticity lines and rescaled isoelasticity lines for area-deformation, (right) Isoelasticity lines and rescaled isoelasticity lines for area-inertia ratio.

Fig. 5 Comparison of the new lookup tables in the cylindrical and square channel: (left) Isoelasticity lines of cells in the square channel (solid) and
cylindrical channel (dotted). The shaded areas indicate the region of all the simulations. (right) Inertia ratio of the two lookup tables: solid lines for the square
channel and dotted lines for the cylindrical channel. The area with an inertia ratio I o 1 is indicated by the enclosed area with the gray line on the left.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
C

hw
ef

ro
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

6/
10

/2
02

5 
08

:4
3:

22
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2sm01418a


2070 |  Soft Matter, 2023, 19, 2064–2073 This journal is © The Royal Society of Chemistry 2023

Again, we show the isoelasticity lines for the same Young’s moduli
as in Fig. 3. The area where the inertia ratio of the square channel is
I o 1 is enclosed in Fig. 5 (left) by the grey line.

The channel geometry does have an observable influence on
the deformations. On the technical side, the simulations are
more stable in the axisymmetric setting, as discussed above,
resulting in a larger lookup table. For small cells as well as stiff
cells, the isoelasticity lines from the two new LUTs overlay. But
for larger and softer cells, the isoelasticity lines of the cylind-
rical and square channel diverge. As the deformation is smaller
in the cylindrical channel, the cylindrical lookup table under-
estimates the apparent Young’s modulus.

2.4 Applying the new LUTs to Measurements

With the validated new lookup tables, it is possible to extract the
apparent Young’s modulus from RT-DC measurements. To demon-
strate this, we measured poly-acrylamide (PAAm) hydrogel beads22

and HL60 cells (see Methods). The kernel density estimations of the
measured bead and cell distributions in the area-deformation plot
are shown in Fig. 6 (left). All three measurements fall within the
region of definition of both new LUTs, with a few sample points
outside the square channel LUT (resulting in omitted data points).
The resulting apparent Young’s moduli are shown in Fig. 6 (right).
The cylindrical LUT predicts similar elasticity values and distribu-
tion than the linear elastic LUT of Mokbel et al.13 For small beads,
the new cylindrical channel LUT predicts a higher Young’s mod-
ulus compared to the linear elastic LUT, whereas for the larger
beads the Young’s moduli decrease (see the gray dashed lines in
Fig. 6 (right)). This is due to the non-linear material response
discussed above and seen in the flattening isoelasticity lines. For
the HL60 cells, which have a higher deformation than the small
beads, the stiffness increases compared to the linear elastic LUT
too. Comparing the two new LUTs, the square channel LUT
predicts higher Young’s moduli for all three measurements. This

holds true compared to the old linear elastic material model in the
cylindrical channel. At the same time, the shape of the distribution
changes compared to the cylindrical LUT, supporting the impor-
tance of the channel geometry.

Remarkably, the HL60 cells show a greater spread of the data
points in the area-deformation plot than the PAAm beads but a
much narrower distribution of Young’s moduli for all types of
LUTs. On closer inspection, the HL60 fall along the trajectory of a
few isoelasticity lines, while the beads cross several lines. This
highlights an important use case of the LUTs: when comparing
samples of different size in RT-DC, the deformation parameter
alone is not sufficient because it is dependent on the area. In our
example it shows that the HL60 are quite homogeneous in
Young’s modulus compared to the PAAm beads even though they
are more heterogeneous in size. The heterogeneity of the Young’s
modulus of the PAAm beads is a consequence of the production
process and is discussed in more detail in Girardo et al.22

2.5 Strain and stresses of the cells

Next, we will look at the strain and stresses on the cell surface.
Deformation as a measure of strain approximates the resulting
shapes by a single number. In Fig. 7, we plot the strains along the
horizontal x-axis and the vertical y-axis to get a better understand-
ing of the deformed shapes. Here we use the engineering strain
defined as (l� l0)/l0 and (h� h0)/h0 where l and h are the maximum
extensions of the cell in x and y direction. l0 and h0 are the diameter
of the cell in the undeformed state with l0 = h0 = 2R. Small cells are
horizontally compressed but elongated vertically. Larger cells are
exposed to higher shear force, resulting in a more stretched shape
along the flow direction and compressed in the y-axis. The strains
of the cells in the square channel are in the range of [�4.5%, 13%],
in the cylindrical channel in the range of [�9.9%, 33.6%].

The maximum stress components acting on the cells are
shown in Fig. 8 for the square and cylindrical channel. The

Fig. 6 RT-DC measurements of PAAm beads and HL60: (left) The distributions of PAAm beads with two different sizes and HL60 cells from separate
measurements (by bivariate kernel density estimation). The marginal distributions for area and deformation are shown on the top and on the right. The
isoelasticity lines from Fig. 5 (left) are shown in grey. (right) Violin plots of the estimated Young’s modulus from the three measurements. The resulting
Young’s modulus distribution with the cylindrical LUT is on the left in each violin, for the square channel LUT on the right. The dashed lines within the
violins are the quartiles (25%/50%/75%). The grey dashed lines indicate the Young’s modulus distribution from the cylindrical LUT of Mokbel et al.13
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shear stresses are in the range of [117 Pa, 1058 Pa] in the square
channel and [118 Pa, 624 Pa] in the cylindrical channel, again
increasing with the cell size. The largest cells with a large
Young’s modulus are exposed to the highest shear stress, as
their surface is closest to the channel wall. The maximum
pressure is in the range of [226 Pa, 1346 Pa] in the square
channel and [220 Pa, 1022 Pa] in the cylindrical channel,

respectively. We subtract the average surface pressure pavg

again (see above).

2.6 Volume estimation error

The volume of cells flowing through the microfluidic chip is a
valuable cell feature. It is approximated by revolving the detected
contour of the stationary shape and pixelation corrected similar
to the cell deformation and area (see Methods). The rotational-
symmetry assumption is only valid for small cells, perceiving the
almost axisymmetric flow field in the center of the channel. The
absolute value of the relative error is below 1% for cells with a
radius R o 6.2 mm (i.e., confinement of less than 62%.) and any
Young’s modulus considered. For larger cells, the relative error
depends on the Young’s modulus and the cell size. Fig. 9 shows
the relative error based on measured area and deformation. The
relative error evol is defined by evol = 100 � (Vrot/V0 � 1) where Vrot

is the approximated volume from revolving the contour of the in
silico cell20,26 with radius R and V0 is the volume of a sphere with
radius R. Interestingly, the error is only in the range of [�3.87%,
�0.06%]. The volume of small cells is underestimated only
slightly compared to the actual cell volume independently of
the deformation and thus apparent Young’s modulus. For larger
cells, the influence of the deformation on the volume error
increases.

3 Discussion and conclusion

This work presents two new lookup tables for RT-DC for
cylindrical and square channels based on the neo-Hookean
hyperelastic material model. We validate the numerical model
by comparing to the linear elastic LUT of Mokbel et al.13 in the
small strain regime. We discuss the influence of different material
models, the shear-thinning behavior of the fluid, and the channel
geometry and reveal different material responses. We find that the
scaling still holds for the hyperelastic material even with a shear-

Fig. 7 Engineering strain of the cell shapes: (top) Strain of the cells in the
square channel. On the left in the x-direction (flow direction) and on the
right in y-direction (perpendicular to the flow direction) (bottom) Same
strain measure but for the cells in the cylindrical channel.

Fig. 8 Maximum surface stresses on the cells: the maximum pressure
(left) and shear stress (right) on the cell contour for the square channel LUT
(top) and cylindrical channel (bottom). The pressure is normalized by the
average surface pressure pavg.

Fig. 9 Relative error of volume prediction: the volume approximation
from the cell contours assumes rotational symmetry to calculate the
volume. Due to the square channel, the volume is overestimated up to
3.5% depending on the projected area and deformation for the stationary
deformation.
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thinning non-Newtonian fluid. In consequence, the proposed
LUTs can be used for a vast array of different channel sizes,
buffer viscosities, and flow rates. Shear-thinning does affect the
isoelasticity lines for large cells only. Compared to the existing
linear elastic material LUT, the more accurate hyperelastic square
channel LUT predicts stiffer cells, especially for small, highly
deformed cells. However, the square channel LUT has a limited
range of possible cell sizes and deformations due to the smaller
region of numerical stable simulations. On the other hand, the
cylindrical channel LUT has a similar size as the linear elastic
material LUT. Depending on the position of the measurements in
the area-deformation space, the distribution of the Young’s
modulus is altered for both proposed LUTs compared to the
existing one. For both proposed LUTs, we report the strain and
surface stresses of the cells depending on the projected cell area
and deformation. Both new lookup tables are available in dclab15

and freely available in Wittwer et al.,27 extending the predictive
power to derive the apparent Young’s modulus of any biological
cell type based on the given model assumptions. At the same
time, the proposed LUTs complement the work in Wittwer et al.20

to derive the viscoelastic response of biological cells in a square
RT-DC geometry. The reported findings and freely available data
are not only applicable to RT-DC, but to similar flow cytometry
setups as well. A lookup based on area and deformation ignores
the actual shape of the measured cells. Extending the search
space by considering the contour shapes would considerably
improve the predictive power of RT-DC and could take into
account different material models for different cell types and
beads. However, this leads to a significant increase in parameters
and is thus left for future studies.
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G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay,
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