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Quantum machine learning for chemistry
and physics
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Machine learning (ML) has emerged as a formidable force for identifying hidden but pertinent patterns within a

given data set with the objective of subsequent generation of automated predictive behavior. In recent years, it

is safe to conclude that ML and its close cousin, deep learning (DL), have ushered in unprecedented

developments in all areas of physical sciences, especially chemistry. Not only classical variants of ML, even

those trainable on near-term quantum hardwares have been developed with promising outcomes. Such

algorithms have revolutionized materials design and performance of photovoltaics, electronic structure

calculations of ground and excited states of correlated matter, computation of force-fields and potential

energy surfaces informing chemical reaction dynamics, reactivity inspired rational strategies of drug designing

and even classification of phases of matter with accurate identification of emergent criticality. In this review we

shall explicate a subset of such topics and delineate the contributions made by both classical and quantum

computing enhanced machine learning algorithms over the past few years. We shall not only present a brief

overview of the well-known techniques but also highlight their learning strategies using statistical physical

insight. The objective of the review is not only to foster exposition of the aforesaid techniques but also to

empower and promote cross-pollination among future research in all areas of chemistry which can benefit

from ML and in turn can potentially accelerate the growth of such algorithms.
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1 Introduction

The 21st century data revolution sparked by machine learning
(ML) has yielded unprecedented applications in several
domains of technology like natural language processing,1–3

translation,4,5 autonomous vehicles,6–8 robotics,9,10 image-
recognition,11–13 recommender systems,14 web-searching15

and fraudulent email filtering16,17 and in medical sciences like
bio-informatics,18,19 medical imaging,20 brain-computer
interfacing21 and in social sciences22 and finance23 and even
in problems like refugee integration.24 The primary reason for
such prodigious advances is the uncanny ability of ML based
protocols to detect and recognize unforeseen patterns in the
data analyzed and integrate the acquired knowledge into
decision-making, a process fancifully coined as ‘learning’.
The fruitful use of this ability has been further accelerated by
not only large-scale availability of shared databases and expo-
nential growth of computing resources but also ingenuous
algorithmic advances over the past few decades that precipi-
tated in efficient dimensionality reduction25 and data-
manipulation. Needless to say, this positively disruptive meth-
odology has also fruitfully impacted several domains of

physical sciences.26 Applications ranging from astronomy,27,28

particle-physics,29 atomic and molecular physics,30 optical
manipulations of matter,31 forecasting of weather patterns
and climate dynamics32,33 and even identification of evolution-
ary information from fossil records in paleontology34–36 have
been recorded with an unforeseen success ratio. Chemical
applications like understanding the electronic properties of
matter,37,38 materials discovery with optimal properties,39,40

retrosynthetic design and control of chemical reactions,41–44

understanding reaction pathways45,46 on a potential energy
surface, and cheminformatics47 have been analyzed using the
newly acquired lens of ML and continue to register a meteoric
rise. Simulations performed in a recent review48 bear testimony
to this fact by highlighting that keywords based on ML have
made steady appearances (Z102) across all divisions of chem-
istry over the last 20 years in technical journals of a particular
publishing house. The number of such occurrences has speci-
fically increased steadily for applications in physical chemistry/
chemical physics. While ML based algorithms were enjoying
this attention, much along the same time, the world was also
witnessing the rapid emergence of another computing revolu-
tion which is fundamentally different from the familiar
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classical bit-based architecture. The new paradigm, called
quantum computing,49 leverages the power of quantum paral-
lelism and non-classical correlations like quantum entangle-
ment to offer a platform that has shown algorithmic speed-up
over the classical version in many instances.50–54 The natural
question which has been posed in the community is whether
quantum computing can also expand the horizon for predicting
and identifying relevant features in a given data-set,55 lead to
newer, more efficient algorithms for machine learning or even
record algorithmic speed-up for some of the established toolk-
its that are now routinely employed by ML practitioners in
physics and chemistry.56 In this review, we shall try to explore
this exciting intersection.

1.1 Scope of the review

The scope and philosophy of this review would thus be the
following:

1. Ref. 48 highlights that a survey has indicated that ML
algorithms are increasingly becoming opaque to human com-
prehension. We feel that a part of the reason for this is the
under-emphasis on the various methodologies that inform the
basic building blocks of ML in recent reviews. Although such
topics are usually covered elaborately in data-science
textbooks57–59 yet the resources lack domain-specific exam-
ples/applications which a new researcher in the field may find
beneficial. Thus a holistic yet detailed account which focuses
on both the basic tools used by ML practitioners and how such
tools are enabling various physico-chemical applications, con-
solidated in one place for researchers to use synergistically, is
lacking. This review will try to address this gap.

2. We shall not only discuss the common tools that are used
by traditional ML practitioners in theoretical and computa-
tional physics and chemistry but also delineate the analogues

of these algorithms trainable on a quantum computer. This will
be attained in two steps. First, we shall discuss the underlying
theoretical framework of quantum versions of each of the
vanilla ML algorithms in detail along with their classical
counterparts. Second, the contributions made by both the
classical and the quantum versions would be discussed sepa-
rately while exploring each of the respective applications in
subsequent parts of the review. To this end, it is important to
clearly define certain terms which will set the tone for the
review. All applications to be discussed in this review will entail
deploying ML based algorithms on datasets involving features
or representations of molecules/atoms and/or nanomaterials.
Due to the specific nature of the data, we shall broadly call all
such examples as instances of quantum machine learning (as is
commonly done in this domain60,61) even if the analysis is
performed on a classical computer. However, to distinguish
examples wherein quantum computers have been used as a
part of the training process for the ML algorithm we shall
specifically call such applications as ‘quantum computing
enhanced’. To the best of our knowledge, explicating such
quantum computing enhanced variants in the physico-
chemical domain has not been attempted in any of the recent
reviews which distinctively sets this one apart from the rest in
terms of coverage and focus.

3. We shall also discuss five different domains of physico-
chemical applications which includes tomographic preparation
of quantum states in the matter, classification of states and
phases of matter, electronic structure of matter, force field
parameterization for molecular dynamics and drug discovery
pipeline. For each of these applications, we shall discuss ML
algorithms (both the classical and quantum computing
enhanced variants) that have been successfully used in recent
literature focusing on as many different architectures as
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possible. The objective of treating such a diverse portfolio of
applications is to ensure that the reader is aware of the many
distinct domains in physical chemistry that have benefited
immensely from ML over the past decade. Since the
quantum-computing variants are still a nascent variety, bulk
of the applications to be discussed will involve classical ML
algorithms on quantum data even though the focus will cer-
tainly be on how the capabilities in each domain can be
augmented with the former in the arsenal. To the best of our
knowledge, such a diverse and comprehensive portfolio of
applications consolidated in one place has not been presented
in any single review most of which have been topical and
focused on a single domain only. It must also be emphasized
that the aforesaid list is by no means exhaustive. Indeed we
shall enlist several other domains later which have not been
discussed in this review. Topical reviews on such applications
will be duly referenced which the interested reader may
consult.

4. Lastly, another reason for the obscurity in the interpreta-
tion of machine learning algorithms especially those involving
neural networks is the lack of clarity in the underlying learning
process. Indeed, physicists and chemists are motivated to
design computational tools which explicitly use physical laws
and scientifically guided domain intuition to understand a
given natural phenomenon. However, in most of machine
learning algorithms, the models are initially agnostic to such
physical principles. Instead they identify pertinent features
and/or strategies directly from the data without the need for
human intervention. While this process is intriguing, certain
researchers may be reluctant to reap the full benefits of ML due
to this fundamental difference in the operational paradigm. In
this review we strive to address this issue by discussing several
statistical physical tools which have been used in recent years
to demystify the learning process. This is either completely
absent or is less emphasized in recent reviews which we believe
also fuels the increasing opacity as highlighted in ref. 48

1.2 Organization of the review

The organization of the review is as follows. In Section 2 we
offer a glimpse of some basic notions in quantum computing to
be used for understanding the subsequent portions of the
review. In Section 3 we discuss in detail each of the commonly
used architectures in ML and DL (both the classical and the
quantum computing enhanced variants). The basic theoretical
framework discussed in this section for each of the methods
will be frequently referred to subsequently. In Section 4, we
enlist and discuss in detail some of the recent reports wherein
the power of quantum computers for machine learning tasks
has been explicitly demonstrated or theoretically proven to be
superior to that of classical models. In Section 5, we discuss the
applications of ML in five different domains of physics and
chemistry. In Section 6, we discuss several different models for
explaining the learning mechanisms of deep learning algo-
rithms using statistical physics. In Section 7, we conclude with
a foray into emerging domains not discussed in this review.

2 A short primer on quantum
computing

In this section, we shall discuss some of the basic terminologies
and conceptual foundations of quantum computing that will be
used in the rest of the review. This is not only being done for
completeness but with the motivation that since quantum com-
puting as a paradigm is relatively new, it may be unfamiliar to
traditional ML practitioners and/or new entrants into the field. To
appreciate the quantum analogues of commonly used machine
learning algorithms, a basic understanding of some of the opera-
tional concepts and terms used in this domain would be bene-
ficial. This section would attempt to familiarize the reader with
this knowledge. We shall visit the common operational paradigms
of computing using quantum devices that are widely used. Just as
in classical computers where one has binary bits encoded as {0,1}
used for all logical operations, on a quantum computer the
primary unit of information is commonly encoded within a qubit.
To define a qubit, one would need two two-dimensional vectors
commonly denoted as |0i and |1i and are referred to as computa-
tional basis states. Physically these two states can be the two
hyperfine energy levels of an ion like in trapped-ion based
quantum computing platforms62,63 or can be energy levels corres-
ponding to different number of Cooper pairs in a superconduct-
ing island created between a Josephson junction and a capacitor
plate64 or can be the highly excited electronic energy levels of a
Rydberg atom based cold atomic-ensembles65,66 or polar mole-
cules in pendular states67–71 to name a few. Mathematically the
two states can be represented as |0i = (1 0)T and |1i = (0 1)T and
collectively form a basis for the two-dimensional state space ðHÞ
of the system.

2.1 Single qubit state

The state of the qubit in the two-dimensional basis of (|0i,|1i)
is defined by the unit trace positive semi-definite operator
(denoted as r 2LðHÞ) as follows:

r ¼ 1

2
þ nz

� �
j0ih0j þ ðnx þ inyÞj0ih1j

þ ðnx � inyÞj1ih0j þ
1

2
� nz

� �
j1ih1j

(1)

wherein nx; ny; nzð ÞT2 R3 and i ¼
ffiffiffiffiffiffiffi
�1
p

and the operators of the
form |iih j| 8 (i, j) A (0,1) correspond to familiar outer-product
of two vectors.49 Positive semi-definiteness of the matrix in eqn (1)
guarantees that nx

2 + ny
2 + nz

2 r 1, which allows the vector
(nx,ny,nz)

T to reside within a Bloch sphere.49 For pure states which
are defined by the additional idempotency constraint of r2 = r, the
inequality is saturated. One can then parameterize (nx,ny,nz)

T =
(cosy sinf,sinycosf,cosy)T and establish a bijective correspon-
dence with a vector (say jci 2 H) defined as

jci ¼ cos
y
2

� �
j0i þ eif sin

y
2

� �
j1i: (2)

The parametric angles {y A [0,p], f A [0,2p]} are geometri-
cally defined in the Bloch sphere in Fig. 1 Such states of the
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system defined by eqn (2) will be extensively used in this review
and will be exclusively referred to for single-qubit states unless
otherwise specified. For certain magnitudes of the parameter y

wherein both cos
y
2
; sin

y
2

� �
acquire non-zero values, the state of

the system in eqn (2) is said to be in a superposition of the two
basis states. Realization of such superpositions presents one of
the fundamental differences between qubit paradigm of com-
puting and the bit paradigm of computing as used in classical
processors. The parametric angle f controls the relative phase
difference between the computational basis in such superposi-
tion states. However, a superposition even though is respon-
sible for quantum parallelism would not survive a projective
measurement protocol.49,72 Such measurements would collapse
the state in eqn (2) in either the computational basis state |0i

with probability cos2
y
2

or in the computational basis state |1i

with probability sin2
y
2

.

2.2 Multi-qubit state

For multiple qubits (say N), the corresponding state space is
HA �HB �HC . . . HN.49 One can thus define a computational
basis using the Kronecker product such as |iAi # |iBi,. . .,|iNi,
where the labels (A, B, C,. . ., N) are physically used to demarcate
the state-space of each qubit. There are now 2N basis states
generated from two choices (|0i,|1i) for each of ij, j A {A, B,. . .,

N}. Let us denote this set collectively as fjxiig2
N�1
i¼0 . For nota-

tional convenience such multi-qubit basis states will often be

abbreviated in this review such as |iA, iB,. . ., iNi � |iAi, |iBi,. . .,
|iNi � |iAi # |iBi,. . ., |iNi. A general state rA;B;C;...;N 2LðHA �
HB �HC . . . HNÞ of the multi-qubit system would again corre-
spond to a positive semi-definite operator with unit trace
defined as

rA;B;C;...;N ¼
X2n�1
i¼0

X2n�1
j¼0

rij jxiihxj j (3)

where the elements rij 2 C2 8 ði; jÞ. One can also define a

reduced state for each of the sub-system qubits (say for the K-
th qubit) through partial tracing of the state rA,B,C,. . .,N over
computational basis states of the remaining qubits as follows:

rK = TrA,B,. . .,J,L,. . .,N (rA,B,C,. . .,N) (4)

where rK 2LðHKÞ. Such operations are completely positive
trace-preserving (CPTP) maps and hence generate valid
states49,72 of the sub-system (often called the reduced density
operator of the K-th qubit). Just like in the case of single qubits,
if the general state in eqn (3) is pure (rA,B,C,. . .,N

2 = rA,B,C,. . .,N) one
can associate a vector (say jciA;B;C;...;N 2 HA �HB �HC . . . HN)

which in the multi-qubit computational basis is denoted as

jciA;B;C;...;N ¼
X2N�1
i¼0

Cijxii

¼
X1
iA¼0

X1
iB¼0

. . .
X1
iN¼0

CiA;iB ;iC ;...;iN jiA; iB; . . . ; iNi:

(5)

The coefficients CiAiBiC ...iN 2 C2 8 ij ; j 2 fA;B; . . . ;Ng. For a nor-
malized state as is usually considered in this review,P1
iA¼0

P1
iB¼0

. . .
P1
iN¼0
jCiA;iB ;iC ;...;iN j2 ¼ 1.

Other than the possibility of superposition over all basis
states similar to the case of single-qubit as discussed in the
previous section, it is also possible now to encounter a new
phenomenon which has to do with non-classical correlation.
The pure state in eqn (5) will be termed separable if ( scalars ziA

,

giB
,. . ., oiN

for each sub-system such that CiA,iB,iC,. . .,iN
= ziA

,-

giB
,. . .,oiN

8 (iA, iB,. . ., iN)T A {0,1}N, i.e., if every coefficient is
multiplicatively factorizable into scalars characterizing the
2D basis states of each sub-system qubit.49,72,73 For such a
pure separable state it is possible to express eqn (5) as
|ciA,B,C,. . .,N = |f1iA#|f2iB. . .#|fNiN wherein jf1iA 2 HA,
jf2iB 2 HB; . . . ; jf2iN 2 HN. If a state in eqn (5) is not separable
then it is said to be entangled which is a non-classical
correlation.

The presence of entanglement is another feature wherein
computation using qubits can be different from that of the
classical bit counterparts and is often leveraged in many
different algorithms as a useful resource.50,51 Similar to that
of the case of a single qubit, the probabilistic interpretation of a
projective measurement on the state in eqn (5) is retained with
the probability of collapsing onto a computational basis state
|iA,iB,. . .,iNi is |CiA,iB,iC,. . .,iN

|2. Unless otherwise stated by multi-
qubit states in this review we shall almost always exclusively

Fig. 1 The Bloch sphere (blue) and the parametric angles y and f as used
in eqn (2). The point P marked in red lies on the surface of the Bloch sphere
and has (nx,ny,nz)

T = (cos y sinf,sin y cosf,cos y)T. Such states can be
represented as in eqn (2). On the other hand, states like point Q (marked
in black) lies inside the Bloch sphere nx

2 + ny
2 + nz

2 r 1 and cannot be
represented as in eqn (2). The only way to denote such states would be
using eqn (1).
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mean pure states of the kind given in eqn (5). Such states as we
shall see can not only provide an efficient representation of the
many-body states of any interacting quantum system in quan-
tum simulations of stationary/time-independent processes but
also for real and imaginary time evolution74,75 in quantum
dynamics either through Lie–Trotter–Suzuki expansion76 or
through variational frameworks.77

2.3 Quantum gates and quantum circuit based paradigm

Now that we know how to define quantum states of single and
many qubits, it is important to learn how such states are
transformed or manipulated. In the gate-model of quantum
computing paradigm, transformations between states are
achieved using unitary matrices which are represented as
‘quantum gates’. Since all quantum gates are unitary, the
inverse of such gates necessarily exists and hence transforma-
tions using quantum gates alone are always reversible. The way
to incorporate irreversibility into the paradigm is through
making projective measurements as that disturbs the state
vector irrevocably making it loose its present memory (interac-
tions with the environment induces irreversibility too in the
form of qubit decoherence.49 We shall return to this point
later). Commonly used quantum gates and their matrix repre-
sentation in the computational basis are given in Table 1. These
gates act on either one, two or three qubits as has been
indicated in the table. For visualization of the operations of
single-qubit gates, in Fig. 2, we plot the corresponding opera-
tions for most commonly-used single qubit gates in the Bloch
sphere. We see that for Rn(y) the axis of rotation n can be either
{x,y,z} and that decides the accessible state-space for a given
initial state. For Hadamard transformation, the operation can

be viewed as rotation about the axis ðnx; ny; nzÞT ¼
1ffiffiffi
2
p ; 0;

1ffiffiffi
2
p

� �

through an angle of p and hence creates the state
j0i þ j1i

2

starting from |0i. The S-gate P
p
2

� �� �
and T-gate P

p
4

� �� �
control the relative phases of |0i and |1i as shown in Fig. 2.
Table 1 also discusses several commonly used multi-qubit
gates. These operations are commonly used to entangle two
or more qubits in a quantum circuit. For example one of the
most celebrated two-qubit gate CNOT (see Table 1) can be
interpreted as the following:

CNOT = |0ih0|c # It + |1ih1|c # Xt (6)

where the subscript c indicates the control qubit whose state is
not changed and the subscript t indicates the target qubit
whose state is altered conditioned on the state of the control-
ling qubit. In this case, if the state of the control is |1ic the
target qubit is flipped but it is left unchanged if the state of the
control is |0ic. Similarly using CPHASE(a) (see Table 1) one
imparts a relative phase of a between the basis states of the
target qubit if the state of the control qubit is |1ic. It must be
emphasized that gates wherein a non-trivial operation on a
target qubit is initiated if the control qubit is in state |0i are
also routinely used in quantum algorithms. Such a controlled

two qubit gate (CU0) for an arbitrary single qubit operation Ut

on the target qubit is written as

CU0 = |0ih0|c # Ut + |1ih1|c # It. (7)

This interpretation extends to multi-qubit gates beyond two
as well, except that the size of the control register now is more
than one and many more possibilities of multiple controls are
realizable (for example for a three qubit control unitary, the two
controlling qubits can be in any of the four states |00ic, |01ic,

Table 1 Commonly used single and multi-qubit gates in quantum circuits
and the corresponding matrix representations in the computational basis

Gate type Number of qubit(s) Matrix representation

Rx(y) 1
cos

y
2

�i sin y
2

�i sin y
2

cos
y
2

0
B@

1
CA

Ry(y) 1
cos

y
2

sin
y
2

sin
y
2

cos
y
2

0
B@

1
CA

Rz(y) 1
e�i

y
2 0

0 ei
y
2

 !

X 1 0 1
1 0

� �
Y 1 0 �i

i 0

� �
Z 1 1 0

0 �1

� �
H 1 1ffiffiffi

2
p 1 1

1 �1

� �
P(a) 1 1 0

0 eia

� �
T ¼ P

p
4

� �
1 1 0

0 ei
p
4

� �
S ¼ P

p
2

� �
1 1 0

0 i

� �
CNOT 2 1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

0
BB@

1
CCA

CPHASE(a) 2 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eia

0
BB@

1
CCA

SWAP 2 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

0
BB@

1
CCA

CZ = CPHASE(p) 2 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

0
BB@

1
CCA

Toffoli 3 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
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|10ic, and |11ic, to initiate a non-trivial operation on the target).
In the well-known Toffoli gate (see Table 1) the state of the
target is flipped by an X operation conditioned on the joint
state of two-qubits instead of one unlike in the CNOT gate. This
means the operation is non-trivial only if this joint state is |11ic.
Intuitively, one-qubit gates are required to initiate superposi-
tion between the two-basis states of individual qubits as
depicted within the Bloch sphere shown in Fig. 2 but multi-
qubit gates are required to initiate correlation between the
joint-states of several qubits. Both these operations are there-
fore necessary to create non-trivial many-body quantum states.

A certain subset of gates forms a universal set49 in the sense
that any arbitrary n-qubit unitary operation can be approxi-
mately modelled as a finite sequence of gates from this set

within a preset user-defined precision. The choice of this
set is not unique and is largely determined by which
gates are operationally convenient for implementation on a
given platform used for constructing the quantum hardware.
One popular choice is the ({Rx(y), Ry(y), Rz(y), P(a), CNOT})
gate-set. Equivalent yet a minimalistic choice can be

T ¼ P
p
4

� �
;H;CNOT;S ¼ P

p
2

� �n o� �
.49,73 One must empha-

size that the use of universal gate-sets only guarantees reach-
ability, i.e., the ability to approximately implement any desired
unitary using a finite-sequence of gates from the set without
placing any restriction on the number of gates inhabiting the
sequence.73 Indeed it may so happen that implementation of
certain n-qubit unitaries would require gate-sequences from the

Fig. 2 (a) The operation Rx(y) which involves rotation about the x-axis (marked in black) as shown in the Bloch sphere. The initial state is |0i (marked in
red). (b) The operation Ry(y) which involves rotation about the y-axis (marked in black) as shown in the Bloch sphere. The initial state is |0i (marked in red)

(c) same as in (a), (b) but with Rz(y) wherein the axis of rotation is z (marked in black). The initial state chosen here is (marked in red)
j0i þ j1iffiffiffi

2
p . (d) Hadamard

transformation of the initial state |0i (marked in red) as visualized in the Bloch sphere. The operation can be viewed as rotation around the axis
1ffiffiffi
2
p ; 0;

1ffiffiffi
2
p

� �T
shown in black through an angle of p. Note that unlike the rotation gates in (a)–(c), Hadamard transformation does not have a variable user-

defined angle of rotation and hence the final state starting from the said initial state is always fixed i.e.
j0i þ j1iffiffiffi

2
p . (e) The transformation of the initial state

j0i þ j1iffiffiffi
2
p under phase-gate S ¼ P a ¼ p

2

� �
(see Table 1). The operation produces a final state

j0i þ ij1iffiffiffi
2
p . (f) The transformation of the initial state

j0i þ j1iffiffiffi
2
p

under T-gate where T ¼ P a ¼ p
4

� �
(see Table 1). The operation produces a final state

j0i þ e
ip
4 j1iffiffiffi
2
p . The matrix representations of the operators in (a)–(f) are

given in Table 1.
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universal set with length scaling as O(cn), i.e., exponential. On
the other hand, for certain other operations, the length of gate-
sequences scaling as O(nk) (polynomial) is seen. Only the latter
kind of unitaries can be hoped to be efficiently simulated on a
quantum computer.

A quantum circuit is essentially an assembly of quantum
gates which transforms the initial state of a multi-qubit system
to the final desired state. The set of quantum gates operation-
ally represents a user-defined unitary transformation. Such
operations are frequently followed by measurement either on
a computational basis or on the basis of an operator whose
statistics in the prepared state are desired.49 The circuit repre-
sentation of the commonly used gates is given in Fig. 3(a)–(d). A
representative example of a quantum circuit built using some
of the gates in Table 1 is given in Fig. 3(e). The circuit shows the

preparation of a typical Bell state of the kind
j00i þ eiaj11iffiffiffi

2
p in a

2-qubit system with a being the relative phase difference
between the two basis states (|00i, |11i). One practically useful
way to interpret such a circuit is to probe the state of the system
at various junctions. We have divided the circuit into four
junctions. At the first junction labelled as (I), the joint state
of the two qubits is the initial computational basis |00i. At
junction (II), the effect of Hadamard (H) on the first qubit yields
a separable state wherein the first qubit is in an equal super-
position of the single-qubit basis states and the second qubit is
still in |0i. The CNOT gate with the first qubit as the control

and the second qubit as the target yields the state
j00i þ j11iffiffiffi

2
p at

junction (III). At junction (IV), the controlled-phase gate
(CPHASE(a)) selectively creates a phase difference of a between
the states |00i and |11i which results in the target state.
Measurements on the target state on a computational basis
would yield equal probability (1

2) of observing either the state
|00i or |11i and zero probability of observing |01i or |10i.
Circuit representations of the quantum-enhanced machine
learning algorithms shall appear throughout the review. Inter-
pretations of each of them can be done analogously.

Development of quantum computing has been underway
since the 1980s,78,79 but it gained unprecedented attention with
the exponential speed-up reported in prime factorization by
Peter Shor in the last decade of the 20th century.53 It was
quickly realized, however, that uncontrolled interactions of the
qubit register with the environmental bath lead to the loss of
coherence of the initialized state. Moreover, for the experi-
mental implementation of a digital quantum-computing plat-
form, the gate-operations (unitary gates defined above) may be
imperfect too.80 The collective effect of both of these would be
to introduce noise or errors thereby hampering the perfor-
mance of the algorithm. Quantum error-correction (QEC)
schemes were proposed81 which can act to mitigate the effect
of these noises. However scalable implementation of
such protocols is challenging82,83 and is currently under devel-
opment. In the current era, operational quantum devices
are already a reality consisting of around 10–100 qubits but
without any error-correction. This era of quantum computers is

therefore termed noisy intermediate-scale quantum devices
(NISQ).84 Due to the inherently erroneous gate operations, the
algorithms developed for NISQ devices are designed to use
shallow-circuit depth and usually variational and delegate a
part of the computation to a classical processor.85 Such algo-
rithms are meant to reap the maximum benefits from
noisy hardwares and look for potential advantages. Such algo-
rithms will be a key player in this review for understanding
some of the near-term ML applications. These algorithms have
proven to be advantageous for applications in chemistry/
chemical physics,86–90 condensed-matter physics and materials

Fig. 3 Commonly used circuit representation of (a) 1-qubit gates and (b)
2-qubit gates. Special gates in this category like CNOT and CZ gates have
slightly different representations than the rest as has been highlighted
within the oval windows. One must note that the solid dot indicates the
control qubit and the hollow dot with a plus, i.e., " indicates the target
qubit. Its the target qubit whose state is actually altered conditioned on the
state of the control qubit being |1i in this case. The operation need not
always be controlled on state |1i for the control qubit. Indeed two-qubit
gates where the non-trivial operations on the target initiated by the control
is |0i are also routinely used (see text for more details). (c) 3-Qubit gates:
special gates in this category like Toffoli gate and CCZ gate have slightly
different representations than the rest as has been highlighted within the
oval window. A similar interpretation as in (b) for the solid and hollow dots
(") must be followed in terms of the control and target qubits. (d) A
generic n-qubit parameterized unitary. This is very often used to describe
quantum circuits as we shall see later in this review. The explicit construc-
tion of gates in U(y) is often omitted but is implied to be made up of
elementary gates from (a) and (b) and occasionally even (c). The measure-
ment protocol for any qubit will be denoted by boxes of the kind shown in
green symbolically representing a monitoring device/meter. (e) A simple
representative quantum circuit for the preparation of the Bell state

j00i þ eiaj11iffiffiffi
2
p . To facilitate interpretation of the circuit, the state of both

the two-qubits is illustrated at junctions (I), (II), (III), and (IV) after the
operation of each elementary gate. To evaluate the states one can also use
the matrix representation of the respective gates given in Table 1 and apply
it to the initial state |00i with the unitaries on the left acting first.
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science,91 atomic physics,92 high-energy physics,93,94 bio-
chemistry,95 and finance.96 In contrast, there are algorithms
like quantum phase estimation97,98 which have a provable
exponential advantage but require high-circuit depth and
hence are amenable to be implemented in fault-tolerant
devices.

2.4 Quantum annealing based paradigm

This paradigm is particularly useful for solving optimization
problems wherein the optimal solution can be encoded within
the ground state of a given Hamiltonian of a system (say H2).
The key working principle of the hardware operating under the
annealing model is to prepare the ground state of a system
which is efficiently prepared (say for a Hamiltonian H1), from
which the ground state of the target Hamiltonian H2 is subse-
quently retrieved.

H(s) = A(s)H1 + B(s)H2 (8)

To be more specific, let the Hamiltonian of the system be H1,
i.e., A(s) = 1, B(s) = 0, in eqn (8), whose ground state can be easily
constructed. Thereafter the switching parameter s is varied
until (A(s) = 0, B(s) = 1). If the variations are sufficiently ‘slow’
then the quantum adiabatic theorem99 guarantees that the
evolution trajectory would be traversing the instantaneous
ground states of Hamiltonian H(s) with high probability.
Under such circumstances this implies that one would yield
the ground state of the target Hamiltonian H2 at the end of
the protocol with high fidelity (see eqn (8)). A popular
quantum annealer D-wave uses ground states of Ising type
Hamiltonians100 for encoding the solution to the problem
being investigated. Optimization schemes like quadratic
unconstrained binary optimization (QUBO), combinatoric pro-
blems etc. which can be mapped to such Hamiltonians can thus
be efficiently solved using this paradigm.101–104 Except in a very
small number of examples, this paradigm of quantum comput-
ing will not be explored much in this review. Interested readers
may consult topical reviews like ref. 101,105.

3 A short primer on the commonly
used toolkits in machine learning
3.1 Overview

Broadly problems tackled in machine learning can be categor-
ized into 3 classes: supervised, unsupervised and reinforcement
learning. We start off by discussing each of the categories
independently and introduce commonly used terminologies
within the machine learning community.

3.1.1 Supervised learning. We are given a dataset of the
form {(xi,yi)|i A [N]}, where xis are inputs sampled from some
fixed distribution, yi is the corresponding label and N is the size of

the dataset. Typically xi is an element in Rd and yi belongs to R.
The task is to identify the correct label for y* for a randomly
chosen sample x* from that distribution. The dataset {(xi,yi)|i A
[N]} is referred to the training dataset. A loss function L(h(xi,w),yi)
is defined based on the problem at hand that quantifies the error

in the learning. Here h(x,w) refers to the hypothesis function that
the learning procedure outputs and w refers to the parameters or
weights over which the optimization is performed. An empirical
risk minimization is carried over

P
i

Lðhðxi;wÞ; yiÞ to output

h(x,w*), where w* are the parameters output at the end of
learning. A test data set is finally used to output the performance
of h(x,w*) and used as a metric of comparison across several
learning methods. The labelled dataset being used is manually
subdivided into two subsets. One of the subset is used for training
and the other for final validation and testing. The process of
learning thus comprises 2 parts: trainability (empirical risk mini-
mization over training data) and generalization (how well it
performs on unseen data). Typically the optimization of para-
meters involves computing gradients of the loss function with
respect to these parameters.

Apart from the parameters that are trained definitively
through optimization schemes, other parameters referred to
as hyperparameters become critically important for neural-
network based supervised learning schemes (to be explored
soon). Such parameters/variables are fixed manually by hand a
priori. These may include, the learning technique employed,
the number of parameters, the optimization procedure106

(standard gradient descent, stochastic gradient descent, and
Adam optimizer), the parameter initialization scheme, the
learning rate, the stopping conditions for training (the thresh-
old for convergence or the number of parameter update itera-
tions), batch sizes, choice of the loss function, etc.107

Examples of problems in a supervised learning procedure
include classification, where the labels yi are discrete, and
regression, where the labels yi are continuous and extrapolation
to unknown cases is sought. Some of the techniques used
exclusively for problems in this domain include, a support
vector machine, kernel ridge regression wherein data are
mapped to a higher-dimensional space for manipulation,
Gaussian process regression, decision trees, and a Naive Bayes
classifier. Other techniques not exclusive to this learning model
include Neural networks whose applications have spanned
every field of industry and research. We will discuss more about
each of the above learning models in the subsequent section.

3.1.2 Unsupervised learning. Unlike supervised learning,
here we are provided with data points that do not have any
continuous or discrete labels associated with them. The task is
to learn something intrinsic to the distribution of the data
points. Some commonly tackled tasks under this learning
scheme include clustering with respect to some metric on the
space, learning the given probability distribution by training
latent variables (e.g. Boltzmann machine, restricted Boltzmann
machine (RBM), and generative adversarial networks), and
dimensionality reduction that allows reduction in the size of
the feature space with little information loss (e.g., autoenco-
ders, principal component analysis, and RBMs). Unsupervised
learning mainly tries to solve the problem of learning an
arbitrary probability distribution by minimizing some loss
function that quantifies the divergence between the given
distribution to be learnt and the model distribution being
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trained (e.g., cross entropy, KL divergence, and Renyi
entropy).108 We would like to point out that the techniques
mentioned above are different variations to making use of a
neural network, whose functionality depends on the exact form
of cost function being employed in the training.

One is not restricted to using methods from either super-
vised or unsupervised learning exclusively for solving a pro-
blem. In practice we notice that a mix of methods are employed
to solve a given problem. For instance, one might require
dimensionality reduction or noise filtering or distribution
learning using unsupervised methods prior to introducing
labels and solving a classification problem with supervised
methods. These methods are commonly referred to as semi-
supervised learning109,110 or hybrid learning methods.

3.1.3 Reinforcement learning. Unlike the above two learn-
ing models, here we take a totally different stand on the setting
in which the learning happens. An artificial agent is made to
interact with an environment through actions so as to max-
imize the reward function that has been identified. This type of
learning is employed when the agent can learn about its
surroundings only through interaction which is limited by a
finite set of actions that the agent is provided with. Due to the
unbounded sequence of actions that the agent can explore, one
needs to employ good heuristics with regards to designing
reward functions that help accept or reject the outcome of a
certain action in exploring this space. Thus optimal control
theory111 plays an important role in this learning method.
Some of the most popular applications involve self driving cars
(Tesla Autopilot), training bots in a game (Alpha zero for chess,
Alpha Go zero for Go) and smart home robots (vacuum cleaning
bots and companion bots) for an extensive introduction to
reinforcement learning, refer ref. 112.

3.2 Classical and quantum variants of commonly used
algorithms

In this section we shall elaborate on some of the commonly
encountered machine and deep learning techniques that have
been used extensively for physico-chemical studies. We shall
discuss both the classical implementation of the algorithms
and also the appropriate quantum versions.

3.2.1 Kernel based learning theory. The concept of kernels
is very important in machine learning, both quantum and
classical.113–115 Let us imagine a dataset D = {(xi,yi)| xi A w,
yi A O 8 i A [m]} as described in the supervised learning section.
In set D, xi are the feature vectors sampled from the set w
whereas the labels yi are sampled from another set O. In the

cases frequently encountered, one usually finds w � Rd and
O � R. m is the sample size of the training data-set D or the
number of observations. It is often convenient to define a map
f such that f: w 7!F such that the new feature-space F is
usually a higher-dimensional space equipped with an inner

product. For example if w � Rd and F � Rp then p Z d. The
Kernel K : w� w 7! R of the map f(x) is then defined as follows:

Kðx; x0Þ ¼ ðfðxÞ;fðx0ÞÞF (9)

where (�,�)F symbolizes an inner product on F. For example, if
F � Rp then the inner product can be familiar
ðfðxÞ;fðx0ÞÞF ¼ fðxÞTfðx0Þ.

The importance of kernels lies in the fact that since the
space F is high-dimensional, direct computation of the feature
map f(x) in that space might be intractable and/or expensive.
However most algorithms using the kernel trick are designed
such that the only quantity required would be the inner product
K(x,x0) (see eqn (9)) without explicit construction or manipula-
tion of f(x) or f(x0). Thus several popular kernel functions have
been reported in the literature113,114 which can be computed
directly from the entries x in the dataset D. Some of them are
displayed below:

Linear Kðx; x0Þ ¼ x � x0
Polynomial Kðx; x0; g; dÞ ¼ rþ g � x � x0ð Þd

Gaussian Kðx; x0; sÞ ¼ exp �jjx� x0jj2
2s2

� �
Sigmoid Kðx; x0; r; gÞ ¼ tanh rþ g � x � x0ð Þ

:

The success of the kernel trick has been extended to several
important supervised machine learning algorithms like kernel-
ridge regression, dimensionality reduction techniques like
kernel-based principal component analysis, classification rou-
tines like k-nearest neighbor (see Section 3.2.4), support-vector
machines (SVM) (see Section 3.2.7), etc. For classification tasks
like in SVM the effect is more conventionally described as the
inability of a hyperplane for linearly discriminating the data
entries which can be ameliorated through the kernel trick of
transporting the feature vectors x to a higher dimension f(x)
wherein such a separability is easily attainable. Both regression
and classification algorithms will be discussed in detail in
appropriate sections. In this section, we shall first discuss the
kernel theory developed recently for quantum-computing
enhanced machine learning techniques.

3.2.1.1 Quantum enhanced variants. The theory of quantum
kernels has been formalized in ref. 116 and 117. For a given
classical data set D = {(xi,yi)|xi A w, yi A O 8 i A [m]} as defined
above wherein xi A w, a data domain, ref. 116 defines a data-
encoding feature map as a quantum state r(xi) = |f(xi)ihf(xi)|

which is created from a data-encoding unitary UðxiÞ 2 C2n�2n	 

as |f(xi)i = U(xi)|0in. This unitary U(xi) thus embeds
each feature vector of the dataset within a quantum state
r(xi). The state r(xi) is part of a Hilbert space LðCnÞ which is
thereby equipped with an inner product defined as
hr; ti ¼ TrðrtÞ 8 r; t 2 LðCnÞ. The quantum variant of the ker-
nel matrix entries from the dataset D is thus computed from
this inner product as

K(xi,xj) = Tr(r(x)ir(xj)). (10)

The authors prove that such a definition of a quantum
kernel indeed satisfies Mercer’s conditions118 of positive-semi
definiteness. The authors then define a reproducing kernel
Hilbert space (RKHS) which is a span of basis functions
f : w 7! R where the function f (x) = K(xi,x), i.e., each such basis
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function in the spanning set comprises quantum kernel matrix
elements K(xi,x) as defined in eqn (10) with one input argument
of the matrix element being made from a particular datum (say
xi A w) of the dataset D. Any arbitrary function (say g(x)) that
lives in the RKHS is thus a linear combination of such basis
functions and is expressed as

gðxÞ ¼
X
i

aiKðxi; xÞ (11)

where ai are the linear combination coefficients. The author
proves that any hypothesis function (say h(x) = Tr(Mr(x)) where
M is the measurement operator) which the supervised learning
task ‘learns’ on the quantum computer by minimizing a loss
function is essentially a member of RKHS. In ref. 117, the
authors propose two different approaches for utilizing quan-
tum Kernel entries as defined in eqn (10). The first approach
which the authors call the implicit approach requires the
quantum processor to just estimate entries of the Kernel
matrix. The classical processor then performs the usual
machine learning algorithm using this quantum-enhanced
kernel. The second approach which the authors call the explicit
approach involves performing the entire machine learning
algorithm on the quantum computer using parameterized
unitaries. We shall analyze examples of these approaches in
Sections 4 and 5.2.

3.2.2 Ridge regression (RR) – linear and kernel based. This
is a form of supervised machine learning which allows us to
determine and construct an explicit functional dependence of
the variates/labels and the feature vectors xi based on certain
tunable parameters.119–122 The dependence can later be extra-
polated and interpolated to learn values associated with
unknown feature vectors not a part of the training set. Let us

start with the feature vectors xi 2 w � Rd in dataset D defined in
the above section. Using these vectors, one can define a design
matrix often designated as X as follows:

X ¼

xT1
xT2
:
:
xTm

0
BBBB@

1
CCCCA: (12)

Using the design matrix above and the training data label Y ¼
½y1; y2; y3; . . . ; ym�T 2 Rm; the objective is to fit a linear model of

the kind X~a where ~a 2 Rd to the data and obtain the optimal
fitting parameters. This can be done through the minimization
of the following mean-squared error (MSE) loss

MSE ¼ ðY � X~aÞT ðY � X~aÞ þ l
jj~ajj2
2
: (13)

In the expression above, the second term is the regularization
to prevent over-fitting and also, in case if the column space of
the design matrix X is not linearly independent, the presence of
this term can facilitate inversion of XTX. The solution to
eqn (13) (say ~a*) is the following:

~a	 ¼ ðXTX þ lIÞ�1XTY : (14)

One must emphasize that the formulation is quite general and
can be extended to cases wherein a constant term within the~a
is necessary. This can be tackled by augmenting the design

matrix as X - [
-

1|X]T. Also extension to polynomial regression is
straightforward as one can create a design matrix treating
higher powers of xi as independent variables in each row of
the design matrix as Xi - [xT

i (x2
i )T, (x3

i )T,. . ., (xk
i )T] where xk

i

denotes raising xi element-wise to the kth power.123,124

For the kernel variant of ridge-regression, if the prediction
from the model is designated as ỹ(x,a), then the formalism
represents the function ỹ(-x,~a) as125,126

~yð~x;~aÞ ¼
Xm
j¼1

ajKðx; xj ; ~bÞ (15)

where ~a are trainable parameters and
-

b are the hyper-
parameters associated with the kernel K(x,xj,

-

b). These hyper-
parameters are fixed at the beginning of the optimization and
can be tuned for separate runs to modify accuracy. Using the
labels yi of the training data set D defined before and eqn (15)
one can now formulate a mean-squared error (MSE) loss
(similar to eqn (13)) to learn the parameters ~a as below

MSE ¼ ðY � ~K~aÞT ðY � ~K~aÞ þ l
jj~ajj2
2
: (16)

The matrix K̃ is called the Gram matrix of the kernel125 with
entries as follows:

K̃ij = K(xi,xj,
-

b). (17)

The minimizer of eqn (16) can be easily shown to be

~a	 ¼ ð ~K þ lIÞ�1Y : (18)

Another alternative formulation which leads to the same mini-
mizer~a* is the dual formulation of the problem which involves
minimizing the following Langrangian:127

Lð~aÞ ¼ aTa
2
þ 1

2l
aT ~Ka� aTY : (19)

One can prove that the minimizer of eqn (19) is actually
eqn (18). This is a form of supervised machine learning which
allows us to determine and construct an explicit functional
dependence of the variates/labels and the feature vectors xi

based on certain tunable parameters.119,120,122 The dependence
can later be extrapolated and interpolated to learn values
associated with unknown feature vectors that are not a part
of the time dynamics128 or excited state dynamics.129 We shall
return to a subset of these topics in Section 5.3.

3.2.2.1 Quantum enhanced variants. Several quantum algo-
rithms have been proposed in the last decade for solving linear
systems which can be directly extended to the solution of the
vanilla linear least-square fitting. The earliest was by Weibe
et al.130 and is based on the Harrow, Hassidim, Lloyd (HHL)
algorithm.131,132 The technique starts with a non-hermitian X
matrix (say m � d as in the design matrix in our example above)
which is required to be sparse. The algorithm assumes oracular
access to a quantum state encoding its row space and also a

Chem Soc Rev Review Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
G

or
ff

en
na

f 
20

22
. D

ow
nl

oa
de

d 
on

 0
4/

11
/2

02
5 

01
:3

1:
52

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2cs00203e


6486 |  Chem. Soc. Rev., 2022, 51, 6475–6573 This journal is © The Royal Society of Chemistry 2022

state encoding the -
y. The key point of the routine is to expand

the non-hermitian design matrix into a (m + d) � (m + d)
dimensional matrix with which the quantum-phase estimation
algorithm52 is performed. The ultimate product of this algo-
rithm is a quantum state that encodes the fitted values. Even
though extraction of the exact fitting parameters from the state
might be exponentially hard yet prediction of a new y value for a
given test-input can be made effortlessly through overlap with
the register containing the fitted values. Variants of this algo-
rithm for detecting statistic leverage score and matrix coher-
ence have also been reported.133 Wang reported a quantum
algorithm which can actually yield the fitted values as a vector
just as in classical least squares.134 Both the method have query
complexity which is O(log(m)). A subset of these algorithms has
also been experimentally implemented on a variety of platforms
like NMR,135 superconducting qubits,136 and photonic.137

Schuld et al.138 have also designed an algorithm which does
not require the design matrix X to be sparse. The only require-
ment is that X†X should be well-represented by a low rank
approximation, i.e., should be dominated by few eigenvalues
only. The key point in the technique is to perform quantum-
phase estimation with a density matrix r encoding X†X. The
algorithm also returns the fitted values encoded within a
quantum state with which efficient overlap of a new input
can be initiated. An algorithm by Yigit et al.139 which solves
for a linear system of equation through adiabatic Hamiltonian
evolution has also been demonstrated recently. A variational
algorithm amenable to the NISQ era for linear equation solver
has also been reported.140 The algorithm takes as input a gate
sequence U that prepares and encodes the state -

y and a design
matrix X that is decomposable into implementable unitaries.

The method implements a trainable unitary Vð~~gÞj0i where ~~g is a
variational parameter. The aim of the unitary is to prepare a
candidate state jað~gÞi which encodes a prospective solution to
the least-square problem. The prospective solution is tuned
using a cost-function which measures the overlap of the state
X jað~gÞi with the orthogonal subspace of the vector -

y as follows:

Cð~gÞ ¼ TrðX jað~gÞihað~gÞjXyðI� j~yih~yjÞÞ: (20)

The cost function above is minimized with respect to ~g on a
classical computer and the parameter vector is fed into the
trainable unitary V for the next iteration until the desired
convergence is met. The authors show that the above cost-
function being a global one suffers from barren plateaus and is
rendered untrainable for the size of design matrix X being close
to 250 � 250. To evade the issue, they define local merit
functions which remain faithful throughout. The ansatz used
for encoding Vð~gÞ is the hardware-efficient ansatz and the
algorithm showed logarithmic dependence on the error toler-
ance but near linear dependence on the condition number of
the design matrix. The dependence on qubit requirements was
found to be poly-logarithmic. The algorithm was implemented
on an actual hardware for a design matrix of size 210 � 210.
Recently, Yu et al. reported an algorithm for ridge-regression
(linear variant)141 which like the one reported by Weibe

requires oracular access to elements of the design matrix and
-y. The design matrix is expanded to make it hermitian and
quantum-phase estimation is performed as before with respect
to e�iXt as the unitary to encode the eigenvalues onto an extra
register. The difference comes at this stage when an ancillary
qubit is added and rotated to invert the eigenvalues. The
rotation angles are dependant on the Ridge parameter l. Like
previous algorithm this also yields the final optimal parameters
as a quantum state. The authors also propose another quantum
algorithm (which can be used along with this) for the choice of
the Ridge parameter which is similar in principle to the K-fold
cross validation technique.142 To the best of our knowledge, no
quantum algorithm has been proposed that directly attempts to
implement the kernelized variant of Ridge-regression but any
of the aforesaid ones can be trivially extended with the replace-
ment of the design matrix with the Gram matrix of an appro-
priate kernel.

3.2.3 Principal component analysis – linear and kernel
based. Dimensionality reduction without sacrificing the
variance of the data-set is very important for most machine
learning tasks that have large number of features and
comparatively fewer training samples. One starts with a

dataset (D as discussed before where D ¼ fðxi; yiÞjxi 2 Rd ;

yi 2 R 8i 2 ½m�g). Here we define a design matrix (say

X 2 Rm�d ) as in eqn (12) Formally the goal of PCA is to
replace the matrix X with another matrix Z such that Z 2
Rm�R where R r d.119,143,144 To do this for the usual linear
variant of the PCA one defines a mean-centered data matrix (say
B = X � X̂) where X̂ is the stacked row-wise mean of the data
matrix (mean of each feature over the samples). One then
constructs the covariance matrix144 (Cov(B) = BTB,

CovðBÞ 2 Rd�d ) and diagonalizes it to get the d eigenvectors

fnigdi¼1 ðni 2 RdÞ. From the set fnigdi¼1 one picks up the R
eigenvectors with the largest eigenvalues to form a new
matrix (say V 2 Rm�R) as

V = (n1, n2, n3,. . ., nR). (21)

The principal component matrix Z defined before is the projec-
tion of the data matrix onto the space of matrix V as

Z = XV. (22)

The kernel-based variant of PCA145 becomes important
when the data need to be expressed in a high-dimensional
subspace induced by the map f as defined before, i.e., 8
xi 2 Rd , fðxiÞ 2 Rp where p Z d. One can then construct the
covariance matrix in this new feature space of the data as
follows:

CovðfðXÞÞ ¼ 1

m

Xm
i

fðxiÞfðxiÞT : (23)

In principle, one can simply do a PCA in the feature space f(X)
to get the eigenvectors fnkgpk¼1 as follows:

Cov(f(X))nk = lknk (24)
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where nk 2 Rp 8 k. However, since this space is high-dimen-
sional, computation can be expensive. It is thus desirable to use
the power of the kernel and design an algorithm wherein the
explicit construction and/or manipulation of f(X) is evaded. To
do so, one can expand the eigenvectors nk as follows:

nk ¼
1

mlk

Xm
i¼1
ðfðxiÞTnkÞfðxiÞ (25)

¼ 1

mlk

Xm
i¼1

âkifðxiÞ: (26)

It is easy to show that the coefficient vector âk 8 k A {1, 2,. . ., p}
satisfies the eigenvalue equation for the Gram matrix (see
eqn (17)) of the kernel as

K̃âk = (lkm)âk. (27)

Thus one can simply diagonalize the Gram matrix of the kernel
~K 2 Rm�m to get the coefficients of the eigenvectors of Cov(f(X))

(see eqn (24)) without explicitly constructing f(X) or even the
covariance. Since valid kernels need to be positive-semi-definite
as a condition imposed by Mercer’s theorem,146,147 one can
choose a subset (say R) from fâkgpk¼1 in the decreasing order of

their eigenvalues lk and construct a matrix V 2 Rm�R as

V = (â1, â2,. . ., âR) (28)

thereby affording dimensionality reduction. Any projection
onto nk can be computed using the vector âk and the Kernel
Gram matrix only as follows:148

ykðxÞ ¼
X
j

~Kðx; xj ; ~bÞâkj : (29)

We shall return to the applications of PCA in Section 5.5.

3.2.3.1 Quantum enhanced variants. The very first instance of
performing principal component analysis on a quantum com-
puter was put forward by Lloyd et al.149 The algorithm starts
with a matrix say P which is positive-semi-definite. Even the
usual linear variant of the PCA using the covariance matrices of
the mean-centered data was discussed as an application for the
method, yet the algorithm can be extended to any positive-
semi-definite matrix including the Gram matrices of Kernels.
Any such matrix P can be written as

P
ij

jaj jjajiheij where |eii is

the computational basis and |aji are column vectors of P
normalized to 1149 and |aj| is the corresponding norm. The
algorithm assumes that an oracular object exists that encodes
the column space onto a quantum state as

P
ij

jaj jeiijaji where

|eii is an orthonormal basis usually the standard computational
basis. The corresponding reduced density matrix for the first
register in this state is exactly the positive semi-definite matrix
P. The crux of the method is to prepare the unitary e�iPt. This is
done on a qubit register that encodes the reduced density
matrix P as described above and also another density matrix
(say s). The repeated applications of e�iSd on the joint state
P # s with n copies of P yield e�iPndse�iPnd where S is the

efficiently implementable SWAP operator. Once efficient pre-
paration of the unitary e�iPnd has been conducted one can
thereafter use standard phase estimation algorithms52 to mea-
sure the first say R eigenvalues and eigenvectors of the desired
matrix K and cast the data matrix X in the form of eqn (2). The
algorithm produces the R eigenvectors with a time complexity
of O(R log(m)) where m is the column dimension of the Gram
matrix defined in (17). Since the above formulation relies on
quantum-phase estimation to extract eigenvalues and eigen-
vectors of the Gram matrix, application of the procedure to
near-term quantum devices is cost-prohibitive due to high-
qubit and gate requirements. Recently Li et al.150 reported a
new algorithm for the extraction of principal components of
any positive-semi-definite matrix using a single ancillary qubit.
The algorithm encodes a joint initial state of an ancillary qubit
and the n-qubit positive semi-definite matrix (P in the notation
and it could be a Gram matrix of the kernel as well as defined in
eqn (17)) as |0ih0| # P. This state is evolved under the effect of
the following Hamiltonian for a time dt (see circuit for imple-
menting Trotterized evolution in Fig. 4)

H ¼ D
2
sz � In þ csx � In þ j1ih1j � P (30)

where c is the strength of the drive on the probe ancillary qubit
and D is its natural frequency. The probability of finding the
probe ancillary qubit in state |1i after dt is given by

PiðD; dtÞ ¼ liDi
2 sin2

cdt
Di

� �
(31)

where the index i is for any of the eigenvalues oi of the matrix P.
The quantity Di is defined as

Di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2cÞ2

ð2cÞ2 þ ðD� oiÞ2

s
: (32)

So from eqn (32) one can directly see that a resonance condi-
tion is reached when oi E D, i.e., by sweeping the probe qubit
frequency D one can enhance the probability of finding the
probe qubit in state |1i which gives an estimate of the eigen-
value oi. Near such a resonance if the qubit is measured then it
would collapse to |1i with high probability and the corres-
ponding state in the n-qubit register would be |nii. Thus the
entire spectrum of matrix P can be ascertained from which the

Fig. 4 The schematic of the quantum circuit used for the Trotterized
evolution as illustrated in ref. 150. The eigenvalues and eigenvectors of the
positive-semi definite matrix P are desired. At the end of the evolution, the
ancilla qubit is measured and the algorithm is considered successful if it
collapses to state |1i (see text for more details).
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PCA procedure as described above can be performed. The
group conducted successful experimental implementation of
the algorithm on a nitrogen vacancy center for a system of 2-
qubits150 with dynamical decoupling sequences to prevent
qubit de-phasing. Recently a direct kernel-based quantum-
enhanced algorithm for PCA has been demonstrated too.151

The algorithm starts with an initial state which encodes the
elements of the Gram matrix of the kernel (see eqn (17)). The
register encoding the row vector of the Kernel is then conceived
to be expanded on the basis of its eigenvectors (preparation of
which is the target, see eqn (27)). The use of quantum-phase
estimation followed by controlled rotations then prepares an
auxillary qubit in a superposition state. Measurement of this

ancillary qubit (with a probability proportional to
P
k

1

lk
where lk

are the eigenvalues of the Gram matrix) encodes columns of the

target matrix V (see eqn (28)) onto the register scaled with
ffiffiffiffiffi
lk
p

due to phase-kickback from the measurement. Note the final
state thus prepared is not entirely the columns of eqn (28) but
is scaled by the square root of the corresponding eigenvalues lk.

3.2.4 k-Nearest neighbors algorithm (k-NN). The kNN
approach is based on the principle that the instances within
a dataset will generally exist in close proximity to other
instances that have similar properties. If the instances are
tagged with a classification label, then the value of the label
of an unclassified instance can be determined by observing the
class of its nearest neighbours. The kNN locates the k nearest
instances to the query instance and determines its class by
identifying the single most frequent class label.152 In ML,
instances are generally considered as points within an n-
dimensional instance space, where each of the n-dimensions
corresponds to one of the n-features. To classify a new test
instance with the kNN method, the first step is to find the k
most nearest instances of the training set according to some
distance metrics. Then the resulting class is the most frequent
class label of the k nearest instances. Fig. 5 is a simple example

of the kNN algorithm, where the blue dots and red triangles
represent the training instances with two labels, and the grey
diamond is a new test instance. In this example k is set as 5,
and the 5 nearest instances are included in the black circle. For
simplicity, here the relative distance D(x,x0) between two
instances x and x0 is calculated by the Euclidean metric,

Dðx; x0Þ ¼
Xn
i¼1

xi � x
0
i

��� ���2
 !1

2

: (33)

As there are 4 red triangles and only 1 blue dot, the class of the
test instance is classified as a red triangle.

Generally, the relative distance is determined by using a
distance metric instead of the absolute position of the
instances. Apart from the Euclidean metric, some significant
metrics are presented as follows:

Minkowsky Dðx; x0Þ ¼
Pn
i¼1

xi � x
0
i

�� ��r� �1
r

Manhattan Dðx; x0Þ ¼
Pn
i¼1

xi � x
0
i

�� ��
Chebychev Dðx; x0Þ ¼ max

n

i¼1
xi � x

0
i

�� ��
Camberra Dðx; x0Þ ¼

Pn
i¼1

xi � x
0
i

�� ��
xi þ x

0
i

�� ��

:

An ideal distance metric should be chosen to minimize the
distance between two similarly classified instances, meanwhile
maximizing the distance between instances of different classes.
Sometimes even these typical metrics do not lead to satisfactory
results; then, one might consider to learn a distance metric for
kNN classification.153 In other words, the metric is optimized
with the goal that the k-nearest neighbors always belong to the
same class while examples from different classes are separated.
When there are plenty of training instances, the centroid
method154 could be applied initially, where the instances in
different labels are clustered into several groups, and the kNN
approach works on the centroid of each group instead of the
original instances. Additionally, for more accurate classifica-
tion, various weighting schemes155 could be included that alter
the distance measurements and voting influence of each
instance. We shall return to examples of k-NN in Section 5.2.

3.2.4.1 Quantum enhanced variants. In 2013, Lloyd and cow-
orkers proposed a quantum clustering algorithm for supervised
or unsupervised QML,156 relying on the fact that estimating
distances and inner products between post-processed vectors in
N-dimensional vector spaces takes time O(log N) on a quantum
computer whereas on a classical computer it would take O(N)
time for sampling and estimating such distances and inner
products, thereby apparently providing an exponential
advantage.157 More discussion on this speedup on a quantum
computer can be found in Section 5.2. The significant speedup
of estimating distances provokes enormous enthusiasm for
studying QML, particularly the quantum instance-based learn-
ing algorithms. Wiebe and coworkers developed the quantum
nearest neighbor algorithm based on the Euclidean distance,

Fig. 5 A simple example of the kNN algorithm approach. The blue dots and
red triangles represent the training instances with two labels, and the grey
diamond is a new test instance. In this example k is set as 5, and the 5 nearest
instances are included in the black circle. As there are 4 red triangles and only
1 blue dot, the class of the test instance is classified as a red triangle.
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and studied the performance on several real-world binary
classification tasks.56 Moreover, assorted quantum kNN
methods153,158,159 are proposed with heterogeneous distance
metrics, assisting in solving a variety of pattern recognition
problems.

The structure of the quantum nearest-neighbor algorithm is
shown in Fig. 6.56 The quantum nearest neighbor algorithm
can be implemented briefly in three steps.56 First, for each
training vector vj, prepare a state that encodes the distance
between the test instance u and vj in an amplitude using the
subroutine for an appropriate distance metric. Then, use
coherent amplitude amplification to store the distance esti-
mate as a qubit string without measuring the state. Finally, find
the vj that minimizes the distance under certain distance
metrics, and vj is the nearest instance. Label of the test instance
u is thus predicted as the same label as vj.

3.2.5 Decision trees. Decision trees are a way to represent
rules underlying data with hierarchical, sequential structures
that recursively partition the data.160 In other words, decision
trees are trees classifying instances by sorting them based on
their features. Each node in a decision tree represents a feature
in an instance to be classified, and each branch represents a
value that the node can assume. Instances are classified start-
ing from the root node and sorted based on their specific
feature values.

A simple example is shown in Fig. 7, where four chemical
substances are classified using a decision tree model. Instances
are classified starting from the first node, or the root node,
where we study the state of matter at standard temperature and
pressure (STP). If the instance is gas, then it will be assigned as
hydrogen. If it is liquid, then it will be assigned as mercury. For

the solid state, we further go to the next node, where we study
its electrical resistivity (STP). The instance as conductor will be
classified as copper, while that as an insulator is classified as
silicon.

Constructing optimal binary decision trees is an NP-
complete problem, making it possible to find efficient heuris-
tics for constructing near-optimal decision trees.161 The feature
that best divides the training data should be assigned as the
root node of the tree. There are numerous methods for finding
the feature that best divides the training data such as informa-
tion gain162 and gini index.163 Comparison of individual meth-
ods may still be important when deciding which metric should
be used for a particular dataset. We shall return to examples of
decision trees in Sections 5.2 and 5.5.

3.2.5.1 Quantum enhanced variants. In 1998, Farhi and cow-
orkers proposed a design of quantum decision trees, which can
be experimentally implemented on a quantum computer that
consists of enough spin-1

2 particles. They further studied a
single time-independent Hamiltonian that evolves a quantum
state through the nodes of a decision tree.164 It has been proven
that if the classical strategy succeeds in reaching the n-th level
of the decision tree in runtime polynomial in n, then the
quantum algorithm also requires time polynomial of n to reach
the same level. Moreover, they found examples where the
interference allows a class of trees to be penetrated exponen-
tially faster by quantum evolution than by a classical random
walk. However, these examples could also be solved in poly-
nomial time by different classical algorithms.

Fig. 7 Scheme of the classification process with a decision tree. Instances
are classified starting from the first node, or the root node, where we study
the state of matter at standard temperature and pressure (STP). If the
instance is gas, then it will be assigned as hydrogen. If it is liquid, then it will
be assigned as mercury. For the solid state, we further go to the next node,
where we study its electrical resistivity (STP). The instance as a conductor
will be classified as copper, while that as an insulator is classified as silicon.
For simplicity, we only consider these four chemical substances.

Fig. 6 Scheme of the structure of the quantum nearest-neighbor
algorithm.56 First for each training vector vj, prepare a state that encodes
the distance between the test instance u and vj in the amplitudes using the
subroutine for an appropriate distance metric. Then, use coherent ampli-
tude amplification to store the distance estimate as a qubit string without
measuring the state. Finally, find the vj that minimizes the distance under
certain distance metrics, and vj is the nearest instance. Label of the test
instance u is thus predicted as the same label as vj.
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A quantum training dataset with n quantum data pairs can
be described as

D = {(|x1i,|y1i), (|x2i,|y2i),. . ., (|xni,|yni)} (34)

where the quantum state |xii denotes the ith quantum object of
the training dataset, and state |yii denotes the corresponding
label. Due to the existence of superposition, the classical node
splitting criteria can hardly work in the quantum world.
Instead, criteria such as quantum entropy impurity165 are
required to find the optimal features when designing quantum
decision trees. Recently, a quantum version of the classification
decision tree constructing algorithm is proposed,166 which is
designed based on the classical version C5.0.167

3.2.6 Bayesian networks (BN). Bayesian networks (BN) are
the most well known representative of statistical learning
algorithms, which are graphical models of causal relationships
in a given domain. BN is defined to consist of the following:168

1. A set of variables and a set of directed edges between
variables.

2. Each variable has a finite set of mutually exclusive states.
3. The variables together with the directed edges form a

directed acyclic graph (DAG).
4. To each variable A with parents B1, B2,. . ., Bn, there is

attached the conditional probability table (CPT) P(A|B1, B2,. . .,
Bn).

The learning process of the BN methods generally contains
two subtasks: the construction of the DAG network and the
determination of parameters. The approach to design the
structure is based on two observations.169 First, people can
often readily assert causal relationships among variables. Sec-
ond, causal relationships typically correspond to assertions of
conditional dependence. In particular, to construct a Bayesian
network for a given set of variables, we simply draw arcs from
cause variables to their immediate effects. Sometimes the
structure of the network is given; then the parameters in the

CPT are usually learnt by estimating a locally exponential
number of parameters from the data provided.168

Fig. 8 is an example of the BN assisted study of the scattering
experiment between atom A and molecule beams B. Arcs
should be drawn from cause to effect in the network. In
chemical reactions we know that the initial states are causes,
while the collected results are effects. The local probability
distributions associated with a node are shown adjacent to the
node. For simplicity, here we assume that all the features
(nodes) are binary, such as the feature g will be set as ‘true’
or ‘yes’ as long as the kinetic energy of molecule beams B is
equal or greater than some certain threshold. We shall return to
applications of BN in Section 5.2.

3.2.6.1 Quantum enhanced variants. In 1995, Tucci proposed
the first design of quantum BN, which could be constructed by
replacing real probabilities in classical BN with quantum
complex amplitudes.170 Leifer and Poulin proposed another
model in 2008, constructing quantum BN based on probability
distributions, quantum marginal probabilities and quantum
conditional probabilities.171 However, neither of these models
could provide any advantage compared with the classical
models, because they cannot take into account the interference
effects between random variables.172 A quantum-like BN based
on quantum probability amplitudes was proposed by Moreira
and Wichert in 2016,172 where a similarity heuristic method
was required to determine the parameters.

On the other hand, in 2014, Low and coworkers discussed
the principles of quantum circuit design to represent a Baye-
sian network with discrete nodes that have two states. Notably,
it is reported that the graph structure of BN is able to efficiently
construct a quantum state representing the intended classical
distribution, and a square-root speedup time can be obtained
per sample by implementing a quantum version of rejection
sampling.173 Recently, Borujeni and coworkers further

Fig. 8 Scheme of the BN assisted study of scattering experiment between atom A and molecule beams B. Atoms A and molecule beams B are initially
prepared at certain initial states before the collision. The special patterns observed in the scattering experiment results are denoted as patterns C and D. In
the network, arcs are drawn from cause to effect. In chemical reactions we know that the initial states are causes, while the collected results are effects.
The local probability distribution(s) associated with a node are shown adjacent to the node. For simplicity, here we assume that all the features (nodes) are
binary, such as the feature g will be set as ‘true’ or ‘yes’ as long as the kinetic energy of molecule beams B is equal or greater than some certain threshold.
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expanded the quantum representation of generic discrete BN
with nodes that may have two or more states.174

There are mainly three steps to construct the quantum
circuit representing a BN. First, map a BN node to one or more
qubits depending on the number of states. The next step is to
map the marginal or conditional probabilities of nodes to
probability amplitudes associated with the qubits to be in the
|0i and |1i states. The final step is to realize the required
probability amplitudes using single-qubit and controlled
rotation gates.

Fig. 9 is the quantum circuit representing the BN shown in
Fig. 8. The quantum circuit shown in Fig. 9 is constructed
based on the three steps discussed above. The first step is to
assign qubits for each node shown in Fig. 8. Here for simplicity,
we only assign one qubit for the corresponding node. There are
in total four qubits, q1, q2, q3, and q4, corresponding to the four
nodes, g, h, c, and d, all of which are initially set at the |0i state.
Next, we need to map the conditional probabilities of nodes to
probability amplitudes. In the BN shown in Fig. 8, there are
only two possible results for each node, yes or no. Here, we use
quantum state |0i to represent no, and state |1i to represent
yes. Then we need to realize the required probability ampli-
tudes using single-qubit and controlled rotation gates. Single-
qubit rotation gates are applied to construct the independent
probability for nodes g and h, as p(g = yes) and p(h = yes) have
nothing to do with the states of other nodes. Node g is a root
node. In other words, there are no arcs pointing to node g in
Fig. 8, so that a single Ry(y1) gate is applied on q1. The value of
y1 can be derived from the constraint,

p(g = yes) = |h1|q1|Ci|2 (35)

where we denote the final state as |Ci, and use state |1i to
represent ‘yes’ as mentioned before. Similarly the value of y2

can be calculated, as h is also a root node. The controlled
rotation gates are used to construct conditional probabilities.
For example, to construct p (c = yes|g = yes), we need to build a
controlled rotation gate between q1 (control qubit, representing
node g) and q3 (target qubit, representing node c). As the
condition is g = yes, the controlled rotation gate works when
the control qubit is at state |1i, thus there is a solid dot in the

corresponding operation in Fig. 9. On the other hand, when the
condition is g = no, then the controlled rotation gate will work
when the control qubit is at state |0i, leading to a hollow dot in
the quantum circuit. As there are only two arcs in Fig. 8, there
are two controlled-Ry gates involving c and g, in one of which g
= yes and in the other g = no. The value of y3 can be
obtained from,

p(c = yes|g = yes) = |(h1|q1
# h1|q3

)|Ci|2. (36)

Similarly we can obtain y
0
3. To construct the condition prob-

abilities with more than one condition, we need to include
control rotation gates with more than one control qubit. For
example, there are two arcs pointing to node d in Fig. 8, one of
which comes from node g and the other comes from h. Thus, in
the circuit there are four control–control–Ry gates where q1(g)
and q2(h) are the control qubits and q4(d) is the target qubit
corresponding to 4 different choices of configurations between
g, h, i.e., when both are ‘yes’, both are ‘no’, and one of them is
‘yes’ and the other is ‘no’ and vice versa. The value of y4 can be
obtained from

p(d = yes|g = yes, h = yes) = |(h1|q1
# h1|q2

# h1|q4
)|Ci|2.

(37)

So that all parameters in the quantum gates are determined by
the probability distribution from the DAG in Fig. 8. On the
other hand, one could obtain the conditional probability from a
given quantum BN by measuring all qubits and estimating the
corresponding frequency. For instance, the probability p(d =
yes|g = yes, h = yes) could be estimated by the frequency that q1,
q2, and q4 are all at state |1i. For simplicity, in the example we
demonstrate a quantum representation of BN with nodes that
have only two states (‘yes’ or ‘no’). The quantum representation
of a more intricate BN structure is discussed thoroughly in
Borujeni and coworkers’ recent work.174

3.2.7 Support vector machines (SVMs). Support vector
machines (SVMs) revolve around the margin that separates
two data classes. Implementation of SVM contains two main
steps: first, map the input data into a high-dimensional feature
space using some nonlinear methods, and then construct an
optimal separating hyperplane. Support vector machines

Fig. 9 Quantum circuit for the BN shown in Fig. 8. For quantum versions of more complex BN structures refer to ref. 174. There are in total four qubits,
q1, q2, q3, and q4, corresponding to the four nodes, g, h, c, and d, all of which are initially set at the |0i state. Ry gates are applied directly on root nodes to
prepare the quantum states corresponding to the probability amplitudes. For example, node g is a root node (in other words, there are no arcs pointing to
node g), so that a single Ry(y1) gate is applied on q1. Control-Ry gates correspond to the arcs in the BN. For example, there is only a single arc pointing to
node c, which comes from node g. Thus, in the circuit there are two control-Ry gates where q1 is the control qubit and q3 is the gate qubit. All the
parameters can be derived from the DAG.
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(SVMs) can deal with both regression and classification tasks.
Mathematically, if the dataset x is linearly separable and is
capable of being assigned into groups denoted by two labels A
and B, there exist a weight vector w and a bias constant b,
ensuring that

wTxi þ b 
 1; 8xi 2 A
wTxi þ b � �1; 8xi 2 B

: (38)

Thereby, the classification rule for test instance xt is given by

yw,b(xt) = sgn(wTxt + b). (39)

Finding the optimal hyperplane is equivalent to a convex
quadratic programming problem that minimizes the
functional175

FðwÞ ¼ 1

2
jjwjj2: (40)

Fig. 10 is a scheme of the SVM classification with a hyper-
plane. Blue dots and red triangles represent the training
instances with two labels. The black line represents the optimal
hyperplane, which maximizes the margin between the blue and
red instances. The red and blue dash lines are hyperlines that
can separate the two groups apart, though the corresponding
margin is less than the optimal one.

Sometimes due to the misclassified instances SVMs are not
able to find any separating hyperplane that can perfectly
separate two groups apart. Then the soft margin and penalty
functions could be applied where some misclassifications of
the training instances are accepted.175

Moreover, real-world problems often involve non-separable
data, where there is no separating hyperplane initially even
without misclassifications. Then the training data should be
first mapped onto a higher dimensional space, where the
separating hyperplane would be constructed. This higher-
dimensional space is generally denoted as the transformed
feature space, while the training instances occupy the input

space. Instead of repeating the mapping process F(x) explicitly,
the more popular approach is to calculate the Kernel functions
defined in eqn (9) which allow inner products to be calculated
directly in the feature space.175 After successfully constructing
the hyperplane, new instances are mapped into the feature
space by Kernel functions for classification.

SVM methods perform binary classification; thus, to solve
multi-class problems we must reduce the problem into a set of
multiple binary classification problems. A core advantage of
SVM is that training the optimization problem of the SVM
necessarily reaches a global minimum, instead of being
trapped in a local minimum. We shall return to applications
in Sections 5.2, 5.5 and 4.

3.2.7.1 Quantum enhanced variants. Enthused by the success
of SVM assisted big data classification, Rebentrost and cow-
orkers proposed the implementation of quantum SVM.177

Rewrite the weight vector w in eqn (38) and (39) as

w ¼
XM
j¼1

ajxj (41)

where aj is the weight of the ith training instance xj, and there
are M training instances in total. In the SVM with least-squares
approximation, the optimal parameters aj and b can be
obtained by solving the linear equation177

F(b, a1, a2,. . ., aM)T = (0, y1, y2,. . ., yM)T (42)

where F is a (M + 1) � (M + 1) matrix with the essential part as
the kernel. Fig. 11 is a diagram of the quantum SVM.176 We can
rewrite the classification rule as

y(x0) = sgn[hc|Ô|ci] (43)

where |ci is the final quantum state. The big picture is that if
the expectation value in the above equation is greater than zero,
then the test instance x0 will be assigned as label positive
(y(x0) = 1). Otherwise, it will be predicted with a negative label
(y(x0) = �1).

The circuit has three primary components in a nutshell as
shown in Fig. 11: matrix inversion operation (green) is designed
to acquire the hyperplane parameters; training-data oracle
(blue) is included to prepare the training-data state; and U(x0)
is to map the test instance x0 into quantum states. In a classical
SVM, the hyperplane is obtained by minimizing the functional
as shown in eqn (39), while in qSVM, the hyperplane is
obtained via solving linear equations, which leads to an expo-
nential speedup.

Let us now get into the details of the quantum version of the
algorithm. The qubits can be assigned into three groups:
training registers (blue) that represent the training instances,
label qubit (green) that takes the label, and ancillary qubit
(grey). The matrix inversion is employed to acquire hyperplane
parameters. Then, the training-data oracle is applied to prepare
the training-data state. Classification of a new test instance x0 is
introduced by operation U(x0).

Fig. 10 Scheme of the SVM classification with a hyperplane. Blue dots
and red triangles represent the training instances with two labels. The black
line represents the optimal hyperplane, which maximizes the margin
between the blue and red instances. The red and blue dash lines are
hyperlines that can separate the two groups apart, though the corres-
ponding margin is less than the optimal one.
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The training-data oracles are designed to return the quan-
tum counterpart of the training data xi,

jxii ¼
1

jxij
XN
j¼1

xið Þj j ji (44)

where (xi)j is the jth component of the training instance xi. The

training-data oracles will convert the initial state 1=
ffiffiffiffiffi
M
p PM

i¼1
jii

into state |wi, where

jwi ¼ 1ffiffiffiffiffiffi
Nw

p XM
i¼1
jxijjiijxii (45)

with Nw ¼
PN
i¼1
jxij2 is the normalization factor.

Optimization is implemented by the quantum algorithm
solving linear equations, which provide exponential speedup
compared to the classical version.178 Registers are initialized

into state j0; yi ¼ 1
� ffiffiffiffiffiffiffiffiffi

N0;y

p	 

j0i þ

PM
i¼1

yijii
� �

. After applying the

matrix inversion operation, the quantum state is
transformed to

jb; ai ¼ 1ffiffiffiffiffiffiffiffiffi
Nb;a

p bj0i þ
XM
i¼1

aijii
 !

: (46)

With the optimal parameters aj, b, the classification rule
corresponding to eqn (39) can be written as

yðx0Þ ¼ sgn
XM
i¼1

aiðxi � x0Þ þ b

" #
(47)

where for simplicity, the linear Kernel is considered. The
classification result will be derived by measuring the expecta-
tion value of the coherent term Ô = |00ih#(|1ih0|)A, where
subscript A denotes the ancillary qubit.

In spite of constructing quantum circuits to acquire the
hyperplane, researchers further developed quantum kernel
methods which harness the computational power of quantum
devices. In 2019, researchers from Xanadu proposed to com-
pute a classically intractable kernel by estimating the inner

products of quantum states,179 while the kernel can then be fed
into any classical kernel method such as the SVM. The crucial
component of quantum kernel methods is quantum feature
maps, which map a classical data point x as an n-qubit
quantum state |f(x)i nonlinearly, where the feature state
|f(x)i = U(x)|0i is obtained by a parameterized circuit family
{U(x)}.180 In the learning process, quantum feature maps take
the position of pattern recognition. More details about
the quantum kernel methods can be found in Section 4
(Fig. 12 and 13).

3.2.8 Gaussian process regression. Gaussian process
regression (GPR)182 is a non-parametric and supervised learn-
ing method that has become quite popular in the ML setting for
Chemistry applications.183 It is based on the Bayesian
approach, where a probability distribution over all possible
values for the parameters is inferred by the ML model. Con-
sidering the input vector x and output y, a function of x, f (x)
with its functional form unknown, maps the d-dimensional

vector to a scalar value: y: Rd ! R. The training set D is made
up of n observations, D = {(xi,yi)|i = 1,. . ., n}. Performing
regression to predict the form of y can be obtained in two ways:
�Weight-space picture: having parameterized the function f,

a prior is placed on the parameters of the model. Using the
Bayes’ Rule, the probabilities are modified based on the
observed data and the distribution is updated (called the
posterior distribution). Then, the predictive posterior distribu-
tion on points xn is calculated by weighting all the possible
predictions by their respective calculated posterior distribu-
tions. In order to improve the expressiveness of the model, the
inputs are projected into a high dimensional space using a set
of M basis functions to approximate y(x) by ỹ(x):

~yðxÞ ¼
XM
m¼1

cmkðx; xmÞ (48)

where k is the kernel of choice placed on the representative set
of input points and cm are the associated weights. By choosing
the Gaussian kernel, the model is fit to the data by finding the

Fig. 11 The schematic diagram of quantum SVM illustrated in ref. 176. The qubits can be assigned into three groups: training registers (blue) that
represent the training instances, label qubit (green) that takes the label, and ancillary qubit (grey). The matrix inversion is employed to acquire hyperplane
parameters. Then, the training-data oracle is applied to prepare the training-data state. Classification of new test instance x0 is introduced by operation
U(x0).
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coefficients c = (c1,. . .,cM), that minimize the loss:

L ¼

PN
n¼1
½yn � ~yðxnÞ�2

sN2
þ
XM
m;m0

cmkðxm; xm0 Þcm0 (49)

where the second term is the Tikhonov regularization.
� Function-space picture: the prior in this case is specified in

the function space. For every x 2 Rd ; the distribution of f (x)
along with the structure of covariance k(x,x0) = cov( f (x), f (x0)) is
characterized. A Gaussian process (GP) is used to describe a
distribution over functions. A GP is completely specified by its

mean function m(x) and covariance function (k(x,x0)):

mðxÞ ¼ E½ f ðxÞ�; (50)

kðx; x0Þ ¼ E½ð f ðxÞ �mðxÞÞð f ðx0Þ �mðx0ÞÞ� (51)

The GP can be written as:

f (x) B GP(m(x),k(x,x0)) (52)

ỹ(x) in this case is written as:

~yðxÞ ¼
XH
h

whfhðxÞ (53)

Fig. 13 (a) A schematic of a generalized perceptron. The input is a vector x 2 Rd and the output is y 2 R. The parameters of the model are w 2 Rd (often
called weights) and b A R (often called bias). The layer in between performs an affine transformation to yield a variable z and passes z as the argument of
the non-linear activation function s. Note that for Rosenblatt’s perceptron187 s(z) = 1 if z Z 0 and 0 otherwise but any generalized activation function
would be fine (see text for more details). (b) A feed-forward neural network obtained by stacking many neurons in several layers. The layers have an all to

all connectivity pattern that may not necessarily be the case. The input is x 2 Rd and the output, unlike in the case of a perceptron, is y 2 Rm (in the figure
m = d is shown but this may not be necessarily true). Each layer much like in the case of a perceptron performs an affine transform and then a non-linear
activation. The case for the k-th layer is shown wherein the affine transformed variable is zk which is subsequently passed into an activation function (see
text for details).

Fig. 12 Schematic representing quantum-enhanced kernel for Gaussian process regression as described in ref. 181.
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where f represents the basis functions that are fixed, which are
independent of data and indicate the probability distribution of
functions, and w are the weights drawn from independent,
identically distributed (i.i.d) Gaussian probability distributions.
Considering the squared exponential as the covariance func-
tion:

covð f ðxÞ; f ðx0ÞÞ ¼ exp �1
2
jx� x0j2

� �
(54)

which corresponds to a Bayesian linear regression model with
an infinite number of basis functions. Samples are drawn from
the distribution of functions evaluated at a specified number of
points and the corresponding covariance matrix is written
elementwise. Then, a random Gaussian vector is generated
with the covariance matrix and values are generated as a
function of inputs.

We shall return to applications of SVM in Sections 5.2
and 5.5.

3.2.8.1 Quantum enhanced variants. Matthew Otten et al.181

proposed a procedure to build quantum enhanced kernels
while still capturing the relevant features of the classical
kernels. As can be seen from the weight-space picture above,
the quality of regression results is directly influenced by the
choice of the kernel. Quantum computing enhanced kernels
have the potential of being powerful in terms of performing
higher dimensional regression tasks since quantum computers
can represent functions that classical computers might not
calculate efficiently. As coherent states approximate the
squared exponential kernel, the classical feature maps corres-
ponding to the squared exponential kernel can be first approxi-
mated using coherent states, which leads to a corresponding
quantum kernel. A generic coherent state with parameter a can
be written as follows:

jai ¼ ejaj
2=2
X1
n¼0

anffiffiffiffi
n!
p jni: (55)

The input data are encoded as ai ¼ xi
� ffiffiffi

2
p

ci
	 


; leading to the
coherent state kernel:

kðx; x0Þ ¼ s
Y
i

xiffiffiffi
2
p

ci

���� x
0
iffiffiffi
2
p

ci


 �����
����
2

: (56)

Since the coherent state can be written in terms of the
displacement operator applied to the vacuum state, and trun-
cating the Hilbert space at some maximum number of levels N,
gives rise to the s finite-dimensional displacement operator

~DNðaÞ ¼ eað
~b
y
N
�~bN Þ; where b̃†

N is the bosonic creation operator in
the finite-dimensional Hibert space.

The finite-dimensional coherent state based kernels are first
prepared on a qubit system by decomposing the N level
displacement operator into log2(N) Pauli operators and then
using Trotterization up to m steps on the qubit Hamiltonian.
This defines the quantum feature map that approximates the
feature map of the classical exponential squared kernel.

Classically inspired quantum feature maps can then be applied
to solve the requisite regression task.

In order to show a quantum advantage, an entanglement
enhanced kernel can be prepared by using a multi-mode
squeezing operator to entangle the different data dimensions
for a multi-dimensional regression problem. Thereby, smaller
quantum devices with only a few operations can perform
higher-dimensional regression tasks. Following this, the GP-
based ML task is performed on the classical hardware.

3.3 Artificial neural networks

In this section, we briefly review the various architectures of
neural networks or deep learning algorithms that are com-
monly used for applications in physics and chemistry. As
before, we not only focus on the training of each such archi-
tecture on a classical computer but also on the quantum
algorithms proposed wherever applicable. Applications of NN
are discussed in all sections from Sections 4 and 5.1–5.5.

3.3.1 Perceptron and feed forward-neural networks. A per-
ceptron is a single artificial neuron which models a non-linear

function of the kind f : x 7! y where x 2 Rd and y 2 R.184–186

The d-dimensional vector x is an input and the single number y
is the output. The perceptron layer in between first makes an
affine transformation on the input x using tunable parameters

w 2 Rd (often called weights) and b 2 R (often called bias). This
transformation is as follows:

z = wTx + b. (57)

From the above transformation, it is clear that the weight vector
w strengthens or weakens the importance of each element in
the input through multiplicative scaling. The bias b physically
sets a threshold when the neuron would ‘fire’ as would be
clarified soon. Non-linearity is thereafter introduced by passing
this affine transformed variable z as an input argument through
an activation function (say s). The output so obtained is the
final output of the perceptron y as follows:

y ¼ f ðxÞ ¼ sðzÞ

¼ sðwTxþ bÞ:
(58)

In Rosenblatt’s model of perceptron187 the activation function
used was a step function, i.e., s(z) = 1 if z Z 0 but s(z) = 0
otherwise. It was essentially a linear classifier. However, more
sophisticated and continuous activation functions commonly
used now are as follows:

Logistic activation function. The original idea of a perceptron
is to model a biological neuron in the central nervous system.
The activation function serves the purpose of mimicking the
biological neuron activation rate. Logistic functions are typical
activation functions having a similar representation to a biolo-
gical neuron activation rate.188 Sigmoid function is a traditional
type of logistic functions. The sigmoid function is an increasing
function with ‘S’ shape, assuming a continuous range of values
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from 0 to 1, as described in eqn (59).

ssigmoidðzÞ ¼
1

1þ expð�azÞ (59)

where a is the slope parameter. Notice that the sigmoid func-
tion centers at 0.5, which might slow down the learning
process. Besides, the gradient of sigmoid function for the data
fallen in the region of either 0 or 1 is almost zero, which causes
the network performance to degrade.189 Therefore, the hyper-
bolic tangent (tanh) function is introduced as another type of
logistic activation function, which is the rescaled and biased
version of the sigmoid function. The tanh function is defined as
follows:

stanhðzÞ ¼
expð2zÞ � 1

expð2zÞ þ 1
: (60)

Furthermore, there is an adaptive hyperbolic tangent activation
function with two trainable parameters b and a to adjust the
slope and amplitude of the tanh activation function throughout
the training process. The adaptive tanh activation function is
defined as

sadaptive tanhðzÞ ¼ a
expð2bzÞ � 1

expð2bzÞ þ 1
: (61)

Both the sigmoid function and tanh function are saturated
activation functions, as they squeeze the input (sigmoid func-
tion squashes real numbers to range between [0,1], while tanh
function squashes real numbers to range between [�1,1]).

Rectified linear unit (ReLU). Rectified linear unit (ReLU) is
defined as

sReLU(z) = max(0,z). (62)

Due to its simplicity, ReLU is a popular activation function in
ANN. ReLU is more efficient than other functions as all the
neurons are not activated at the same time, rather a certain
number of neurons are activated at a time.190 If we would like to
activate the neuron in the negative region, the Leaky ReLU
(LReLU) might be an appropriate choice, where we could set the
negative region with a small constant value.191 The LReLU is
defined as,

sLReLUðzÞ ¼
z; z 
 0
bz; z � 0

�
: (63)

Both the ReLU and LReLU are non-saturating activation
functions.

Exponential linear unit. Exponential linear unit (ELU) is
defined as

sELUðzÞ ¼
aðez � 1Þ; z 
 0
z; zo 0

�
: (64)

ELU has a similar shape with LReLU; however, it performs
better than ReLU in batch normalization.

Multistate activation function (MSAF). Instead of combining
numerous perceptrons with simple logistic activation func-
tions, it is a simple way to achieve an N-state neuron by using

an N-level activation function for real-valued neuronal states.
Thus multistate activation functions (MSAF) are applied in
ANN, which are generally multilevel step functions. As an
example of MSAF, the N-level complex-signum activation func-
tion is defined as192

scsignðzÞ ¼ CSIGNN exp
iyN
2

� �
� z

� �
(65)

where yN = 2p/N, and

CSIGNN(z) = exp(inyN), arg(z) A [(n � 1)yN,nyN),
n = 1, 2,. . ., N. (66)

The complex-signum activation function is often applied in the
associative memory models based on Hopfield-type neural
networks.193 Picking up an appropriate activation function is
always essential in the classical ML. More discussion of the
performance analysis of various activation functions can be
found in ref. 194 and 195.

A perceptron is trained by seeing if the output value y
matches with the true or expected value. If such a matching
did not happen based on some pre-defined metric then the
parameters of the neuron (w,b) are optimized so that the output
of the network matches up to the desired value. In Rosenblatt’s
perceptron,187 this optimization was done by simply adding the
input vector x to the weights w if the perceptron underesti-
mated the output value compared to the true label and sub-
tracting the x if the perceptron over-estimated the output value
compared to the true label. The bias b was updated by 
1 in the
two cases, respectively, as well. Once the output of the percep-
tron agrees with the label, the neuron is said to have ‘learnt’ to
perform the task.

Each such perceptron described is essentially equivalent to a
biological neuron. A feed-forward neural network is obtained by
stacking many such neurons, layer by layer such that the
neurons in one layer are connected to those in the other layer.
Operationally, the network models a non-linear function of the

kind f : x 7! y where x 2 Rd and y 2 Rm. The d-dimensional
vector x is an input and the m dimensional vector y is the
output. If the network has L layers of stacked neurons, this
would mean that the first (input) and the last (output) layers
will have d and m neurons, respectively. The layers in between
are called hidden layers. Let us concentrate on the k-th and (k �
1)-th layers ((k,k � 1) A {1, 2,. . ., L}) only. The affine transforma-
tion defined at the k-th layer will be parameterized by a weight
matrix W 2 Rp�q where q is the number of neurons in the k-th
layer and p is the number of neurons in the (k � 1)-th layer and

also by a bias vector bk 2 Rq.58,184 The transformation acts on

the activation response of the (k � 1)-th layer, i.e., sðzk�1Þ 2 Rp

as follows:

zk = WTs(zk�1) + bk. (67)

The transformation thus yields a new vector zk 2 Rq which is
passed through an activation process using any of the activa-
tion functions defined before and fed into the next layer. This
process is repeated until one reaches the last layer. At the last
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L-th layer the activation response is zL = y. This is compared
with the true values/labels of the data (say y*). Many such
metrics for the comparison can be defined, one simple example
being the L2 norm of the difference vector ||y � y*||2 or even
cross-entropy196 if both y and y* are probability distributions
etc. Such metrics are often called merit-functions or cost
functions. Once a cost-function is defined, the error in the
metric is decided and this is used to evaluate the gradient of the
cost-function with respect to the bias parameters of the L-th
layer and the interconnecting weights between the L-th and (L �
1)-th layers. The process is then repeated for all the layers up
until one reaches the first layer. In the end, one then has access
to the gradient of the cost function with respect to the tunable
parameters of all the layers. This method of acquiring the
gradient is called back-propagation.197,198 Once all such gradi-
ents are obtained, one can update the parameters of the entire
network using a simple gradient descent199 or sophisticated
optimizers like ADAGRAD,200 RMSprop,199 ADAM,199,201 and
NADAM.202 When the error metric has decreased below a
certain preset threshold, the network is said to have been
‘trained’ to perform the task. At this point, predictions of the
network are usually cross-validated using the data outside that
of the labelled training examples. It must be noted that often
the term multi-layer perceptron is used interchangeably for
feed-forward neural networks even though historically as
mentioned above the training algorithm of perceptrons is
slightly different. For fairly large neural-networks with many

neurons stacked within each layer, the risk of overfitting the
data exists. This can be handled using appropriate regulariza-
tion techniques203,204 or dropout.205

3.3.1.1 Quantum enhanced variants. Difficulties arise inevi-
tably when attempting to include nonlinear activation func-
tions into quantum circuits. The nonlinear activation functions
do not immediately correspond to the mathematical framework
of quantum theory, which describes system evolution with
linear operations and probabilistic observation. Convention-
ally, it is thus extremely difficult to generate these nonlinea-
rities with a simple quantum circuit. Researchers could build
up quantum-classical hybrid neural networks, where the linear
part corresponds to the quantum unitary operations in quan-
tum layers, while the nonlinear part corresponds to the classi-
cal layers. In other words, the classical layer in the quantum-
classical hybrid neural network is to serve as the activation
function connecting different quantum layers. Fig. 14(a) is a
scheme of the quantum-classical hybrid neural networks,
where the linear part in the classical neural network is replaced
by the quantum circuits. Fig. 15(b) shows an example construc-
tion of the hybrid quantum-classical neural network for 3
qubits, Fig. 14 (see ref. 206). The quantum-classical hybrid
neural networks generally work as follows: firstly, the classical
data are converted into the quantum state via a certain map-
ping process. Then, the quantum unitary operations will imple-
ment the linear calculation. Next, the qubits are all measured

Fig. 14 (a) A scheme of the structure of a quantum-classical hybrid neural network for the realization of ANN. The linear part is accomplished with
parameterized unitaries which defines the tunable weights and biases of the network whereas the non-linear activation is obtained from measurements
in the quantum-classical hybrid neural network. (b) An example of the construction of the hybrid quantum-classical neural network for 3 qubits. Stage (I)
refers to state-encoding with unitary U1, stage 2 is the actual variational circuit with parameterized unitary U2 and stage 3 is the measurement to
reproduce the effect of non-linear activation. In the next iteration, the measurement results b

-
is used in the unitary U1 for state-encoding. This way the

full feed-forward neural network proceeds. Training is done by variation of the parameters of U2 (see ref. 206 for details).
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and the estimation value is sent out to the classical layer. The
classical layer will implement the nonlinear calculation (serve
as the activation function), and the output will be sent to the
next quantum layer to repeat the steps above. Based on the
hybrid quantum-classical neural networks, researchers could
construct quantum deep neural networks to calculate ground
state energies of molecules,206 to study the barren plateaus in
the training process,207 and to recognize figures with transfer
learning.208 More details of the hybrid quantum-classical
neural networks for various tasks could be found in these
applications.

Though the unitary operations always correspond to
linear calculation, the measurements could lead to nonlinear-
ity. The repeat-until-success (RUS) circuit is a typical method
implementing activation functions based on special measure-
ments.210,211 In the RUS circuit, an ancillary qubit is connected
with the input and the output qubit. After certain operations,
the ancillary qubit is measured. If result |0i is obtained, then
the desired output is generated. Otherwise, we need to correct
the operation and apply it on the qubits, and then measure the
ancillary qubit once again. The steps above should be repeated
until we get the result |0i. Thus the circuit is named repeat-
until-success (RUS) circuit. In 2017, Cao and coworkers devel-
oped both the quantum feed forward neural network and
quantum Hopfield network based on the RUS circuit.212 Some-
times in the hybrid quantum-classical neural networks,
researchers also use special intermediate measurements to
implement certain nonlinear functions.206

There are some other approaches to implement the activa-
tion functions in quantum neural networks. Activation func-
tions can be implemented via the mapping process. In 2018,
Daskin developed a simple quantum neural network with a
periodic activation function,213 where the simple cos function
is used as an activation function. There are also methods to
implement activation function with the assistance of the phase
estimation algorithm.214 Recently, our group also developed a
quantum circuit to implement periodic nonlinear activation
functions with multi copies of input.209 Fig. 15(a) is a scheme of
the circuit structure, and Fig. 15(b) shows the approximation of
periodic square wave functions. The quantum circuit contains
N-qubits to store the information on the different N-Fourier
components and M + 2 auxiliary qubits with M ¼ log2 Nd e for
control operations. The desired output will be measured in the
last qubit qN with a time complexity of the computation of
OðN2 log2 Nd e2Þ; which leads to polynomial speedup under
certain circumstances. In conclusion, it is an essential but still
open question to find an optimal approach to implement
nonlinear activation functions in quantum neural networks.

3.3.2 Convolutional neural network (CNN). This is a spe-
cific kind of neural network architecture that is widely used for
image classification and computer-vision problems.216,217 To
understand the basic algorithm let us consider a grayscale
image composed of (n1 � n2) pixels. The image can be numeri-
cally represented as a matrix of intensity I such that
I: f1; 2; . . . ; n1g � f1; 2; . . . ; n2g 7! Rn1�n2 . For colored images,
the only difference in the intensity distribution at the (i, j)th

Fig. 15 (a) Shows the main structure of quantum circuits estimating arbitrary periodic functions. There are two main modules. The first one contains Upre

acting on the auxiliary qubits q0, and Hadamard gates acting on q00. The succeeding module is formed by N controlled unitary operations denoted as Un.
q0 (blue color) are control qubits. q0 are converted to the state jcf 0 ðgÞi under the operation Upre, where g is determined by FN. In (b), the blue curve
represents the final output of the quantum circuit estimating square wave functions. Meanwhile, the red curve is the original shape of square wave
functions. (a) and (b) are reproduced from ref. 209 under Creative Common CC BY license.
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pixel (position in the intensity matrix) will be that instead of a
scalar value, the intensity will be a vector of [R,G,B]T entries. If
the total pixel count (n1n2) is too big, then converting the matrix
into a 1D vector and using a feed-forward neural network as
discussed before may be cumbersome and would require a
large number of tunable parameters with the possibility of over-
fitting. Besides, a 1D encoding loosens the spatial correlation in
the intensity pattern among the neighboring pixels. CNN is
designed to use as input the entire 2D matrix and hinges on
understanding and identifying the spatial information (often
called feature maps) and then condensing the information into
feature vectors of reduced sizes which is then fed into a fully-
connected feed-forward network for usual operations as
described before.218–221 In other words, CNN is basically a
simple neural network defined before in the final layer
equipped with a robust feature-extractor before the final layer
to remove redundancies and decrease parameter count.

The key components which facilitate the CNN architecture
are thus grouped into two parts: (a) feature extractor and (b)
fully-connected neural network. The component (a) is further
made up of the repeated use of the following categories of
layers.

1. Convolutional layer:58 this is where the magic of CNN
happens. For each feature the user wants to identify and extract
from the image, this layer uses a spatial filter (kernel) denoted
as K which is essentially a matrix that can slide over the output
of the previous layer (or the intensity matrix of the input image
if one is looking right after the first layer) and define a new
feature map. In other words, the kernel acts on a chunk of the
input matrix every time and the process is essentially a con-
volution. This feature map is obtained by a Frobenius inner
product between the kernel and the chunk of the input it is
acting on such that the resulting map has large entries only
over the pixels (or (i,j) positions) wherein the kernel entries ‘are
similar’ to the entries of the chunk i.e. the feature is present.
This is done for every kernel (one corresponding to every
feature that needs extraction) and for every feature map from
the previous layer. Operationally let the input to the l-th layer
from the (l � 1)-th layer comprise feature maps denoted as
yl�1

p each where p = 1, 2,. . ., al�1 features. Each such map is of
size bl�1 � gl�1. Then each of the output from the l-th layer
denoted as yl

p (p = 1, 2,. . ., al�1) is a feature map of size bl � gl

obtained by convolving against kernels as follows:

ð ylpÞi; j ¼ bli; j þ
Xal�1
q

Kl
p;q 	Jyl�1q

 !
i; j

(68)

Xal�1
q

Kl
p;q 	Jyl�1q

 !
i; j

¼
Xal�1
q

X
a

X
b

ðKl
p;qÞa;bðyl�1q Þiþa; jþb (69)

where bl
i,j are the elements of the bias matrix of the l-th layer.

The tunable parameters within this layer are the bias
matrix elements and the parameters within the kernel K. This
convoluted feature map may be obtained by passing the kernel
over the entire input without missing any row or column

(without using any stride222) or otherwise. The corresponding
map so obtained may also be padded with zeros for dimen-
sional consistency. All the feature maps so generated serve as
input to the (l + 1)-th layer. The early convolutional layers in the
network usually extract simple features with complexity
increasing along the way. Feature maps can also be stacked
along the third dimension to obtain compound features.

2. Activation layer: this layer is responsible for introducing
non-linearity into the model using the input of the previous
layer through the following expression

( yl
q)i,j = s( yl�1

q )i, j (70)

wherein s is an activation function like ReLU, sigmoid, tanh,
etc., and ( yl

q)i, j are defined as in the previous point. Sometimes
rectification layers are also used which compute the absolute
values of the input.

3. Pooling layer: this is where dimensional reduction or
downsampling of the feature maps happens. This layer takes
in the feature maps from the previous layer and uses windows
of pre-defined sizes within each chunk of the feature map and
preserves only one value within each such window to generate a
new feature map with reduced dimension. The number of
feature maps remains unchanged. The one value so selected
can be the maximum value of all features within the window
(max-pooling223–225) or may be the average value (average
pooling224,225).

The architecture has repeated applications of these layers to
ensure parameter sharing and efficient feature extraction. The
output at the last layer of the feature-extractor is vectorized into
a 1D format and fed into a completely connected deep-neural
network at the end. This network then processes the input and
generates the final output. For example, if the final desired
output is a multi-label classification task, the connected neural
network will have as many neurons as the number of labels
with each neuron being a placeholder for a 1 or 0 denoting
classification into the corresponding label or not. Fig. 16(a)
illustrates pictorially all of these components.

3.3.2.1 Quantum enhanced variants. In 2019, Cong et al.215

developed a quantum circuit based on CNN architecture which
is used to classify an N-qubit quantum state with M-labels. In
other words, given a training data set of M states {(|cii, yi)}
where yi are the binary classification labels associated with the
states, the circuit can decide which of the training vectors the
input unknown state resembles the most. This is useful in
understanding whether a given state belongs to a particular
phase with phase labels and shall be discussed later. The circuit
architecture involves the following steps:

1. The initial inputs are mapped to a quantum state.
2. In the convolutional layer, the quantum state is trans-

formed using a set of quasi-local unitaries labelled as Ui where i
A {1, 2,. . .}.

3. In the pooling layer, some of the qubits are measured and,
conditioned on this measurement outcome, the unitaries for
the remaining qubits are decided. This reduces the width of the
circuit as certain qubits whose state has been readout are no
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longer a part of subsequent operations. Such controlled entan-
gling unitaries are labelled as Vi where i A {1, 2,. . .}.

4. The convolutional and the pooling layers are applied
many times until the width of the circuit is reduced sufficiently.

5. Finally, a fully-connected layer of single and two-qubit
gates (labelled as say F) is applied on the remaining qubits
analogous to the fully-connected layer in classical CNN.

6. The final prediction from the algorithm is read by
measuring certain qubits at the very end.

The circuit is described in Fig. 16(b) schematically.
3.3.3 Recurrent neural networks. For data that involve

time-ordered sequence as what appears frequently in natural-
language processing,226 stock-price prediction,227 translation228 or
any simple time-series prediction,229 it is important for the neural
network architecture to preserve information about the previous
entries in the sequence, i.e., the notion of building memory in the
architecture becomes essential. Recurrent neural networks (RNN)

are specifically built to handle such tasks. The task such networks
perform is usually supervised in which one has access to a
sequence {xi}

T
i=1 where each entry in the sequence xi 2 Rd and a

corresponding label fy	i g
T
i¼1 where y	i 2 Rm 8 i. The primary goal

of the network is to produce a new sequence { yi}
T
i=1 as the output

such that each yi is close enough to y	i 8 i as computed from a
chosen metric and a preset threshold. In the vanilla RNN
architecture,230 the primary functional unit which is used repeat-
edly for each input entry in the sequence consists of three layers of
stacked neurons. The first layer is an input layer having d neurons
(as the input entries xi are d-dimensional). The next layer is the
hidden layer having say p neurons and is parameterized by weight
matrices (Wz,Wx) and bias vector bz 2 Rp. The weight matrix Wx 2
Rd�p is responsible for the affine transformation on the input xi as
discussed in the case of feed-forward neural networks. However,
the primary difference from an usual feed-forward network is the
presence of a second set of weight matrix Wz 2 Rp�p which

Fig. 16 (a) The schematic of a typical convolutional neural network (CNN) is illustrated. The process starts with an input image from which feature maps
are extracted through an element-wise product with a kernel and then activation through any of the activation functions discussed in the previous
section. Such feature maps are depicted in green. The pooling operation (blue layer) thereafter reduces the size of the feature maps by preserving the
values of a prescribed choice by the user within a certain window of each feature map. The two layers are repeated many times and then fed into a fully-
connected neural network as discussed in the previous section. The output is read and back-propagation is used to train the parameters of the entire
network. (b) The schematic of the quantum circuit as illustrated in ref. 215 for the realization of a CNN. The circuit receives an arbitrary input state say r0.
The unitaries designated as Ui are responsible for convolutional operation whereas the unitaries designated as Vi are responsible for controlled operations
in the pooling layer. The unitaries Vi are conditioned on the measurement results of neighboring unitaries. Such measurements reduce the qubit pool
and are similar to dimensional reduction in conventional pooling layers. The operations are repeated several times until a fully-connected unitary
(denoted as F) acts on. Certain qubits are measured subsequently to process the output.
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performs an affine transform on the hidden layer activation
response corresponding to the entry in the previous step i.e. for
the last but one input entry xi�1. If the activation response from
the hidden layer for xi is denoted as s(zi) and the activation
response for the previous entry xi�1 is denoted as s(zi�1) then the
two are related as

s(zi) = s(WT
xxi + WT

zs(zi�1) + bz). (71)

Using this activation response (usually tanh) the last output
layer now performs another affine transformation followed by
the usual introduction of non-linearity through input to the
activation process as follows:

yi = s(WT
ys(zi) + by) (72)

where the weight matrix Wy 2 Rp�m defines the inter-
connections between the hidden layer and output layer and
the bias vector by 2 Rm. The total number of tunable parameter
vectors for this unit is 5 (Wz, Wx, Wy, bz, and by). For all
subsequent input entries (i.e. xi+1, xi+2, etc.) the functional unit
is repeatedly queried using the activation response (usually
tanh) of the previous step as explained above. The total number
of parameters (Wz, Wx, Wy, bz, and by) is kept the same for all
such steps which leads to reduction in the number of variables
through efficient sharing. Each such iteration generates a yi as
explained. After the first pass through the entire data-set (a
subset of the data-set can also be used depending on user
preference), an ordered sequence { y}i is generated and a cost-
function is defined to compare this sequence with the labelled
sequence { y*}i. The error in this cost-function is minimized by
updating the parameter set (Wz, Wx, Wy, bz, and by) using the
gradient of the cost-function or any other optimizer as has been
described in the case of feed-forward neural networks. The
architecture is pictorially depicted in Fig. 17(a).

During back-propagation for long RNNs it is possible to
encounter a situation wherein the gradient vector accrues a
zero value (or grow unbounded in magnitude) with respect to
parameters of nodes appearing at the beginning of the network.
Such a situation is known as vanishing (exploding) gradient
and if happens can render the model untrainable. Apart from
changing the activation function from logistic ones like tanh to
ReLU, one can adopt architectures of RNN like long-short term
memory (LSTM) or gated recurrent unit (GRU)230,232–235 in such
a case. LSTM networks introduced in ref. 236 also have succes-
sive repeating units/cells wherein the input to each cell is one
entry of the ordered sequence xi (defined before) as well as the
activation response (say hi�1) which was denoted as s(zi�1) for
vanilla RNN. The change in notation will be clarified soon. (The
two quantities are conceptually similar though.) However the
key difference with the vanilla version of RNN lies in the
presence of a memory channel/carousel. The response of this
memory channel from the previous cell (often denoted as ci�1)
is also fed as input into the current cell. Inside the current cell
there are three different networks/gates which work to erase,
update the memory of the carousel entry and generate a new
output yi as well (hi). The latter is fed back into the next cell as

before in the case of vanilla RNN. The primary components
inside each cell are the following:

(a) The forget gate: this takes in input (xi,hi�1)T and performs
an affine transformation with weight matrices and bias
(Wxf,Whf,bf)

T wherein the subscript f stands for the forget gate.
This is passed onto a sigmoid activation which outputs values
between 0 and 1 only. The purpose of this gate is to read from
the present input entries (xi,hi�1)T what features in the memory
channel need to be erased (hence the name forget gate). If the

Fig. 17 (a) A schematic of recurrent neural network (RNN) architecture.
The blue layer encodes the input sequence {x1, x2,. . ., xi�1, xi, xi+1,. . .}. The
yellow layer is the hidden layer which processes the input and generates an
activated response s(xi) for the input xi. The key difference between RNN
and other neural network architectures is that s(xi) is fed onto the network
when the next entry in the time-ordered sequence xi+1 is the input. This
forms the core of the memory retention process in RNN. s(xi) is also used
by the final layer (green) to generate the output yi. The parameters of the
network are the biases (by and bz) and the interconnecting weights (Wx, Wz,
and Wy) between a pair of layers which are highlighted in the figure. (b) The
schematic of the quantum circuit for processing time-ordered sequence
using the RNN architecture as illustrated in ref. 231. Two qubit registers are
invoked with nA and nB qubits and the input entry xi is encoded within the
first register using U1(xi). The first and second registers are entangled using
a parameterized unitary U2(y) and thereafter an observable OA on the first
register is measured to yield the output yi. The second register is left
untouched and is responsible for carrying the memory for the next input
xi+1. The circuit is adapted from ref. 231. The parameters of the entangling
unitary gate U ~x;~y

� �
are optimized to make the output sequence

{y1, y2, y3,. . ., yi�1, yi, yi+1,. . .} to the desired.
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output of the forget gate is denoted as fi the transformation is
abbreviated as

fi = ss (WT
xfxi + WT

hfhi�1 + bf) (73)

where ss is the sigmoid activation.
(b) The next important gate is the input gate whose purpose

is to decide what new information needs to be updated into the
memory channel and at what places. Two operations are
performed herein. The first involves creating an affine trans-
formation of the input (xi,hi�1)T followed by sigmoid activation.
The weights and biases in the process are (WxI,WhI,bI)

T wherein
I is for the input gate. This accomplishes the task of where to
update the new information through the 0s and 1s of the
sigmoid activation. The next operation is to create a candidate
memory C̃i for the memory channel using the input entries and
parameters (WxIc,WhIc,bIc)

T using a tanh activation to acquire
values between 
1. The operations are as follows:

Ii = ss(W
T
xIxi + WT

hIhi�1 + bI) (74)

C̃i = stanh(WT
xIcxi + WT

hIchi�1 + bIc) (75)

The state in the memory channel is then updated using
eqn (73) and (75) as

Ci = fi � Ci�1 + Ii � C̃i (76)

where the first term erases the memory from the previous state
Ci�1 using location in fi and the second term re-builds it with
new information in C̃i at the location specified by the Ii vector.

(c) The third component is the output gate which is used to
create an output hi to be fed into the next cell with data entry
xi+1. The transformation is

hi = (ss(W
T
oxxi + WT

ohhi�1 + bo)) � stanh(Ci). (77)

This operation can be interpreted as returning the tanh of the
state of the memory channel stanh(Ci) as the output at locations
filtered by the vector (ss(W

T
oxxi + WT

ohhi�1)) which explains why
the symbol was changed from s(zi�1) as it is not just an
activation output but a scaled one. The weights and the biases
(Wox,Woh,bo)T are parameters of this output gate. Fig. 18(a)
displays a schematic version of a typical LSTM network.

3.3.3.1 Quantum enhanced variants. Recently a quantum
algorithm has been designed231 to implement the vanilla
RNN architecture using a hybrid-variational framework. The
algorithm uses a quantum circuit of two sets of qubits (say nA

and nB). The input sequence of data is stored within the
quantum states of one of the two registers through appropriate
unitary operations. Both registers are then processed through
unitaries with parameterized angles. The state of one of the
register is measured subsequently to obtain the output whereas
the other is untouched and passes onto the subsequent state to
carry the memory of previous steps. The key ingredients of the
protocol are:

1. Both the registers with nA and nB qubits are initialized to
null kets.

2. The first input entry x0 is encoded onto the state of the
register with nA qubits. Thereafter controlled unitaries are used
to entangle the register with nA qubits and nB qubits. Such
unitaries are parameterized by variational angles.

3. The expectation value of an operator OA is measured using
the reduced density matrix of the first set of qubits (say r0

A).
This measurement yields y0. The second set of qubits (in the
register with nB qubits) remains untouched. The first register is
re-initialized to null kets.

4. For subsequent input entries (say x1, x2,. . ., xt, etc.), the
second step above is repeated with the input xi encoded within
the first register. This is followed by the third step. The state of
the second register which is left pristine at each step retains the
memory and information about previous input entries. This
information is shared with the qubits in the first register
through the parameterized entangling unitaries for each input.

5. The sequence of {y}i values so generated is fed into a cost
function and the parameters of the entangling unitaries are
updated for the next cycle from the knowledge of the errors.

The circuit is schematically illustrated in Fig. 17(b) A quan-
tum version of the LSTM network has also been implemented
recently using hybrid-variational circuits.237 The schema of the
algorithm consists of 4 major components.

1. A data loader circuit: this component serves to map the
concatenated form of the input vectors of the sequence xi and
hi�1 (defined before in the classical variant) to quantum states.
The circuit consists of Rz and Ry gates after a conversion to an
equal superposition state using Hadamard transforms.

2. The next step involves parameterized unitaries with CNOT
gates and single-qubit rotations. This block of parameterized
unitary is used inside the input gate, the forget gate and the
output gates (see Fig. 18(b)) for optimizing the response from
each gate.

3. The measurement protocol on each such block of para-
meterized unitary in (2) using the input encoded within the
state-preparation circuit in (1) yields the necessary affine trans-
formation which is subsequently passed through an appropri-
ate activation function for each gate as defined before in the
classical variant (see Fig. 18(b)).

4. The parameters of the unitary in step (2) are updated
through gradient estimates of a cost-function involving the
error between the actual and the output from the network
using a classical computer. The network was applied to many
different problems including the dynamics of damped harmo-
nic oscillators with good results.

The circuit is schematically illustrated in Fig. 18(b).
3.3.4 Autoencoders. A typical autoencoder is a type of

neural network which is used to generate useful representa-
tions of the input data, to be used for unsupervised learning.
The data can be thought of being generated from some dis-
tribution that represents a class spanning a subspace of the
vector space in which they are represented. This is usually the
case in most practically used image datasets and thus allows
for dimensionality reduction. Autoencoders have helped in
providing sparse representations,238 denoising,239 generating
compact representations, information retrieval,240 anomaly
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detection,241 and image processing as a precursor to classifica-
tion tasks. An autoencoder can be thought of as a feed forward
neural network composed of an encoder and a decoder with a
bottleneck layer providing a minimal representation separating
them. The output of the encoder constructs a compact

representation of the input data and is fed to the decoder
which reconstructs it back (Fig. 19).

Like any other feed forward neural networks it is trained
through back-propagation to minimize the reconstruction error
defined over it. For the simplest one layer encoder–decoder

Fig. 18 (a) A schematic representation of a typical LSTM network as implemented in a classical processor. The three different processing gates – forget
gate, input gate and output gate are illustrated (see text for details) along with the memory channel encoding Ci. # Indicates elementwise multiplication
whereas " indicates elementwise addition. st indicates tanh activation and ss indicates sigmoid activation. (b) The hybrid quantum-classical LSTM
network implemented using parameterized quantum unitaries (PQC) in ref. 237. Each PQC has a data-encoding circuit and a variational circuit
parameterized by angles (say~y). For say PQC1 to PQC4, the data encoder loads the concatenated vector (xi,hi�1)

T. For PQC5 and PQC6, the output from
PQC4 is processed and the memory channel is loaded (see text for more details).
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circuit, with weights, biases and element wise activation func-
tion W,b,s and W0,b0,s0, we can construct the L2 norm loss
function as follows:

LossðW ; b;W 0; b0Þ ¼
XN
i¼1

xi � s0ðW 0ðsðWxi þ bÞÞ þ b0Þk k2

(78)

where N is the size of the training data set. Using a standard
gradient descent one can train the parameters of the circuit to
minimize the loss output. A regularization term might be
added to ensure that the network isn’t overfitting to the
training dataset. Here, we described an undercomplete auto-
encoder that made use of the no regularization term. Over-
fitting here is avoided by ensuring a small latent code size.
Depending on the error function, inputs, and size of the latent
space we can construct autoencoders that have different func-
tionalities. A sparse encoder for instance has the same latent
space size as the input and minimizes the number of activa-
tions in the latent space, implemented by an L1-regularization
term on the latent space. A denoising encoder takes inputs that
are overlayed with minimal perturbations to reconstruct the
original image. A contractive autoencoder tries to ensure that
samples that are close in the input space have a similar
encoding representation.

3.3.4.1 Quantum enhanced variants. To generalize a classical
encoder to the quantum setting, we start with building a
unitary circuit that allows information to be compressed into
a smaller set of qubits with a garbage state in the remaining
qubits that can be replaced with a reference state. We start with
an ensemble of N pure states {|ciiAB

}, where A is an n qubit
system, and B is a k qubit system. Let U be the encoding unitary

that takes as input a pure state from the ensemble. System B in
the output is then swapped with a reference state and we try
reconstructing the input state with a decoder given by the
unitary U†. The objective function to maximize is given by

Cð~yÞ ¼
X
i

Fðjci; routi ð~yÞÞ (79)

where

routi ¼ U
y
ABð~yÞSBB0TrB UABð~yÞrini U

y
ABð~yÞ

h i
SBB0U

y
ABð~yÞ: (80)

Here rini ¼ jciihcijAB � jaihajB0 ; F denotes the fidelity between
the states, SBB0 is a swap gate that swaps the corresponding

qubits and ~y represents the parameters of the unitary circuit
that needs to be trained. It can be observed that a perfect
fidelity is obtained when the output state of the encoder circuit

produces a product circuit, i.e., U|ciAB = | ~ciiA # |aiB.242 Thus,
we could alternatively define the maximizing objective function
as the fidelity over the trash system B with respect to the
reference state as

~Cð~yÞ ¼
X
i

F TrA½UABð~yÞjciihcijABU
y
ABð~yÞ�; jaiB

� �
: (81)

This problem can thus be framed within the context of devel-
oping unitary circuits that work to disentangle qubits. It has
been shown that by using circuits of exponential depth it is
always possible to disentangle qubits.243 Other alternative
implementations include using approximate quantum adders
trained with genetic algorithms244 and generalization of feed
forward neural networks as quantum circuits to implement
autoencoders.245

3.3.5 Variational encoders. Unlike autoencoders that try
and provide useful latent space representation, variational
autoencoders (VAEs) are used to learn the distribution that
models the latent space. The decoder thus generated can be
used to sample the input space, working similar to generative
adversarial networks (to be discussed shortly). They have found
their use in unsupervised246 and semi-supervised learning.247

Let py(x|y) be the conditional likelihood of the decoder and
q f(y|x) be the approximated posterior distribution the encoder
computes, where x is the input vector and y is the latent vector.
We train the network on the parameters y,f to reduce the
reconstruction error on the input and have q f(y|x) as close as
possible to py(y|x). Thus we would like to minimize the follow-
ing evidence of lower bound loss function (ELBO):

Lossðy;fÞ ¼
X
x

DKLðqfðyjxÞjjpyðyjxÞ � logðpyðxÞÞ

¼
X
x

DKLðqfðyjxÞjjpyðzÞÞ

� Ez�qfðyjxÞðlogðpyðxjyÞÞÞ

(82)

where E is the expectation value with respect to the specified
distribution, DKL is the KL divergence between the distributions
and x is the input from the training set. The later equality of the
above expression is obtained by expressing py(y|x) using the

Fig. 19 (a) Schematic representation of a classical autoencoder. The
encoder takes classical input to create a compact space representation.
The decoder acts on the code to output a representation from the input
space. (b) Schematic representation of a circuit used in quantum auto-
encoder as illustrated in ref. 242. The encoder UAB acts on a circuit to
create a code. The trash qubits are swapped out with a reference state and
the decoder circuit works to reconstruct the input.
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Bayes theorem and regrouping terms. The KL divergence
regularizes the expression allowing for continuity (the neigh-
bouring points in latent space are mapped to the neighbouring
points in the input space) and completeness (points in latent
space map to meaningful points in the input space for any
chosen distribution). At this point 2 assumptions are made to
allow for training. First, py(x|y) is a Gaussian distribution and
qy(y|x) is a multivariate Gaussian that can be re-expressed as
mþ s� e to allow for gradient back-propagation (the reparame-
trization trick), where e B N(0,I) and � is an element-wise
product.

3.3.5.1 Quantum enhanced variants. Khoshaman et al.249

developed a quantum variational autoencoder that makes use
of a quantum Boltzmann machine (QBM)250 to evaluate the
gradient updates used in training. A QBM is an energy model
defined as

py(z) = Tr[Lze
�Hy] (83)

Zy = Tr[e�Hy] (84)

Hy ¼
X
l

sxl Gl þ
X
l

szl hl þ
X
lom

Wlmszl s
z
m (85)

where y = G, h, W, L = zz, sz,x
l are Pauli operators and ptheta (z)

governs the distribution of the states |zi. The ELBO is defined
with a cross entropy term as follows:

H(py,q f) = �EzBq f
[log(Tr[Lze

�Hy])] + log(Zy) (86)

ZEzBq f
[log(Tr[e�Hy+lnLz])] + log(Zy) (87)

where in the second line we have used Golden–Thompson
inequality (Tr[eAeB] Z Tr[eA+B]) to express the intractable first
term with a lower bound. Similar to the classical case, a
reparametrization trick is employed to effectively evaluate
gradients and the trace is taken to be concentrated at the state
|zi. See ref. 249 for the reparametrization trick in the contin-
uous and discrete case setting.

3.3.6 Generative adversarial network (GAN). Generative
adversarial network (GAN) was introduced by Ian Goodfellow
et al. in 2014251 and is considered to be one of the major
milestones of machine learning in the last 10 years. Its applica-
tions extend to art,252 science,253 video games,254 deepfakes and
transfer learning.255 A GAN consists of a generator and a
discriminator that are trained simultaneously to learn a given
distribution by competing against each other. The goal of the
generator is to generate fake samples that cannot be distin-
guished from the true samples of the input data. The goal of the
discriminator is to correctly distinguish the fake samples from
true samples, thus solving a well understood classification
problem. This game has a Nash equilibrium point that is
attained when the generator is able to generate samples that
are distinguished with a probability of 1/2, making it no better
than a random guess. Let the generator G take a random input
from a distribution pz (usually taken to be a Gaussian distribu-
tion) to generate samples from the distribution pf. Let D be the
discriminator that takes inputs equally likely sampled from pt

(true distribution) and pf to output the probability of data

coming from pt. The objective function for the discriminator
is thus given by

min
D

1

2
Ex�pt ½1�DðxÞ� þ 1

2
Ez�pz ½DðGðzÞÞ� (88)

where the first term is the error in determining the true
samples to be fake and the second term is the error in
determining the generated samples to be true. The generator
on the other hand tries to maximize this loss function against
the trained discriminator, i.e., the objective function of the
generator is given by

max
G

min
D

1

2
Ex�pt ½1�DðxÞ� þ 1

2
Ez�pz ½DðGðzÞÞ�: (89)

The parameters of the generator and discriminator are
trained alternatively till the discriminator no longer is able to
differentiate pf from pt. Thus the distributions are equal in the
eyes of the discriminator and we have managed to create a
generative model for the given training samples. The discrimi-
nator is discarded after the training. pz can be thought of as the
distribution that represents the domain set of the problem and
thus the generator works to extract features of the input vector.
The trained generator can be further re-purposed for transfer
learning on similar input data. A conditional extension referred
to as cGAN (conditional GAN) allows for generating inputs from
a specific class by imposing additional restrictions on the
random input vector provided. This restriction can be envi-
sioned as selecting from a specific class within the input
domain. To train a cGAN the discriminator also needs to be
provided with this additional label input to constrain classifi-
cation within the chosen class.

3.3.6.1 Quantum enhanced variants. In the quantum genera-
tive adversarial network (QGAN),256 we have a source US that
outputs true samples and a generator UG that outputs fake
samples. Both US and UG take an input state |0i#n, label |li
and random noise |zi to output a density matrix in the system
qubits. The noise vector supports to provide a distribution for
the generator on the output qubit state corresponding to a
given input label. With equal probability we choose between UG

and US to create a density matrix that is fed into the discrimi-
nator. Alongside the sample output from US or UG provided, the
discriminator takes as input the label |li used to generate the
state, a bath |0i#d that works as a scratchpad and an output
qubit to measure the probability of the source of the sample.
Fig. 20 provides a sketch for the working of the QGAN. The
objective function can thus be given by,

min
~yG

max
~yD

1

2

þ 1

4N

XN
l¼1

tr½UDð~yDÞrSlU
y
Dð~yDÞZ� � tr½UDð~yDÞrGlU

y
Dð~yDÞZ�

(90)

where rS
l = USr

0
lU†

S is the state output by the source and rGl ¼
UGð~yGÞr0lðzÞU

y
Gð~yGÞ is the state output by the generator and Z

represents the measurement made at the output qubit of the
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discriminator. The first and second terms in the trace come
from the discriminators’ success in correctly predicting states
from source and generator, respectively. The cost function has
been derived using measurement probabilities to keep the
expression linear, unlike the maximum likelihood optimization
used for the classical case. Given the optimization function,
gradients can be computed using a parameter shift trick or re-
expressing it as a sum of simple unitary operations.257 For a
complete discussion on the derivation of cost function, analyz-
ing limiting cases and computing gradients corresponding to
the parameters, refer ref. 248.

3.4 Tensor networks

Tensor network states constitute an important set of variational
quantum states for numerical studies of strongly correlated
systems in physics and chemistry as they attempt to construct
global quantum states from tensors associated with local
degrees of freedom.258,259 Expressing a quantum many-body
system defined on n qubits requires 2n complex coefficients.
Storing and manipulating these numbers of coefficients on a
classical computer pose a big challenge while simulating
strongly correlated systems. Luckily physically relevant

quantum states often possess a limited amount of entangle-
ment wherein only a subset of these coefficients are necessary
to describe these states efficiently. Tensor networks provide a
natural language to model complex quantum systems (states
and operators) on which the amount of entanglement (or
correlations in the case of mixed-state dynamics) is conveni-
ently restricted. The representation is such that the complexity
of the structure grows linearly with qubit but exponentially with
the amount of entanglement in the system. It thereby allows
manipulation of quantum states residing in large Hilbert
spaces with polynomial amount of resources. The classical
simulation of low entangled systems (whose entanglement
grows at most polynomially with system size n) becomes
tractable using tensor network algorithms like Density Matrix
Renormalization Group (DMRG) [discussed in detail in Section
3.4.5] and Time-Evolving Block Decimation (TEBD).260,261

Tensor networks are the graphic representation of tensors in
Einstein notation such that a rank-n tensor is represented by a
box with n indices projecting out of it. The connections between
tensors signify the set of indices of tensors which are con-
tracted. Hence the final rank of a tensor network is determined
by the number of free edges. A quantum state |ci in the n-

Fig. 20 (a) Schematic representation of classical GAN. The generator takes as input some noise to produce a sample. Samples from the real source and
generator are fed to the discriminator. These work as labelled data for the discriminator to distinguish. The errors are used to backpropagate and train the
generator and discriminator. (b) Schematic representation of the quantum circuit used in quantum GAN as illustrated in ref. 248. Samples are output from
the real source S or the generator UGð~yDÞ that takes as input some noise and label. This is then fed to the discriminator UDð~yDÞ along with the label qubits
and scratch space(bath) to work on. The measured output qubit is used to backpropagate the errors through classical updates to give new circuit
parameters.
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dimensional Hilbert space is basically a rank-n tensor and can
be written as,

jci ¼
X
l1l2���ln

m11l2���ln jl1ijl2i � � � jlni (91)

where |lii represent the local basis states and the coefficients
m11

,l2
,. . .,ln

are the amplitude of wave function in a given basis
state |l1i, |l2i,. . .,|lni.

The idea of using tensor networks to represent quantum
systems is motivated from the very famous Area Law262 which
states that the ground state of the Hamiltonian resides in the
low entangled space such that the entanglement entropy
between any two partitions of the system grows as the area of
the surface separating them. The entangled entropy is usually
quantified in terms of the von Neumann entropy of a quantum
many-body system which is defined as S(r) = �tr[r log r], where
r is the density matrix of the state. It serves as a befitting
measure of the degree of quantum correlation that exists
between any of the two-partitions of the system under consid-
eration. The area law has been proven only for gapped Hamil-
tonians in one-dimension by Hastings263 and has been studied
intensively for higher dimensions [see section IV of review262

for a detailed discussion on the area law in higher dimensions].
The area law guarantees an efficient description of ground
states by a matrix product state and justifies the density-
matrix renormalization group algorithm. Each of these two
methods will be discussed in detail in Sections 3.4.1 and
3.4.5, respectively.

Tensor networks can be broadly classified into two main
groups: those based on the matrix product state (MPS), the tree
tensor network state (TTN) and their higher dimension analo-
gues (ex. PEPS); and those based on the multiscale entangle-
ment renormalization ansatz (MERA). We shall discuss
applications of TN in Section 5.2 and in Sections 4 and 5.3.

3.4.1 Matrix product state (MPS). A pure quantum state |ci
of an n-qubit system can be described by the sum of tensor
products of orthogonal states in two subsystems. The Schmidt
decomposition49 of c with respect to the partition reads as

jCABi ¼
Xm
i¼1

lijuiiA � jviiB (92)

where |uiiA and |viiB are the state of the subsystems A and B and
lis are the Schmidt coefficients of the quantum state with
respect to the partition. The Schmidt rank wA is defined by
the number of non-zero Schmidt coefficients. It is a natural
measure of the entanglement between the qubits in A and B,
popularly known as bond dimensions in the tensor network
community. The von-Neumann entropy between the two parti-
tions is given by

S ¼ �
X
i

jlij2 ln jlij2 (93)

Sometimes entanglement entropy is measured in ebits
where one ebit is the amount of entanglement possessed by a
maximally entangled two-qubit Bell state. Now, if subsystems A
and B are further partitioned into smaller subsystems, we are

ultimately left with single-qubit subsystems. Let the states on
these single-qubit subsystems be denoted by l[i] and the
diagonal matrices containing the Schmidt coefficients be
denoted by l[i]. Let these states be denoted by L[i] and the
diagonal matrix containing the Schmidt coefficient be denoted
by l[i]. Then the quantum state reads as

jci ¼
X
a

La1
s1

��� E
l½1� La1;a2

s2

��� E
l½2� � � � Lan�2 ;an�1

sn�1

��� E
l½n�1� Lan�1 ;an

sn

�� E
(94)

where |Lsi
i are complex square matrices of order w (the bond

dimension). si represent the state indices in the computational
basis (physical indices). This format of representing quantum
states is known as the matrix product state.264 In the tensor
network notation it can be described as shown in Fig. 21(a).
Operators can similarly be represented in the matrix product
form known as the matrix product operator (MPO).

Matrix product states in theory can represent a maximally
entangled state but the bond dimension at the middle cut
would grow as O(2n).264 For an MPS with a fixed bond dimen-
sion w, the quantum state residing in the n-qubit Hilbert space
can now be represented using just O(nw2) parameters. The area
law limits the bond dimension of the ground state of local
gapped Hamiltonians making them the best candidates for
MPS representation. Evaluating inner products of two quantum
states in MPS form takes O(nw2) time.

The l[i] matrices in the eqn (94) are usually absorbed into the
nearby local tensor l. The matrix product state is invariant of
the contraction of l[i] either to left or right. This gives MPS a
gauge degree of freedom. Usually the gauge is fixed by choosing
either of the two directions for multiplying l[i] giving rise to the
left and right canonical forms of MPS. The process is known as
canonicalization.264,265 There is another kind of canonical form
known as the mixed canonical form266 which is obtained by
combining each (l[i]) to the left (right) of a given special site to
its left (right) neighbouring (L).

3.4.2 Tree tensor networks (TTNs). Tree tensor networks
provide another approach to model quantum states by arran-
ging the local tensors in a tree-like pattern (see Fig. 21(b)). A
TTN can be formed from an n-qubit quantum state using the
tree-Tucker decomposition.267,268 Like other tensor networks,
TTNs are used as an ansatz to simulate the ground state of local
Hamiltonian.269–271 Tensors in TTNs form the nodes of the tree
which are connected to each other through bond indices. The
physical indices appear on the leaf nodes. On contracting the
bond indices, the TTN has n free indices which represent the
physical degree of freedom of the state. TTNs are a general-
ization of MPS and can in principle be non-binary as well.272,273

An MPS can be thought of as a flattened TTN such that each
parent node has one successor (bond indices of MPS) and
another leaf node (physical indices of MPS).

The structure of TTN is inspired from the spatial renorma-
lization group.274 At every layer of TTN, coarse-graining is
carried out between neighbouring sub-trees. Unlike MPS, the
local tensors with access to physical indices in TTN are not
connected directly to each other, the correlation between qubits
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is represented through the layers. The local correlation infor-
mation is stored in the lower layers while the upper layers store
long-range correlation information.

Each node in a TTN is a three-dimensional tensor (except
the root/uppermost node) with at most one upper index a and
two lower indices b1 and b2. The tensors can be written as wa

b1;b2
.

The space required to store a TTN grows as O(ND3) (see theorem
4.1267), where N is the number of physical indices and D is the
bond dimension of the local tensors. Each tensor in TTN is an
isometry satisfying the following condition:

X
b1;b2

ðwÞab1;b2ðw
yÞb1;b2a0 (95)

Choosing an isometric tensor as in eqn (95) is advantageous
in numerous ways. It simplifies the optimization of TTN and
calculation of the expectation values of local observables and it
is also known to provide numerical stability to TTN
algorithms.275 TTN can very well be generalized to higher
dimensions by appropriately placing isometries across local
physical indices and hierarchically merging sub-trees through
more isometries. Tagliacozzo et al.275 in their studies demon-
strate simulation of the transverse-field Ising model on the
square lattice using a two-dimensional TTN. Their approach
takes advantage of the area law which reduces their simulation
cost to exp(N) instead of exp(N2).

Tree tensor networks form the basis of the multi-layer multi-
configuration time-dependent Hartree (ML-MCTDH) methods
which are used to perform quantum molecular dynamics

simulations. In the report276 authors compute the vibrational
eigenstates of acetonitrile using TTNs. ML-MCTDH methods
are a generalization of the MCTDH methods which can be
optimized using MPS as shown in the report.277 Authors make
use of the DMRG algorithm to efficiently evaluate the mean-
field operators represented in the MPS format. The runtime of
the MCTDH methods scales exponentially with the system size,
hence multi-layered MCTDH is used which makes use of
Tucker decomposition to reduce the dimensionality of the
problem and enables it to simulate larger systems.

3.4.3 Projected entangled pair states (PEPSs). PEPS is a
generalization of MPS in higher dimensions or for arbitrary
graphs.264 It get its name from the way it is constructed. Let a
vertex of a graph contain k edges; each edge can be represented by
a virtual spin of dimension D (bond dimension). The edges are

described by a maximally entangled state jIi ¼
PD
i¼1
jiii. Now the

vertex can be defined by a k-rank tensor containing entangled
states. Ultimately this tensor is projected onto the physical spin
through a linear map, ðCD � CD � � � � � CDÞ ! Cd , where d is the
local dimension of the physical state.

In one dimension (k = 2), an entangled pair of states is
projected onto the physical index. While in a square lattice,
each local tensor has at most four neighbours [see Fig. 21(d)].
Hence, the local tensor can be written as La,b,g,d

s , where s is the
physical index and a, b, g, and d are bond indices. Hence
storing a PEPS requires O(N2dD4) space, where N is the number
of qubits along a side of the square, d is the dimension of the
physical local state and D is the bond dimension. Performing

Fig. 21 Schematic representation of different types of tensor networks: (a) matrix product state, (b) tree-tensor networks, (c) multi-scale entanglement
renormalization ansatz, and (d) projected entangled pair states on a square lattice. Each solid object represents a tensor while the black lines denote the
indices. The triangles in (b) and (c) are isometric tensors while the circles in (c) are unitary disentanglers.
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computations on PEPSs is difficult;278 for instance, evaluating the
inner products of PEPSs scales exponentially with D. This is
because any partition which divides PEPSs into two equal parts
always cuts the O(N) bonds; hence, while evaluating the inner
product, one has to form a rank-O (N) tensor as an intermediate.

PEPSs can theoretically represent any state due to their
generic structure given that their bond dimension can be
arbitrarily large. Due to this universality, PEPSs serve as a
variational ansatz in numerical simulation of a wide variety of
quantum systems. It can easily prepare physically important
states like GHZ and Cluster State279 using D = 2. With D = 3,
PEPSs can prepare a resonance valence bond states.280 Kitaev’s
Toric code which finds its application in quantum error correc-
tion and demonstrates non-trivial topological properties can be
prepared using PEPSs with D = 2.281 It is widely known that
PEPSs can efficiently approximate ground states of gapped local
Hamiltonian which satisfy the area law. In the report282 authors
show that they can compute the expectation values of local
observables in quasi-polynomial time. Jordan et al. proposed
algorithms to compute the ground states and time evolution of
two-dimensional Hamiltonians defined on infinite-size lattice
using PEPSs.283 It is known that it is difficult to simulate
systems with long-range correlations on PEPSs, but Gu et al.
extensively studied these systems to demonstrate the power and
versatility of PEPSs.284 They studied both systems which exhibit
symmetry breaking phase transition (transverse field Ising
model) and those that show topological phase transition (Z2

gauge model and double-semion model).
While PEPSs have been designed to study quantum systems

on classical computers, there have been approaches to simulate
them on a quantum computer for faster computations. Schwarz
et al. in their report285 presented an algorithm to prepare a
PEPS on a quantum computer which scales only polynomially
with the spectral gap and the minimum condition number of
the PEPS projectors. In the consecutive year they came up
with another algorithm to prepare topologically projected
entangled pair states on a quantum computer with a similar
runtime.286 Specifically they simulated the resonance valence
bond state which is hypothesized to contain the topological
spin liquid phase.

There also exists an infinite version of MPS (PEPS) known as
iMPS (iPEPS).283 They allow working directly in the thermo-
dynamic limit without encountering the finite size or boundary
effects. There have been accurate studies of continuous quan-
tum phase transitions using iPEPS.287

3.4.4 Multi-scale entanglement renormalisation ansatz
(MERA). MERA288 is a powerful class of Tensor Networks which
can be used to study gapless ground states and properties of
systems near criticality. Despite its huge success in represent-
ing a wide variety of states, MPS is scalable only for gapped
systems with exponentially decaying correlations and the area law
is strictly satisfied. Owing to its hierarchical structure, MERA
allows long-range correlations and shows polynomially decaying
correlations [shown in eqn (5) of ref. 289]. The entanglement
entropy of an N-qubit 1D gapless system grows as O(log(N)) and
hence it can be naturally represented by a MERA.

The architecture of MERA is inspired from the Renormaliza-
tion Group.265,290 Its structure is very similar to that of TTN
with an additional type of tensors known as disentanglers (U)
[shown in Fig. 21(c) using blue circles]. These are unitary
tensors satisfying

X
b1;b2

ðUÞb1;b2a1 ;a2
ðUyÞa

0
1
;a
0
2

b1 ;b2
¼ dða1; a

0
1Þdða2; a

0
2Þ (96)

whereas the isometries (W) [depicted using red triangles in
Fig. 21(c)] satisfy eqn (95). To recover a TTN from MERA one
can simply replace the disentangler with an identity tensor.

Entanglement in MERA builds up due to its layered struc-
ture. To dissect a sub-system of n-qubits from the system
requires at least O(log(n)) bonds to be broken. Hence the
maximum entanglement entropy generated by MERA goes as
O(log(n)log(D)). That is why MERA allows logarithmic diver-
gence from the area law.265,289

Storing a MERA on a classical computer requires space
polynomial in number of qubits and the bond dimension.
Performing computations using MERA is simplified due to its
structure. It can perform efficient computation of local expecta-
tion values and correlators by only contracting over the shadow
(causal cone) of the local operator, i.e., the tensor which are
directly connected to the operator and those tensors on higher
levels which are further connected to these tensors. The iso-
metries and disentanglers which lie outside this shadow con-
tract themselves with their conjugates to give unity.

3.4.5 Density matrix renormalization group (DMRG).
DMRG is one of the most successful algorithms for simulation
of condensed matter systems. It was introduced by White291 in
the pre-tensor network era. The algorithm has changed a lot
over the years and has been simplified by adapting to the
language of tensor networks. In the following discussion, we
will be describing the modern DMRG algorithm using matrix
product state formulation.266

Finding the ground state of a Hamiltonian is a challenging
problem and yet is one of the core problem in physics,
chemistry, and materials sciences. Even for one-dimensional
k-local Hamiltonian it is known to be QMA-complete,292 i.e., it’s
difficult to solve it in polynomial time even with access to a fully
functional quantum computer.

The ground state of a gapped local Hamiltonian is known to
reside in a low entanglement regime by the area law. DMRG
algorithm makes use of this property to find the solution of the
local Hamiltonian problem. The algorithm makes use of an
ansatz which succinctly represents the state with bounded
entanglement (matrix product state). The ground state of the
Hamiltonian is attained by minimizing the energy of the
system,

E ¼ hcjĤjcihcjci (97)

Before starting the algorithm the Hamiltonian has to be
converted into a matrix product operator so that it is compa-
tible with MPS. A k-local Hamiltonian can be written as
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Ĥ ¼
P
i

hi;, where hi are local hermitian operators acting on at

most k-qubits. Each hi can be converted into an MPO defined
on k physical indices using recursive singular valued decom-
position as explained in Section 3.4.1. Once local operators are
converted into MPO, they can be added using the MPO addition
operation, which is basically a direct sum operation over the
bond indices (see Section 5.2 in ref. 266 for details).

The initial MPS can be created using random tensors of
desired dimension. At each step of DMRG a contiguous set of
sites is chosen which is to be optimized and is designated as
the system, while everything outside the system is called the
environment which is kept fixed. By performing local optimiza-
tion over the system states iteratively, the ground state of the
given Hamiltonian is attained. Usually it requires several
sweeps over the complete lattice to reach convergence which
depend on the complexity of the Hamiltonian and also the
choice of the initial state.

To perform local optimization over the system, the environ-
ment qubits are contracted to form a reduced Hamiltonian (HS)
whose energy is then minimized.

ĤS ¼
hcE jĤjcEi
hcE jcEi

(98)

Energy minimization of ĤS can be analogously performed by
solving the following eigenvalue problem: ĤS|cSi = E|cSi.

The system state |cSi so obtained updates the current
system state. The system can be defined by any number of
qubits. For single qubit systems the bond dimension remains
fixed while working with two or more site systems can allow the
bond dimensions to be changed dynamically. Basically, the
local optimization procedure for a multi-site system returns the
state defined on multiple qubits. This state has to be decom-
posed into an MPS using recursive singular value decomposi-
tion before replacing them at the current state. Since SVD gives
us the complete set of singular values we can choose to trim the
bond dimensions which are below the threshold of the accu-
racy required. Usually a larger system size means more accurate
results and the trial state converges to the ground state in lesser
number of sweeps. But it also increases the overall computa-
tional cost. The computational cost heavily depends on the
local optimization procedure which can be improved by using
iterative algorithms like Lanczos which only computes the
smallest set of eigenvalues and eigenvector of a given operator.
Since we are only interested in the ground state of reduced
Hamiltonian, Lanczos algorithm can massively cut down the
computation cost.

3.4.6 Quantum enhanced tensor networks. There are
numerous connections between tensor networks and quantum
circuits. These relations lead to interest in two broad research
directions. First one is the classical simulation of quantum
circuits using a tensor network. There are studies demonstrat-
ing the implementation of quantum algorithms like Grover’s
algorithm and Shor’s algorithm in matrix product state
(MPS)293,294 and tree tensor network (TTN) framework.295

Recently a report showed a classical simulation of the random

quantum circuit using a tensor network;296 the same circuit
which was implemented on the Sycamore quantum processor
to demonstrate ‘‘Quantum Supremacy’’ by Google.297 There has
been a massive improvement over the years in the runtimes for
evaluating the tensor network classically. In a recent report by
Huang et al.,298 they demonstrated a new method called index
slicing which can accelerate the simulation of random quan-
tum circuits through a tensor network contraction process by
up to five orders of magnitude using parallelization. Markov
et al.299 theorized the time complexity of simulating quantum
circuits using a tensor network. A quantum circuit with a
treewidth d (a measure of how far a graph is from being a tree)
and T gates can be deterministically simulated in O(poly(-
T)exp(d)) time. Another research direction which has been
gaining traction due to advents of noisy intermediate scale
quantum (NISQ) computers is the optimization of tensor net-
works using quantum computers.300,301 There are quantum
machine learning models which use ansatz inspired from a
tensor network.215,302 The analogy between TN and quantum
circuits can be exploited to develop an efficient state prepara-
tion mechanism on a quantum computer. Efforts have been
made to creating quantum states in MPS,303 TTN,302 PEPS,285

and MERA304 formats using quantum circuits.
Since the dimensions of the associated tensor grow expo-

nentially with the depth of the quantum circuit associated with
it, it is possible to prepare certain tensor networks with a large
bond dimension on a quantum computer that cannot be
efficiently simulated on a classical computer. These states are
of utmost importance because there is a definite quantum
advantage associated with them. The authors in the report304

demonstrated the preparation of such a state called deep-MERA
which can be represented by a local quantum circuit of depth D
consisting of two-qubit gates. The expectation values of local

observables of a DMERA can be computed in time O
D logL

Z2

� �
on a quantum computer while a classical computer would take
O(eO(D) log Llog(1/Z)) time, where Z is the desired precision and L
is the number of qubits.

Schwarz et al.285 demonstrate a procedure to efficiently
prepare PEPSs on a quantum computer that scales polynomi-
ally with the inverse of the spectral gap of Hamiltonian. Efforts
have also been made to use the advantages of tensor networks
and quantum circuit simultaneously by fusing them. In the
report,305 authors introduced a hybrid tree tensor network
architecture to perform quantum simulation of spin lattice
Hamiltonian with short-range interactions. They simulated
two-dimensional spin systems as large as 9 � 8 qubits which
require operations acting on at most 9 qubits. Their method
can be generalized to arbitrary trees to represent the N = O(gD�1)
qubit system, where D and g are the maximal depth and degree
of the tree. It would require O(Nk2) circuits for computation and
the cost for measuring local expectation values would be
O(Ngk4), where k is the bond dimension of the TTN. They
provide an efficient representation of a quantum state whose
elements can be evaluated on a near-term quantum device.
When compared against standard DMRG on MPS and
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imaginary-TEBD on PEPSs, they produce results more accurate
by up to two orders.

4 Case for quantum computing
enhanced machine learning
4.1 Universal function approximation through supervised
learning on a quantum computer

In this section, we shall specifically highlight some of the
recent claims that propose a theoretical guarantee for super-
vised machine learning tasks on a quantum computer, with
these claims being the successful mimicking of arbitrary
unknown functional dependence with high accuracy. It is thus
needless to say that the benefits of these claims if realized can
enhance the learning capabilities of supervised models for both
quantum and classical data even beyond the precincts of
physical sciences.

Several significant proposals have been reported recently
that attempt to approximate a function (say f (-x)) using a

quantum circuit where x 2 Rd are classical data entries. Intui-
tively this can be framed as a supervised learning task where

one has access to a dataset D ¼ ð~xi;~yiÞti¼1 which is assumed to
follow the functional inter-relationship f (-x). The crux of the
problem is therefore to learn a hypothesis h(-x) which closely
mimics the actual function f (-x) within a certain error tolerance.
To perform such tasks on a quantum computer and learn the
hypothesis h(-x) one needs to encode classical data onto a
quantum state first. Mitarai et al.306 proposed a data-
uploading scheme on a quantum circuit for such a scenario.

The scheme maps ~x 2 Rd with �1 r xi r 1 8 i wherein
one requires access to the nk-th power for each datum xi

with k A {1, 2, 3,. . ., d} into an N ¼
P
k

nk qubit state as

rð~xÞ / �d
k¼1 �

nk
j¼1 I þ xkXj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xk2

p
Zj

� �
. The tensor product

structure of the many-qubit state creates non-linear cross terms
of the kind xmxn. Following this data-encoding, the state can be

acted upon by any parameterized unitary (say Uð~yÞ). This will
be followed by a measurement protocol using a pre-defined
operator (say M) to learn the hypothesis function

hð~x; yÞ ¼ TrðMUð~yÞrð~xÞUð~yÞyÞ. The hypothesis function is opti-

mized with respect to the parameters ~y using an appropri-
ate loss function L(h(-x,y),-y,-x) until the desired tolerance is

reached, i.e., at hð~xÞ ¼ hð~x;~y	Þ � f ð~xÞ where ~y	 ¼ arg min~y
Lðhð~x; yÞ;~y; ~xÞ. The authors claim that the encoding above is
capable of approximating a larger class of functions than what
classical supervised learning tasks can achieve. To substantiate
this claim, the authors argue that if classical processors could
mimic every kind of function, which can be realized from such
quantum data-encoding, then that would mean the classical
device in principle learns the input–output relationship of
complex computational models like quantum cellular
automata307 which is known to not being achievable using
polynomial resources (poly(N)) on a classical device. Numerical
experiments for fitting the time evolution of the transverse

Ising model and a binary classification task of a non-linearly
separable data were performed with the above encoding with
great success.

Perez-Salinas308 demonstrated how to construct single-qubit
classfiers using efficient data-reuploading which is essentially
sequential loading of classical data entries. Many powerful
insights into the function learning ability of a quantum circuit
through data-encoders have been recently elaborated in ref.
309. The work explicates if the data-encoding unitary is
expressed as Sð~xÞ ¼ eiH1x1 � eiH2x2 . . .� eiHdxd and r repetitions
of such unitaries in the circuit are made along with parameter-

ized unitaries (say Uð~yÞ as above) for training the model then
the frequency components of the hypothesis function h(-x) when
resolved in the Fourier basis are entirely controlled by the
encoding Hamiltonian family {Hm}d

m=1. However, the Fourier
coefficients are influenced by the remaining part of the circuit

i.e. the trainable unitaries Uð~yÞ as well as the measurement
operator M. The authors further show that repeating the
encoding in parallel or in a sequence would lead to a similar
frequency spectrum. Under the assumption that the trainable
part of the circuit is general enough to realize any arbitrary
unitary, then it is possible to choose encoding Hamiltonians
{Hm}d

m=1 that can generate any arbitrary frequency range asymp-
totically. Using this fact the authors prove that it is possible for
the hypothesis function h(-x) learnt by such a quantum circuit to
mimic any square integrable function within an arbitrarily
preset tolerance. This thereby lends to universal –expressibility
to such hypothesis functions. The importance of this result is
many-fold as it allows one to not only realize that expressive
power of the family of functions learnt from supervised learn-
ing task on a quantum circuit is extremely high but also allows
one to design unitaries, set number of necessary repetitions,
etc. to augment the learning process. Universality in discrimi-
native learning wherein a hybrid quantum model to learn the
parameters of an unknown unitary was used has also been
illustrated recently.310 Other than these, expressive capacity of
parameterized quantum circuits has been thoroughly investi-
gated recently.311 Since most of the NISQ era quantum ML
models are indeed variational, much of the insight from these
studies is directly transferable.

4.2 Power of kernel estimation and data-classification from
quantum computers

In this section we shall highlight some of the key results that
have been demonstrated in recent years regarding the super-
iority of constructing kernel matrix elements from the quantum
computer as opposed to a classical processor. Such kernel
estimates are necessary for a variety of supervised learning
algorithms like kernel-ridge regression (see Section 3.2.2) or for
classification tasks like in support-vector machine or SVM (see
Section 3.2.7) to name a few. Kernel-ridge regression on a
classical processor has been extensively used in chemistry for
estimating density functionals,312 simulating non-adiabatic
dynamics across potential energy surfaces,45 dissipative quan-
tum dynamics128 and even procuring molecular and atomic
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properties like atomization energies.313,314 We shall return to a
subset of these applications and explore them in detail in
Section 5.3. Even for classification, kernelized variants of SVM
on a classical processor have been useful for demarcating
phases of matter, or for delineating malignant tumors from
non-malignant ones315 which would be of use to biochemists
and oncologists. We shall return to a subset of these applica-
tions in Section 5.2. Thus the learning capabilities of all the
aforementioned algorithms can be augmented if quantum
computing-enhanced kernel estimates are used. A kernelized
SVM has also been used extensively for the drug-designing
process, in drug-induced toxicity classification,316 etc. We shall
discuss some of these in Section 5.5. In fact a study has already
demonstrated quantum advantage recently317 wherein a kernel
SVM on an actual quantum device (ibmq_rochester) was used
with classical processing to delineate active vs. inactive drug
candidates for several diseases. The authors note a faster
training time on a quantum processor than on the classical
processor for larger dataset sizes. We shall discuss this specific
example in detail in Section 5.5.4.

It must be emphasized that for classification tasks, apart
from the quantum Kernel methods, the quantum instance-
based learning algorithms could also outperform classical
learners. Estimating the distance between the test data and
the training ones is always crucial in the instance-based learn-
ing algorithms. For instance, in the nearest neighbor algo-
rithm, one of the most typical instance-based learning
frameworks, the label of the test data is determined by the
nearest training data. In 2013, Lloyd and coworkers proposed a
quantum clustering algorithm for unsupervised QML,156 show-
ing that estimating distances and inner products between post-
processed vectors in N-dimensional vector spaces then takes
time O(log N) on a quantum computer. In contrast, sampling
and estimating distances and inner products between post-
processed vectors on a classical computer are exponentially
hard.157 The significant speedup yields considerable power of
the quantum instance-based learning algorithms as well. In
fact a specific example of this class of algorithms which inherits
the aforesaid advantage has also been recently designed by one
of the authors318 and applied for phase classification of mate-
rial VO2 which will be of importance to materials scientists.
More details on such examples can be found in Section 5.2 and
will not be elaborated herein. Here we shall specifically discuss
the advantages of estimating the kernel on a quantum proces-
sor that has been noted recently for certain tasks which thereby
promises exciting opportunities for kernelized quantum super-
vised learning with applications in physics and chemistry.

1. Quantum-enhanced feature maps and kernels are defined
in Section 3.2.1. As mentioned therein, ref. 117 provides two
strategies for efficiently performing kernel-based machine
learning algorithms using a quantum computer. The first is
an implicit approach wherein the kernel matrix is estimated
through an inner product once a quantum circuit for state
preparation with encoding classical data is in place. With
access to the entries of the kernel-matrix from the quantum
computer, the actual ML algorithm is then performed

classically. The other approach is the explicit approach, where
the full ML task is performed on the quantum computer itself.
Ref. 117 adopts the first approach by encoding each entry xi of a
given feature vector x C Rd in the phase information of a multi-
mode squeezed state and shows that the corresponding kernel
obtained through inner product of such states is expressive
enough for classification tasks. To exemplify the second
approach, it also used the two-mode squeezed state as a data-
encoder and then applied a variational circuit (say W(y))
followed by photon-number measurement and assigned the
probability of a binary classification task to obtain two specific
Fock states in the two-modes. Using the distribution obtained
from the QC, the authors could linearly separate a dataset with
100% accuracy. However, the authors note that the primary
data-encoding strategy adopted in the paper is through the
preparation of squeezed states in continuous variable quantum
computing which can be efficiently simulated classically.319,320

They further mention that inclusion of non-Gaussian elements
like cubic-phase gates,97 non-linearity in photon-number
measurements,321 classically intractable continuous-variable
instantaneous quantum computing or CV-IQP circuits322 may
lead to a non-trivial kernel estimation task wherein the power
of quantum computers can be better used. Similar results as
these are also reported in ref. 318 wherein classical data were
not-only encoded within the phase information of a multi-
mode squeezed state but also in the amplitude. Proper compar-
isons of such squeezed state encoded kernels with Gaussian
kernels were also investigated using standard datasets from
scikit learn.323

2. The first work to exemplify an advantage is ref. 324. The
algorithm in ref. 324 performs a standard support-vector
machine classification task (discussed in Section 3.2.7) with

xt 2T � Rd (training feature vectors for input) and xtt 2S �
Rd (testing feature vectors). The labels y: T [ S 7! fþ1;�1g
where the set y = {yt,ytt}. The algorithm only had access to the
training labels (yt) and its job was to evaluate an approximation
to the testing labels, i.e., obtain ỹtt 8 xtt A S which matches with
ytt with high probability. Unlike in the previous reference, the
data-encoding feature map used did not produce product
states. The specific data-encoding unitary used is the following:

UðxÞ ¼ ~UfðxÞH
�n ~UfðxÞH

�n

~UfðxÞ ¼ e
i
P
S�n

fSðxÞ
Q
i

Zi
(99)

where n is the number of qubits, S denotes the nature of the
unitary, i.e., if the unitary is S-local. For simulations the work
used S = 2. Ref. 324 argued that the above mentioned data-
encoding is hard to simulate classically. The feature vector size
d = 2, i.e., xt = [x1,x2]T and the feature maps are defining the
unitaries in eqn (99) are

fS¼1ðxÞ ¼ x1

fS¼2ðxÞ ¼ ðp� x1Þðp� x2Þ:
(100)

The first classification protocol which the authors in ref. 324

Review Article Chem Soc Rev

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
G

or
ff

en
na

f 
20

22
. D

ow
nl

oa
de

d 
on

 0
4/

11
/2

02
5 

01
:3

1:
52

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2cs00203e


This journal is © The Royal Society of Chemistry 2022 Chem. Soc. Rev., 2022, 51, 6475–6573 |  6513

implemented is the explicit approach wherein after the above-
mentioned data-encoding a variational circuit (say W(y)) was
also implemented followed by a measurement protocol. If the
probability for certain specific bit-strings were higher than a
tunable threshold, the algorithm was said to yield ỹt = 1 (or �1
otherwise). Numerical experiments were conducted on a 5-
qubit superconducting circuit and the depth of the variational
circuit was varied from 0–4. The training set had 20 data points
for each label and so did the testing set. The success ratio as
seen in Fig. 3 of ref. 324 was close to 100% for 4 layers of the
variational circuit. In the second part of the numerical experi-
ment, the authors followed the implicit scheme in which only
the estimates of the kernel matrix were obtained from the
quantum computer. The rest of the classification task was
performed classically once that was done. The constructed
kernel matrix from the actual hardware agreed fairly well with
the ideal one (see Fig. 4 in ref. 324) and classification task using
it was of 100% accuracy. After this demonstration of a data-
encoding scheme which is hard to simulate classically, several
other numerical experiments have been initiated to validate
kernelized SVM on a quantum computer in different
platforms.325,326

3. A recent report327 using the same feature-space encoding
scheme as in ref. 324 above establishes that quantum enhanced
kernels perform better for complex data classification tasks like
geometric data patterns distributed according to Mersenne
Twister distribution.328 Classical methods cannot achieve simi-
lar accuracy. However, if the data distribution is simple such
that large differences exist between data that belong to the
separating classes then classical kernels would perform as well.
Also, the study claims that simpler data encoding circuits for
computing entries of quantum kernels may be less effective for
certain data-classification tasks. Another study329 has actually
systematically studied the effect of noise and finite measure-
ment samples and concluded that a high noise content may
expectedly be detrimental to the estimation of kernel entries on
the quantum computer. However, the report329 also proposes to
mitigate the effect of the noise by classical pre-processing of the
estimated noisy kernel like discarding the negative eigenvalues.

4. A clear and most decisive exhibition of the power of
kernelized variant of a support-vector machine on a quantum
computer for a classification task was highlighted in ref. 180.
The motivation for the work was to demonstrate a specific
example wherein estimation of the kernel Gram matrix on a
classical processor would not only be not efficient, but the
classification task itself would be provably disadvantageous.
Also, the quantum advantage would be retained even in the
presence of finite sampling errors. The classification task
chosen was based on the famous discrete-logarithm problem.
The problem entails finding loggðxÞ 8x 2 Z	p, where Z	p ¼
f1; 2; . . . ; p� 1g with p being a large prime number and g being
the generator of the multiplicative cyclic group Z	p. By generator

one means an element g 2 Z	p such that for every element

x 2 Z	p, one can write x = gm. In such a case, m is said to be

the discrete-logarithm to base g of x in Z	p and is denoted by m =

logg(x). It is believed that no classical algorithm can compute

the discrete-logarithm in time which is polynomial in n =
log2(p) even though quantum algorithms like Shor’s algorithm
is known to do it.53 The classifier function makes the following
decision:

fs(x) = +1 if logg(x) A [s,s+(p � 3)/2] = �1 (otherwise).
(101)

This classifier thus divides the set Z	p into two equal halves by
mapping each of the halves to {+1, �1}. The authors prove that
a classical learning algorithm for this task cannot achieve an
accuracy more than 0.5 + 1/poly(n) indicating that the best
classical algorithm can only do random guessing for unseen
test data. For the kernelized quantum SVM, however, the
authors propose the following quantum feature map/state:

jfðxÞi ¼ 1ffiffiffiffiffi
2k
p

X2k�1
i¼0
jxgii (102)

where x 2 Z	p, k = n � t log(n) for t being some constant.180 The

state-preparation circuit which prepares the above state is
shown to be efficient using Shor’s algorithm.53 Using the above
state-preparation strategy, the authors can estimate the kernel
matrix for each entry in the training set as K(x,x0) =
|hf(x)|f(x0)i|2. Using this kernel, the authors rely on the usual
SVM algorithm on a classical processor to construct a separat-
ing hyperplane and optimize the parameters for it. Once the
parameters for the hyperplane are determined, classification of
new test data also requires kernel matrix elements when new
kernel estimates from the QC are invoked again. The authors
call this procedure support vector machine with quantum
kernel estimation (SVM-QKE) indicating that the quantum
computer is only involved in constructing the entries of the
kernel. The authors prove that SVM-QKE yields a classifier that
can segregate the data in testing and training set with an
accuracy of 0.99 in polynomial time and with a probability of

at least
2

3
over even random training samples. They further

show that even when the QKE entries have a small additive
perturbation due to finite sampling; the separating hyperplane
so obtained is close to the exact one with high probability and
so is the accuracy of the corresponding classifier. Since the
kernel estimates from a classical processor cannot provably do
better than random guessing, this classification task clearly
explicates the superiority of quantum feature maps. Since then,
several interesting demonstrations of kernel estimates on the
quantum computer have emerged like using a linear combi-
nation of multiple quantum enhanced kernels with a varia-
tional circuit to enhance accuracy and expressivity over and
beyond a single kernel for complex datasets,330 a fidelity based
quantum kernel estimate between the members of the training
dataset and the testing samples331 or even distinguishing the
classical data entries directly after mapping to quantum states
in the quantum feature space using metrics with a shallow
circuit depth in a process which the authors call quantum
metric learning.332 Like in the above cases, numerical experi-
ments have also been reported on real devices like a 17-qubit
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classification task333 performed on Google’s Sycamore to seg-
regate data in a 67-dimensional space with appropriate noise-
mitigation strategies.

4.3 Power of quantum-neural networks

In this section, we shall highlight some of the recent reports
wherein the superiority of quantum computing enhanced
neural network models has been demonstrated or theoretically
proven in terms of its generalizability and expressive power,
training capacity, resource and parameter requirements to
mention a few. Neural networks in a classical processor have
become the standard go-to method for many applications in
chemistry and physics like in efficient state-preparation proto-
cols using generative adversarial networks (see Section
3.3.6).334,335 Networks like CNN (see Section 3.3.2) have been
used for the classification of phases of matter,336,337 in quan-
tum state-tomography,338 and in structure and ligand based
drug-designing protocols.339 Deep neural networks (see Section
3.3) have been also used for predicting molecular properties
even with non-bonding interactions,340 in drug-induced toxicity
detection,341 many-body structure of correlated quantum mat-
ter like molecules and materials,342,343 and even in molecular
dynamics.344,345 Generative models like restricted Boltzmann
machine based neural-network representation of many-body
quantum states346 have been used for classification and under-
standing ground and excited state properties of quantum
systems. We shall return to a subset of these applications in
Sections 5.1–5.5. It is thus apparent that all the aforesaid
algorithms stand to benefit from any quantum advantage seen
in the development of neural network based models on a
quantum processor. In fact, in certain cases, direct advantages
have already been reported. For example, the authors have
reported a quantum circuit-based implementation of a
restricted Boltzmann machine based ansatz for any of the
electronic states of molecules and materials347 which requires
polynomial resources for its construction. Similarly for quan-
tum version of CNN which has been used for the classification
of phases in the Ising model,215 the authors claim a more
parameter reduction. We shall return to these applications and
their description in Sections 5.2 and 5.3. Herein we enlist some
of the recent examples wherein quantum superiority has been
seen or theoretically conjectured thereby promising many novel
applications in chemistry and physics which can be realized in
the future. More theoretical insight into the learning mechan-
isms and generalizability of quantum computing enhanced
neural networks are discussed in detail in Section 6.4.

1. Quantum-neural networks (QNN) have been discussed in
Section 3.3. Each such network has three generic components –
a data encoding circuit (often called feature map) which accepts
classical data as the input and usually encodes them into the
amplitudes of a quantum state (other encoding schemes are
also possible; see ref. 116) followed by a layer of parameterized
unitaries. Finally, measurement protocol is exercised whose
outcome is post-processed on a classical computer to minimize
a loss function and alter the parameters of the last layer of
unitaries variationally until the desired convergence is reached.

A recent report has suggested that such networks can be
more expressive and faster trainable than the corresponding
classical networks if the data encoding circuit possess non-
trivial entangling gates which can identify hidden correlation
among data entries.348 The work used an input data-set
ðxi; yiÞ 8 x 2 w � Rsi ; y 2 Y � Rso and a parameter vector
y D [�1,1]d. The input distribution p(x) is the prior distribu-
tion and p(y|x;y) is the output distribution from the
QNN given the input and specific parameter set. Using this
they constructed the empirical Fisher information matrix
(ARd�d)349 as follows:

FkðyÞ ¼
1

k

Xk
j¼1

@ logðpðxj ; yj ; yÞ
@y

@ logðpðxj ; yj ; yÞT
dy

(103)

where k denotes the sample size. The authors found that the
eigenvalues of the Fisher information matrix for 100 samples
with (d = 40, si = 4, so = 2) in the case of the QNN were fairly
uniformly distributed contrary to that in the classical neural
network wherein the eigenvalues were largely concentrated
near zero indicating the relative flatness of the optimization
surface and difficulty in trainability of the model with
gradient-based schemes.350 They used an ‘easy-quantum’
model as well with data-encoding scheme without any entan-
gling gates and found the Fisher information spectrum to be
within the two limiting cases of a classical NN and a full
quantum NN. The results are retained for (d = 60, si = 6, so =
2), (d = 80, si = 8, so = 2), and (d = 100, si = 10, so = 2). The
authors in ref. 348 thereafter promised a metric for effective
dimension defined below as

dy;n ¼
2 log

1

V

Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðId þ

gnFðyÞ
2p log n

s !
dy

log
gn

2p log n

� � (104)

where n is the number of data samples, F(y) is the normalized
Fisher information matrix and V ¼

Ð
dy is the volume in

parameter space and g A (0,1]. The physical motivation of
defining an effective dimension is to quantify the expressi-
bility of the model, i.e., estimate the size of the space all
possible functions which the model class can successfully
mimic with the Fisher information as the metric.351 Using
the above definition of the effective dimension, the authors
show that the full QNN has the highest effective dimension
compared to the easy quantum model (without entangling
gates in the circuit encoding the features) and even the
classical neural network for (d = 40, si = 4, so = 2) and size
of data n = 105–106 (see Fig. 3(a) in ref. 348). They also
demonstrated that the full QNN trains faster and achieves
lesser loss function values within smaller number of itera-
tions compared to the other two (see Fig. 3(b) in ref. 348). The
conclusion remains invariant to training even on the real
hardware.

2. Recently, a new report has been published352 which
extends the famous no-free lunch theorem353,354 to the learning
process in a quantum neural network (QNN) wherein the
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training data-set may be intrinsically entangled with a third
accessible register. The no-free lunch theorem (NFL) for classi-
cal learning task is deduced for an unknown map, say f : w 7! Y

where the size of the set w is dx and that of set Y is dy.
One generates a training set S consisting of t points from this
function defined as S = {(xi,yi)|xi A w, yi = f (xi) A Y}t

i=1. In general
in the supervised learning setup, this set S is used to construct

a merit-function
Pt
i

LðhSðxiÞ; yi; xiÞ where hS (xi) is the hypoth-

esis function that is expected to mimic the unknown function f.
The merit-function is minimized to obtain the parameters
defining the hypothesis function hS(x) which can then be used
to make predictions for unseen x A (w - Sc). To quantify how
well the approximate function hS(x) resembles the actual one f
one can define a risk function as follows:

Rf ðhSÞ ¼
X
x2w

PðxÞPðhSðxÞaf ðxÞÞ (105)

where P(x) is the prior probability distribution of sampling the
input x A w and P(hS(x) a f (x)) is the probability that the output
of the hypothesis function differs from the actual output for the
specific input. The statement of NFL which the authors used is
the following:

hhRf ðhSÞiSif 
 1� 1

dy

� �
1� t

dx

� �
(106)

where the averaging of eqn (105) has been done over many
training sets S and many different functional maps f. The
result in eqn (106) indicates that the average risk can be
minimized if the number of training samples t = dx and
hence is entirely determined by the training set S indepen-
dent of the specific details of the optimization scheme. In the
quantum setting, the authors deduce a version of NFL
wherein the data-set contains entries of quantum states that
are entangled with an accessible auxillary quantum system.
The setup of the deduction involves a unitary map
U: Hx 7! Hy both of which are d-dimensional. The user
herein has access to another auxillary quantum system (say
R A HR). The training set SQ contains t pairs of states which
are entangled with R as follows:

SQ ¼ fðjci
ini; jci

outiÞj

jci
ini 2 HX �HR;

jci
outi ¼ ðU � IRÞjci

ini 2 HY �HRgti¼1:

(107)

All input states |ci
ini A HX # HR are entangled with the same

Schmidt rank r = {1, 2,. . ., d}. The learning task is to design an
unitary V such that |fi

hypi = (V # IR)|ci
ini and |hfi

hyp|ci
outi| E

1. The risk function in this case is defined as

RUðVÞ ¼
ð
dm

1

4
ry � r

0
y

��� ���2
1

(108)

where ry = |yihy| = U|xihx|U† and r
0
y ¼ jy

0 ihy0 j ¼ V jxihxjVy and

|xi A HX (not necessarily within SQ) and |yi, |y 0i A HY and the
measure dm is over the Haar measure of states. The averaging

of the above risk function over all training sets SQ and unitary
maps U as before yields

hhRUðVÞiSQiU 
 1� r2t2 þ d þ 1

d2 þ d
: (109)

The bound actually holds for each SQ and hence averaging
over SQ is unnecessary. It is derived under the assumption
that over the training samples the outcomes of V and U
match perfectly. Implication of the above bound is that for r =
1, the bound vanishes and the average risk can be minimized
only if t = d = 2n where 2n is the dimension of HX. This
indicates that if the input states are product states with the
quantum system characterized by HR then exponentially
many training samples might be required in n. This result
was previously obtained in ref. 355. However for r a 1 this is
not the case. Specifically, in the limiting case of r = d, a single
training example would suffice to saturate the lower bound
on the average. For any r in between one can easily see that
the number of training samples t can be set to be far fewer
than d. The authors show numerical experiments on Rigetti’s
quantum processor for 2 � 2 unitaries and demonstrate
that the average risk can be minimized well below the
classically accessible limit by controlling r which alters
entanglement with the third quantum system R. Similar
results were obtained even in the simulator. The concrete
proof of the theorem restores hope that the size of the
training set can be small yet a quantum advantage can be
retained as long as entanglement is used as a useful resource
which is not possible classically. This result joins the
group of other results wherein entanglement has served
similar roles like in superdense coding356,357 or quantum
teleportation.358,359

3. This example is different in spirit than the previous
ones as it demonstrates how the quantum convolutional
neural network (QCNN)215 which is discussed in detail in
Section 3.3.2 can lead to efficient parameter reduction com-
pared to other methods of quantum phase classification. The
power of a quantum classifier over and beyond that of a
classical classifier has already been demonstrated for certain
tasks in some of the points above. The task for which the
authors tested the QCNN was to segregate quantum states
belonging to a particular phase given a training data-set S =
{|cii,yi}

M
i=1 where yi = {0,1} 8 i are the corresponding labels.

The specific example was the symmetry-protected topological
phase of a 1D spin-chain. The algorithm requires only
O(log(n)) parameters to classify such an n-qubit quantum
state which the authors claim is a two-fold exponential
reduction in parameter space compared to other quantum
classifiers. This essentially means that the QCNN is more
expressive compared to other classifiers as it solves a rela-
tively low-dimensional optimization problem without sacrifi-
cing the accuracy of the task at hand. Similarly, they also
show that the sample complexity of QCNN, which is defined
as the number of copies of the input state that need to be
accessed by the algorithm for correctly identifying the phase,
is lesser than from other techniques like direct evaluation of
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expectation values of certain operators, which can also act as
a marker of the phase. We shall return to this example in
Section 5.2. Pesah et al.360 have demonstrated that in the
conventional QCNN architecture there is an absence of
barren plateaus as the gradient estimates vanish polynomi-
ally (and not exponentially) in the size of the system for
random initialization. Recently, MacCormack et al. have
extended the concept to introduce a variant of QCNN which
is called the branching quantum convolutional network
(bQCNN).361 In QCNN as discussed in Section 3.3.2, the
primary idea is reduction of the number of qubits while
preserving important features. The convolutional layers per-
form multi-qubit unitaries for generating entanglement
among the qubits whereas in pooling layers certain number
of qubits are discarded through measurements and con-
trolled rotations on nearby qubits are performed conditioned
on the measurement results of the discarded qubits. The new
reduced set of qubits is then fed into the convolutional
unitaries again and the process is repeated. For bQCNN,
the authors make a deviation at the pooling layer. Instead
of using certain measurement outcomes only of the dis-
carded qubits, the authors use all possible outcomes or
binary bit combinations to design several different chan-
nels/branches for subsequent convolutional operations each
of which is realized for a given bit string. This enhances the
parameter requirement drastically as noted in the report.
However, the authors also demonstrate that the expressibility
of the ansatz from bQCNN is higher than that of QCNN at a
similar circuit depth.

4.4 Power of quantum computers for tensor-network based
machine learning tasks

In this section, we highlight an advantage that has been
recently reported for a classification task performed using a
tensor network ansatz on a quantum computer. Such classifica-
tion can be extended to the physico-chemical domain like in
ligand selectivity for structure-based drug designing (see Sec-
tion 5.5.1) with the quantum benefit reaped. An example of
another tensor network based classification of phases of a spin-
model can be found in Section 5.2. Besides, tensor networks on
a classical processor have also been aggressively used for
representing many-body states for a variety of applications like
for spin-liquids,362 excitonic states in materials363 and
molecules.364 Quantum advantages as have been noted for
the example below can be extended to such applications. We
shall discuss such prospects with concrete examples in
Section 5.3.2.

Recently, a report has illustrated the use of quantum archi-
tectures of tree and matrix product state tensor networks302 to
demonstrate the working of a discriminative machine-learning
model on MNIST dataset.365 The primary objective of the
study was to perform classification and recognition of hand-
written digits using a variational optimization procedure that
can be efficiently carried out on a quantum hardware in the
NISQ era. Classical data-entries (say x 2 RN) from the data-set

are mapped to an N-qubit quantum state using the data-
encoding protocol described below in eqn (110)

x! jfðxÞi

¼
cos

p
2
x1

� �

sin
p
2
x1

� �
2
664

3
775�

cos
p
2
x2

� �

sin
p
2
x2

� �
2
664

3
775� � � � �

cos
p
2
xN

� �

sin
p
2
xN

� �
2
664

3
775

(110)

State |fi is a product state which can easily be prepared by
applying single qubit rotation gates on the |0i#N state. After
state preparation, each set of qubits (say 2V qubits where V is
the number of virtual states) is acted upon by a parameterized
unitary gate. The scheme is inspired from coarse-graining
techniques. After each parameterized unitary operation, V
qubits are discarded/reset and the other V qubits proceed to
the next step where they are merged with V qubits coming from
another set of 2V qubits. This process is continued until the last
2V qubits remain which are acted upon by a unitary gate to
produce output qubits. One or more output qubits are mea-
sured to determine the probability distribution of the output
labels. While the model is agnostic to the grouping of the qubit
sets, it is usually wise to group qubits that represent local
regions in the input data. This ansatz is motivated from a tree
tensor network (see Fig. 22). The optimization problem which
they solve involves classification of hand-written digits using a
loss-function that penalizes the difference in the probability of
attaining the true-label from the measurement protocol as
opposed to the most-probable incorrect label. The algorithm
used is adapted from Simultaneous Perturbation Stochastic
Approximation (SPSA)366 with momentum being included
inside the gradient estimates.199 The accuracy of the method
as reported is extremely high, i.e., with the lowest percentage
error being 87% and an average test accuracy of over 95%. The
authors noted that for usual quantum algorithms, encoding
such an N-qubit state and applying tunable unitaries would
require N-physical qubits. However, the tree-structure in the

Fig. 22 The architecture for evaluating the discriminative tree tensor
network model using a Qubit-efficient scheme with two virtual qubits
(V) and 16 input states (N) as used in ref. 302. The architecture requires
O(V log(N)) = 8 qubits for its operation. The qubits indicated with hash
marks are measured and reset to accept input states in the next step. IOP
Publishing. Reproduced with permission from W. Huggins, P. Patil, B.
Mitchell, K. B. Whaley and E. M. Stoudenmire, Towards quantum machine
learning with tensor networks, Quantum Sci. Technol., 2019, 4(2), https://
doi.org/10.1088/2058-9565/aaea94. All rights reserved.
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ansatz with sequential measurements allows the authors to use
EV log(N) physical qubits indicating that the scheme is qubit
efficient. It must also be emphasized that merely using a tree-
tensor network approach (TTN) on a classical processor would
require a space complexity of O(N23V)367 where V is as defined
before the number of virtual states. This result indicates that
the TTN ansatz on the quantum computer is more expressive
than a corresponding classical implementation as similar
accuracies are afforded even with a reduced bond-dimension
(bond-dimension is usually denoted by D where D = 2V and as
seen here scales logarithmically for the quantum TTN version
whereas would have a cubic scaling for a classical TTN). The
authors also performed a systematic analysis of the effect of
noise on the algorithm and concluded that the degradation of
the performance was only 0.004 with a strongly enhanced (�10)
noise parameters thereby indicating the resilience of the
algorithm.

5 Applications
5.1 State preparation protocols and quantum state
tomography

With the rapid advancement of quantum technology in the past
decade, there is an increased demand for efficient methods that
can verify the generated quantum states according to specific
needs. This is primarily important for the validation and
benchmarking of the quantum devices. To address this, quan-
tum state tomography (QST) aims to obtain the statistical
inference of the unknown quantum state of the system based
on the information of the expectation values of a complete set
of observables.49,368–371 However, the traditional approach to
QST has been pushed to its limits for the large quantum
platforms available today.372 This is because the number of
measurements required for full reconstruction of the quantum
state scales exponentially with the system size which poses a
critical challenge for performing QST even for moderately sized
systems. Also, in order to obtain valuable insight on the
physical observables of the system and to estimate them
accurately, the measurement outcomes need to be stored and
processed for which exponential amounts of classical memory
and computing power are required which makes the technique
infeasible for practical applications.

Apart from the problem of exponential scaling for
complex systems, another drawback for the accurate estimation
of a quantum state is the inherent noise in the present day
noisy intermediate-scale quantum (NISQ) devices.84 Because
of this the measurements available are of limited fidelity
and, in certain cases, some of the measurements are even
not accessible. Several methods have been proposed as a
means of an alternative approach to the traditional QST
such as matrix product state tomography,371 neural network
tomography,373–376 quantum overlapping tomography,377 and
shadow tomography.378,379 Because of the noisy nature of the
quantum systems since not all measurements are available at
high fidelity, there have also been approaches that try to carry

out QST based on incomplete measurements380–382 such as
maximum likelihood estimation (MLE),383–388 Bayesian
mean estimation (BME),389–392 and maximal entropy formalism
based QST.393,394

Quantum detection and estimation theory has been a pro-
minent field of research in quantum information theory since
the 1970s395–397 and the rapid progress in quantum commu-
nication and computation in the past two decades motivated
the use of big data for the classification of quantum systems
through quantum learning and quantum matching
machines.398 The notion of self-improvement of the perfor-
mances of quantum machines via quantum learning was
introduced by Ron Chrisley in 1995 in ref. 399 through the
example of a barrier/slit/plate feed-forward back-propagation
network. In a feed-forward network, parameterized non-linear
functions map an input state to an output state space. The
interactions with the environment help the networks to modify
those parameters such that each network can better
approximate the resulting function. The proposed quantum
implementation of such a network involved setting up a barrier
with several slits in front of a particle beam. Some of the slits
are designated as input slits and the rest are the weight slits.
Behind the barrier is a photo-sensitive plate on which the
interference pattern is observed that serves as an output for
each input slit configuration. Once an interference pattern of
high resolution is obtained on the plate, the error, which is a
function of the desired and actual output vectors, is calculated.
The gradient descent method is applied by taking the partial
derivative of the error function with respect to the control
variables, the weights, and the slits are adjusted accordingly
for the next reading so as to minimize the error function. After
sufficient training, optimum values for the weight configu-
ration are obtained that ensured minimal error on the training
set. This feed-forward network established the correspondence
between the neural networks and the quantum system and is
one amongst the many diverse approaches for the practical
implementation of quantum neural networks.400,401

One of the most valuable applications of quantum tomo-
graphy is the validation and testing of near-term quantum
devices called the NISQ devices. Leveraging the capabilities of
the quantum hardware of the gate-based NISQ devices, Alejan-
dro et al. in ref. 402 proposed a hybrid quantum-classical
framework called the data-driven quantum circuit learning
(DDQCL) algorithm for benchmarking and training shallow
quantum circuits for generative modeling. Much like the var-
ious models encompassed within the Born machines,403–406

the authors captured the correlations in the data set using the
2N amplitudes of wave functions obtained from an N-qubit
quantum circuit. However, the distinctive feature in their work
is the use of quantum circuits as a model for the data set that
naturally works as a Born machine, thereby avoiding the
dependence on tensor networks for the same. They demon-
strated their approach of training quantum circuits for the
preparation of the GHZ state and coherent thermal states
thereby illustrating the power of Born machines for approxi-
mating Boltzmann machines.
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Finding an effective quantum circuit that can optimally
carry out a desired transformation between the input and
output quantum states also constitutes an important aspect
of QST. In ref. 407 the authors proposed a machine learning
based optimization algorithm for quantum state preparation
and gate synthesis on photonic quantum computers. They
used the continuous-variable quantum neural network
architecture408 as an ansatz whose optimization was carried
out on the Strawberry Fields software platform for photonic
quantum computation.409 Using the proposed method, the
authors were able to achieve high fidelities of over 99% using
short-depth circuits given only the target state as an input.

Another quantum state preparation method was presented
in ref. 410 based on reinforcement learning which is a machine
learning training architecture framework that finds an optimal
solution to a problem based on the principle of rewarding the
desired actions and penalizing the negative actions. The
authors made a comparative study of the performances of three
reinforcement learning algorithms: tabular Q-learning (TQL),
deep Q-learning (DQL), and policy gradient (PG), and two
traditionally used non-machine-learning methods: stochastic
gradient descent (SGD) and Krotov algorithms, demonstrating
their efficiency with reference to quantum state preparations
under certain control constraints. Their results illustrated the
effectiveness of reinforcement learning algorithms in solving
complex optimization problems as the algorithms, especially
DQL and PG, performed better amongst the five algorithms
considered for state preparation under different types of
constraints.

Parameterized quantum circuits (PQC) are yet another
machine learning model that utilizes the resources of both
quantum and classical computation for application in a variety
of data-driven tasks.411 Benedetti et al.411 presented a compre-
hensive review of various machine learning models involving
PQC and also their application in diverse fields including
quantum tomography. Another class of algorithms within the
domain of quantum machine learning is hybrid quantum-
classical Variational Quantum Algorithms (VQAs)412 that have
been gaining popularity in recent years with numerous
applications.413–419 VQAs try to reduce the quantum resource
allocation by using shallow quantum circuits for carrying out
computations on a quantum device. One such algorithm was
proposed in ref. 420 by Wang et al. to prepare the quantum
Gibbs state on near-term quantum hardware using parameter-
ized quantum circuits. On such devices it is in general quite
difficult to prepare the Gibbs state at arbitrary low tempera-
tures just like finding the ground states of Hamiltonians.421

Preparation of the quantum Gibbs state of a given Hamiltonian
has its application in a variety of fields like many-body physics,
quantum simulations,422 and quantum optimization.423 In the
method proposed by Wang et al. minimization of free energy
serves as the loss function. However, within the calculation of
free energy, estimation of entropy is the most challenging
part.424 To tackle this problem they used truncation of the
Taylor series of the von Neumann entropy at order K and, thus,
the truncated free energy was set as the loss function whose

minimum would correspond to the optimal parameters of the
quantum circuit giving the Gibbs state. The estimation of the
Taylor series expansion terms of entropy can be practically
carried out using the well-known swap test,425,426 and therefore,
their method can be physically realized on a near-term quan-
tum hardware. To validate the approach they numerically
showed the preparation of high-fidelity Gibbs state for Ising
chain and XY spin-1

2 chain models and were able to achieve
fidelity of at least 95% for a range of temperatures.

Another kind of quantum state preparation commonly
termed as quantum state tomography relies on accessing
experimentally measured observables. We shall discuss, here,
how various techniques within the domain of machine learn-
ing/deep learning have been applied to perform QST.

As machine learning and neural networks became increas-
ingly popular with their application in many diverse fields, the
concoction of quantum mechanics and machine learning algo-
rithms also started surfacing.156,177,427,428 The development of
quantum annealing processors429 deemed a natural fit for
testing the machine learning algorithms on a quantum
hardware430,431 to check for any quantum advantage. In the
initial stages quantum mechanics was only used to facilitate
the training for solving classical problems which, in fact for
certain problems, did result in obtaining polynomial speed-ups
relative to the classical training methods.432 Although the
training of the Boltzmann machines using quantum processors
did result in accurate training at a lower cost, the success of
machine learning algorithms based on classical Boltzmann
distribution inspired the proposition of a quantum probabil-
istic model for machine learning called quantum Boltzmann
machines (QBMs) based on Boltzmann distribution for quan-
tum Hamiltonian.433 In QBMs, not only the training is per-
formed utilizing the quantum nature of the processors but also
the model in itself is inherently quantum. The data modeling
and training of the Boltzmann machine are carried out using
the equilibrium thermal states of the transverse Ising type
Hamiltonian.

However, the training procedure used in ref. 433 suffered
from two limitations: (a) brute force techniques are required to
find out the transverse field terms as they cannot be learned
through classical data making it very hard to find the full
Hamiltonian, and (b) quantum Monte Carlo methods can be
used to efficiently simulate the transverse Ising models, and
therefore, using the training method with transverse Ising
models in thermal equilibrium did not show a clear quantum
advantage. In ref. 434, the authors proposed the quantum
analog of the generative training model that included quantum
data sets in the training set so that their QBM is capable of
learning the quantum terms along with the classical ones. The
training of the Boltzmann machine to incorporate quantum
data was carried out through two methods: POVM-based
Golden-Thompson training and state-based relative entropy
training (quantum equivalence of KL divergence). The relative
entropy training method allowed the QBM to clone the quan-
tum states within a certain level of approximation and given a
considerable number of copies of the density operator for the
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training of QBM, it could reproduce approximate copies of the
input state. Thus, although different from the traditional
quantum state tomography wherein an explicit representation
of the state operator is available at the output, the generative
training of the QBM resulted in a quantum process that can
learn Hamiltonian models for complex quantum states which
in itself is a form of partial tomography.

Machine learning techniques offer a big advantage of repre-
senting high dimensional data in the compressed form which
can be really favourable for QST which in itself is a highly data-
driven technique. In 2018, Torlai and colleagues373 utilized this
property of the neural networks for obtaining the complete
quantum mechanical description of highly entangled many-
body quantum systems based on the availability of a limited set
of experimental measurements. Their method involves the
training of a restricted Boltzmann machine (RBM) using simu-
lated measurement data for the true state. Their RBM archi-
tecture comprises a layer of visible neurons for encoding the
measurement degrees of freedom and a hidden layer of binary
neurons for encoding the tunable parameters. The training of
the RBM is performed such that the generated probability
distribution resembles closely the given data distribution and
parameters are tuned depending on the desired degree of
accuracy that is required for reconstruction. They demon-
strated their approach by first benchmarking the neural net-
work tomography of the N-qubit multipartite entangled W state.
They also demonstrated QST for more complex systems con-
sisting of quadratic spin Hamiltonians, namely the transverse-
field Ising model and the XXZ spin-1/2 model.

According to the authors, their RBM model works really well
for entangled many-body systems and quantum-optic states.
However, when there is unstructured data as in the case of
states generated from a random unitary operation, the perfor-
mance of the RBM goes down. The paper also did not highlight
some of the pertinent questions such as what should be the size
of the training set, or the optimal number of hidden neurons,
and the dominance of RBM over other contemporary machine-
learning approaches. Also, in the demonstration of their
approach, both in the case of the tomographic reconstruction
of the W state or ground states of the quadratic-spin Hamilto-
nians, the wavefunctions considered are real which decreases
the measurement degrees of freedom required for state recon-
struction and thereby dramatically reduces the tomographic
overhead.

Another neural network based quantum state estimation
method empowered by machine learning techniques was pre-
sented in ref. 435 in 2018 for full quantum state tomography.
Instead of reducing the number of mean measurements
required for full state reconstruction, the work focuses on
speeding up the data processing in full QST without the
assumption of any prior knowledge of the quantum state. Their
training model is based on standard supervised learning tech-
niques and the state estimation is carried out using a regres-
sion process wherein a parameterized function is applied for
the mapping of the measurement data onto the estimated
states. For a single state reconstruction, the computational

complexity of their model is Oðd3Þ, where d is the dimension
of the Hilbert space, and was the fastest amongst the full QST
algorithms such as MLE, LRE, BME, etc. at that time.

A further application of neural network in the field of state
tomography was presented in ref. 376 where local measure-
ments on reduced density matrices (RDMs)436–440 were used to
characterize the quantum state. Using the recent approach of
measuring RDMs and thereby reconstructing the full state is a
convenient alternative to the traditional QST approaches as the
whole system can be characterized in polynomial number of
parameters as opposed to the exponential parameters required
for full reconstruction in the traditional QST techniques. How-
ever, QST via local measurements on RDMs is a computation-
ally hard problem.441 In this work, the authors addressed this
problem using machine learning techniques by building a fully
connected feedforward neural network, as shown in Fig. 23,
to demonstrate the full reconstruction of the states for up to
7-qubit in simulation and also reconstructed 4-qubit nuclear
magnetic resonance (NMR) states in experiments. Their
approach also had comparable fidelities with the MLE method
but with the additional advantage in terms of speed up and
better noise tolerance.

Another machine learning assisted quantum state estima-
tion technique based on convolutional neural networks (CNN)
(basic theoretical framework discussed in Section 3.3.2) was
presented in ref. 338 in 2020 for reconstructing quantum states
from a given set of coincidence measurements for both pure
and mixed input states. Their approach involves feeding the
noisy or incomplete set of simulated measurements to the CNN
which then makes prediction of the t-matrix based on the
decomposition method discussed in ref. 442. The predicted
matrix, which is the output, is then inverted to give the final
density matrix. In order to compare the fidelity of the recon-
structed states, the authors also implemented the Stokes
reconstruction method442 and found a significant improve-
ment in fidelity for not just noisy data sets but also when the
projective measurements are incomplete and thereby demon-
strating the advantage of CNN over typical reconstruction
techniques.

As an alternative means of QST several methods have been
proposed, such as MLE, BME, and least-squares (LS)
inversion,443 for efficient reconstruction of the quantum state.
Since measurements on many copies of the state are required
for efficient reconstruction of the quantum state so in order to
gain maximum information from the measurements on the
next copy, the measurements are adjusted based on the already
available information from the measurements made thus far.
This method of reconstructing the quantum state through
adaptive measurements is called adaptive quantum state tomo-
graphy. One such approach was introduced in ref. 444 where
self-learning algorithm was used in combination with different
optimization strategies such as random selection, maximiza-
tion of average information gain, and fidelity maximization for
quantum state estimation. A generalization of self-learning
algorithm was presented in ref. 390 in the form of adaptive
Bayesian quantum tomography (ABQT) with the aim to
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optimally design quantum tomographic experiments based on
full Bayesian inference and Shannon information. Through
their adaptive tomography strategy the authors were able to
achieve significant reduction in the number of measurements
required for full state reconstruction in case of two qubits pure
states in comparison to the Monte Carlo simulation of the
qubit systems. The experimental realization of the ABQT
method was also carried out in ref. 445 for two qubit quantum
systems which did show a significant improvement in the
accuracy of state estimation in comparison to the nonadaptive
tomographic schemes. Recently, neural adaptive quantum state
tomography (NAQT) was introduced in ref. 446 that utilizes the
neural network framework to replace the standard method of
Bayes’ update in the ABQT scheme and thereby obtained orders
of magnitude faster processing in estimating the quantum state
while retaining the accuracy of the standard model. Basically,
in the adaptive Bayesian-type tomography, the quantum space
is discretized into samples and with each sample there is an
associated weight that gets updated with each new measure-
ment according to the Bayes’ rule in order to update the prior
distribution to the posterior distribution of the quantum state
space. However, with the increase in the number of measure-
ments the likelihood function becomes sharply peaked with a
tiny subset of the sample states having the majority weights.
This can lead to a numerical singularity which is then avoided
by resampling of the weights onto the space states which is
computationally a very expensive process. In ref. 446 the
authors have used a machine learning algorithm to map the
Bayesian update rule on a neural network to replace the
traditional approach and thereby eliminate the problem of
resampling of the weights saving the computational cost
significantly without compromising on the accuracy of the
reconstruction process. In comparison to the ABQT technique,
the NAQT approach was able to speed up the reconstruction
process by a factor of a million for approximately 107

measurements and is independent of the number of qubits
involved and type of measurements used for estimating the
quantum state.

In 2013, another useful method was proposed in ref. 441
wherein the linear regression estimation (LRE) model was used
to identify optimal measurement sets to reconstruct the quan-
tum state efficiently. The model was relatively straightforward
where the authors converted the state estimation problem into
a parameter estimation problem of a linear regression model
and the LS method was employed to determine the unknown
parameters. For a d-dimensional quantum state, the computa-
tional complexity of the method for state reconstruction is
Oðd4Þ and thereby saves up the cost of computation in compar-
ison with the MLE or BME method. A natural extension to this
work, in terms of both theory and experiment, was presented in
ref. 448 in order to improve the tomography accuracy by better
tomographic measurements via an adaptive tomography pro-
tocol that does not necessarily require non-local measurements
from experiments. The method is called recursively adaptive
quantum state tomography (RAQST) primarily because the
parameters are updated using the recursive LRE proposed in
ref. 441 and using the already collected data the measurement
strategy is adaptively optimized for obtaining the state estima-
tion. The authors also performed two-qubit state tomography
experiments and showed the superiority of the RAQST method
over the nonadaptive methods for quantum states with a high
level of purity which is an important criterion for most forms of
information processing methods.

Another significant machine learning approach is the gen-
erative adversarial network (GAN) (basic theoretical framework
is discussed in Section 3.3.6) based QST334,335 that basically
involves learning the map between the data and the quantum
state unlike the RBM-based QST methods where the map yields
a probability distribution. In the GAN method, two competing
entities, generator G and discriminator D, engage with the

Fig. 23 Local measurement based quantum state tomography via neural networks: the procedure starts with generating the training and test datasets,
represented by dashed arrows, through random k-local Hamiltonians H to obtain the local measurement results M from the ground states cH. The neural
network is then trained using the training dataset which then produces the local measurements M, represented by black arrows. The measurements are
used to find the Hamiltonian H followed by obtaining the ground states. The normal QST process follows the red arrow which is computationally hard.
Figure is a schematic of the protocol illustrated in ref. 376.
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objective to output a data distribution from some prior noisy
distribution. Both G and D are parameterized non-linear func-
tions consisting of multi-layered neural networks.251 With each
step of optimization the generator becomes better at yielding
outputs closer to the target data and the discriminator becomes
better at detecting fake outputs. Inspired by the classical
model, the quantum generative adversarial network (QGAN)
was introduced in ref. 449 and 450 where quantum processors
are used for running the neural nets of generator and discri-
minator as well as the data can be both quantum and classical.
Thus, making the entire system quantum mechanical, at the
end of the optimization process the generator can reproduce
the true ensemble of quantum states without the discriminator
being able to distinguish between the true and generated
ensemble.

The first proof-of-principle experimental demonstration of
the QGAN algorithm was presented in ref. 447 in a super-
conducting quantum circuit on datasets that are inherently
quantum for both the input and the output. The QGAN algo-
rithm employed was able to reproduce the statistics of the
quantum data generated from a quantum channel simulator
with a high level of fidelity (98.8% on average). Their experi-
mental approach involves a superconducting quantum circuit
for the generator G that outputs an ensemble of quantum states
with a probability distribution to mimic the quantum true data
whereas the discriminator D is used to carry out projective
measurements on the true and the generated data in order to
distinguish the two based on the measurement outcomes. The
optimization process based on the gradient descent method
consists of the adversarial learning by the discriminator and
the generator in alternative steps that is terminated when the

Nash equilibrium point is reached, i.e., G produces the statis-
tics such that D can no longer differentiate between the fake
and the true data. The experimental protocol of the implemen-
tation of the QGAN algorithm is shown in Fig. 24.

In ref. 451 the authors introduced the conditional generative
adversarial network (CGAN) based QST as in the standard GAN
approach there is no control over the output as the generator
input is random which can be addressed using CGAN. Because
of the improved control over the output, CGAN led to many
diverse applications in a variety of fields.452–456 With the CGAN
based QST the authors were able to achieve higher fidelity of
reconstruction, faster convergence and also reduced the num-
ber the measurements required for reconstructing a quantum
state as compared to the standard model of state reconstruc-
tion using MLE. Also, with sufficient training on simulated data
their model can even reconstruct the quantum states in a single
shot. In their CGAN approach, the measurement operators
({Oi}) and the measurement statistics are the conditioning
input to the generator which then outputs a density matrix rG

that is used to generate the measurement statistics by calculat-
ing tr(OirG). These measurement statistics and the experi-
mental measurement statistics serve as the input for the
discriminator which then outputs a set of numbers to distin-
guish between the generated statistics and the true data. The
standard gradient-based optimization techniques are then used
to train the network which is completed when the discrimina-
tor is unable to differentiate between the generated statistics
from the generator and the true data. With better control over
the output the CGAN approach can further find its applications
in efficiently eliminating noise from the experimental data by
training it on noisy simulated data; in addition it can have

Fig. 24 Flowchart demonstrating the experimental protocol of the QGAN algorithm in ref. 447 and the optimization scheme of the generator G and the
discriminator D:G generates a random starting state r0(r0,y0,c0) following which both D and G compete against each other by optimizing their strategies
alternatively. The process is terminated when either D fails to discriminate the generated state r from the true state s or the number of steps cstep reaches
the limit. The optimization scheme, based on the gradient descent method, of D involves updating the parameters b and g of the measurement operator
M whereas r, y, and c are updated to optimize G. The gradient estimation is carried out on a classical computer whereas field programmable gate arrays
(FPGAs) are used for the measurement and control of the quantum system.
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potential advantages in adaptive tomography as well by improv-
ing the choice of adaptive measurements for better reconstruc-
tion of quantum states.

The huge success of the attention mechanism-based neural
network generative model228,457,458 to learn long-range correla-
tions in natural language processing (NLP)459 prompted for its
application in QST owing to the entanglement among qubits
that can also be learnt through the self-attention mechanism
used in the former case. The self-attention mechanism com-
putes a representation of a sequence by relating different
positions of a single sequence and has been very successful
in a variety of sub-fields under NLP.460,461 In ref. 459 the
authors proposed the first purely self-attention based transduc-
tion model, the Transformer, for deriving global dependencies
between input and output without the use of a recurrent neural
network (RNN) or convolutions. Just like other transduction
models, the Transformer also uses an architecture of fully
connected layers for both the encoder and decoder228,462,463

using stacked self-attention that results in significantly faster
training than architectures based on recurrent or convolutional
layers. To the best of our knowledge the quantum-enhanced
version of the Transformer has not been studied yet. However,
the application of Transformer on quantum data has shown
tremendous potential, as discussed below in the context of
QST, for future research in this field.

The long-range correlations exhibited by entangled quan-
tum systems can be modeled analogous to the sentences in
natural language using informationally complete positive
operator-valued measurements (IC-POVM). Therefore, with this
motivation, recently, Cha et al. proposed the ‘attention-
based quantum tomography’ (AQT)464 to reconstruct the mixed
state density matrix of a noisy quantum system using the
Transformer459 architecture for the neural network. In this
work they first benchmark their approach against previous
neural network based QST using RNN465 that demonstrated a
high fidelity classical description of a noisy many-body quan-
tum state. To compare the performance of AQT with other state-
of-art tomographic techniques they considered the Greenber-
ger–Horne–Zeilinger (GHZ) state as their target state for up to
90 qubits and a built-in simulated error resulting in a mixed
state. They showed that the complexity of learning the GHZ
state can be improved by an order of magnitude when com-
pared with the RNN method. They also benchmark AQT against
MLE for a 3-qubit system and found a superior quantum
fidelity of reconstruction for the AQT with the additional
advantage of being scalable to larger systems. Furthermore,
they were also able to reconstruct the density matrix of a 6-qubit
GHZ state using AQT, with a quantum fidelity of 0.977, which is
currently beyond the tomographic capabilities of the IBM
Qiskit.

QST becomes a formidable task as the size of the quantum
system increases. In order to address this problem, in this
section of the review, we present research based on several
machine learning driven QST techniques such as RBM based
QST for highly entangled many-body quantum systems, char-
acterizing quantum systems using local measurements on

RDMs, using CNN for state reconstruction, adaptive QST
through self-learning and optimization based algorithms, VQAs
for QST, generative models like GANs and attention based QST.
Although the use of classical machine learning algorithms and
deep neural networks has proven to be very effective in finding
patterns in data, but for implementation on a quantum com-
puter, loading classical data onto quantum devices can present
a serious bottleneck for the implementation of these
algorithms.466 Since a large number of independent parameters
are required for reconstructing the quantum state that scales
exponentially with the system size, and therefore, using quan-
tum machine learning algorithms directly on the quantum
states of the system can help in the learning and optimization
of these parameters much more efficiently, owing to their
ability in handling larger Hilbert space. As mentioned in the
above sections, generative machine learning models such as
quantum Boltzmann machine (QBM) and quantum generative
adversarial network (QGAN) provide valuable insights into
exploiting the full capabilities of the present day quantum
computers in order to reproduce the desired quantum states.
The improvement of quantum hardware with time also calls for
their validation and benchmarking and QML can play a major
role in the design of cost-effective quantum tomography tech-
niques and protocols that can be easily implemented on the
NISQ devices.

5.2 State classification protocols

Classification is always one of the most significant applications
for classical machine learning (ML) or quantum machine
learning (QML). Due to the fact that people are prone to make
mistakes when establishing connections among various
features, ML and QML are often able to improve the efficiency
in dealing with classification problems. Each instance in the
dataset used by machine learning algorithms should be repre-
sented with the same set of features, which could be contin-
uous, categorical or binary.161 The learning process is then
denoted as supervised machine learning if all instances are
given with known labels. Generally, the classification problems
can be divided as binary classification and multi-label classifi-
cation. Binary classification is a classification with two possible
outcomes. For example, classifying if an atom or molecule is
excited or at ground state. Multi-label classification is a classi-
fication task with more than two possible outcomes. For
example, classifying the electrical resistivity and conductivity
of materials as a conductor, an insulator, a semiconductor or a
superconductor. We shall focus extensively on the supervised
QML assisted classification problems in chemical systems,
specifically, where the output of instances admits only discrete
un-ordered values and then discuss unsupervised learning
strategies too.

The process161,467 of applying supervised ML or QML to a
typical classification problem with physico-chemical applica-
tions is demonstrated in Fig. 25. The first step is to collect the
dataset from chemical experiments. Due to the very existence of
errors in measurement and impurities in the reaction, in most
cases the raw dataset contains noise and missing feature
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values, and therefore significant pre-processing is required.468

The second step is to select appropriate algorithms and initi-
alize the classifier model. Then, split the dataset using cross-
validation and feed the classifier model with the training data.
Next, predict the label for a test dataset, and evaluate the error
rate of the classifier model. Additionally, parameter tuning
should be repeated until an acceptable evaluation with the test
set is obtained.

Classifiers based on decision trees (see Section 3.2.5)
play important roles in various chemical problems, such
as toxicity prediction,469 mutagenesis analysis,470 and reaction
prediction.471 However, quantum decision trees are hardly
applied independently dealing with intricate chemical classifi-
cation problems, since simplicity, one of the key advantages of
decision tree, could be eclipsed during the complicated map-
ping and learning process in QML.

Decision trees are sometimes applied along with other
algorithms to analyze and demonstrate the key features of the

intricate classification process. Recently, Heinen and coworkers
studied two competing reactive processes mainly with a
reactant-to-barrier (R2B) machine learning model,472 where
the decision tree generated by the R2B method systematically
extracts the information hidden in the data and the model.
Fig. 26 is a scheme of the tree generated from the R2B method.
Blue dotted lines refer to an accepted change meaning that only
compounds containing these substituents at the position are
considered. Orange dotted lines refer to substitution declined,
meaning that all compounds except the decision are kept.
Vertical lines on the right of energy levels denote the minimum
first (lower limit), and the third (upper limit) quartile of a box
plot over the energy range. Numbers above the energy levels
correspond to the number of compounds left after the decision.
Lewis structures resemble the final decision.

In recent years there have been more than a few reports
where Bayesian network (BN) (see Section 3.2.6) based methods
are applied to solve various chemical classification problems.
The BN approach shows fruitful capability for the prediction of
chemical shifts in NMR crystallography,473 simulation of the
entropy driven phase transitions,474 and particularly, the simu-
lation of quantum molecular dynamics simulation.475

Quantum instance-based learning algorithms like k-NN (see
Section 3.2.4) are also applied in chemical classification pro-
blems. Recently, researchers have studied the phase transition
of VO2 based on a quantum instance-based learning
algorithms.318 The training instances are first assigned into
several sublabels via the quantum clustering algorithm, based
on which a quantum circuit is constructed for classification.
Fig. 27 is a scheme of the quantum circuit implementing the
classification process of the quantum clustering algorithm. For
training instances that are clustered into N sublabels, log2 Nd e
qubits are required representing the sublabels in the classifier
circuit. Meanwhile, log2 dd e qubits are required to represent the
test instance, where d is denoted as the dimension of the
instance. For simplicity, here we assume that there are only 5
sublabels totally, and all instances are 2-d vectors. Thus, q1, q2,
and q3 represent the possible sublabels and q4 represents the
test instance, meanwhile Un is an operation corresponding to
the centroid or mean value of the training instances under the
same sublabel. Here Hadamard gates are applied on q1, q2, and
q3, preparing a uniform distribution of the possible sublabels.
To improve the accuracy, the weighting scheme can be included
by assigning q1, q2, and q3 as some certain quantum states
corresponding to the weights.

The process of classification of metallic and insulating
states of VO2 is shown in Fig. 28. Fig. 28a demonstrates the
original data used for classification. All training instances are 2-
d vectors (pressure and temperature), while the label is denoted
by color. Red dots represent the metallic state, and blue ones
represent the insulating state. The phase transition line is
indicated by the black solid curve. The sublabels left after
quantum clustering algorithm is shown in Fig. 28b, where each
sphere represents a sublabel, with center corresponding to the
centroid or mean-value, and radius corresponding to the num-
ber of instances. Prediction of test instances is shown in

Fig. 25 Working flowchart of a supervised classification model to a
chemical problem. The first step is to collect raw data from chemical
experiments, and clean the dataset with various pre-processing methods.
The second step is to select appropriate algorithms and initialize the
classifier model. Then, split the dataset using cross-validation and feed
the classifier model with the training data. Next, predict the label for test
dataset, and evaluate the error rate of the classifier model.
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Fig. 28c. Test instances in the blue part will be recognized with
the label ‘insulating’, and the label of test instances in the
yellow part will be predicted as ‘metallic’.

The quantum SVM (see Section 3.2.7) has also been
applied to various classification problems, such as handwritten

character recognition,176 solar irradiation prediction,476 and
even the study of particle decays in high energy physics.477

Additionally, in experiments provable quantum advantage has
been demonstrated by recent quantum classifiers based on a
variational quantum classifier and a quantum kernel

Fig. 26 Decision tree using extracted rules and design guidelines. The decision tree is generated using the reactant-to-barrier (R2B) method estimated
activation barriers to predict changes in barrier heights by starting at all reactions (first energy level on the left) and subsequently applying changes by
substituting functional groups, leaving groups and nucleophiles with E2 (see ref. 472). Blue dotted lines refer to an accepted change meaning that only
compounds containing these substituents at the position are considered. Orange dotted lines refer to substitution declined, meaning that all compounds
except the decision are kept. Vertical lines on the right of energy levels denote the minimum first (lower limit), and the third (upper limit) quartile of a box
plot over the energy range. Numbers above energy levels correspond to the number of compounds left after the decision. Lewis structures resemble the
final decision. Reprinted from H. Stefan and V. Rudorff, G. Falk and V. Lilienfeld, O. Anatole, J. Chem. Phys., 2021, 155, 6, 064105 with the permission of
AIP Publishing.

Fig. 27 Scheme of the structure of the quantum circuit implementing the classification process. For training instances that are clustered into N
sublabels, log2 Nd e qubits are required representing the sublabels in the classifier circuit. Meanwhile, log2 dd equbits are required to represent the test
instance, where d is denoted as the dimension of the instance. For simplicity, here we assume that there are only 5 sublabels totally, and all instances are
2-d vectors. Thus, q1, q2, and q3 represent the possible sublabels and q4 represents the test instance, meanwhile Un is operation corresponding to the
centroid or mean value of the training instances under the same sublabel. Figure is reproduced from ref. 318. (Under Creative Commons Attribution 4.0
International License.)
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estimator—build on noisy intermediate-scale (NISQ) devices.324

Though there are only a few attempts to deal with specific
chemical problems with quantum SVM methods, quantum
SVMs demonstrate great capacity in classification problems,
while the optimization process of quantum SVM leads to
exponential speedup compared with the classical version.
Therefore, there exists enormous potential for the quantum
SVM methods to assist chemical classification and regression
problems.

It is always one of the most crucial challenges in the study of
many-body problems that the dimensionality of the Hilbert
space grows exponentially with the system size, which leads to
tremendous difficulty to solve the Shrödinger equations.
Among the modern numerical techniques designed to study
the complicated systems, neural networks (NNs) attract enor-
mous attention due to their remarkable abilities to extract
features and classify or characterize complex sets of data.
Modern ANN architectures, especially the feed-forward neural
networks (see Section 3.3.1) and convolutional neural networks
(see Section 3.3.2) have been playing significant roles in the
classification problems of various fields. It is reported that the
neural network technologies can be used to discriminate phase
transitions in correlated many-body systems,336 to probe the
localization in many-body systems,478 and even to classify the
entangled states from the separated ones.337

On the other hand, dramatic success of classical neural
networks also provokes interest in developing the quantum
version. More than 20 years ago, pioneers attempted to build up
quantum neural networks (QNNs), particularly, the quantum
version of feed-forward neural networks479 (see Section 3.3.1).
There were also reports where the QNNs were applied into real
classification problems, such as the vehicle classification.480

The rapid development of hardware further provided more
possibilities for designing the QNN models.

Special-purpose quantum information processors such as
quantum annealers and programmable photonic circuits are
suitable fundamental implementation of deep quantum

learning networks.55,481 Researchers also developed recurrent
quantum neural networks (RQNNs) (see Section 3.3.3) that can
characterize nonstationary stochastic signals.482,483 Addition-
ally, there are some other QNN models aiming to supervised
learning, such as the classifiers based on QNNs and measure-
ments of entanglement.484 However, most of these models are
actually hybrid models, as the activation functions are calcu-
lated classically, and the dataset are generally classical data.

In 2018 Farhi and Neven proposed a specific framework for
building QNNs that can be used to do supervised learning both
on classical and quantum data.485 For binary classification
problems, the input instance can be represented by quantum
state |z,1i, where z is an n-bit binary string carrying information
of the inputs, and an auxiliary qubit is set as |1i initially. Totally
there are n + 1 qubits, n qubits representing the input instance,
and 1 qubit representing the label. After the unitary operation
U(y), the auxiliary qubit is measured by a Pauli operator,
denoted as Yn+1, and the measurement result 1 or �1 indicates
the prediction of the label. With multiple copies, the average of
the observed outcomes can be written as hz,1|U†(y)Yn+1U(y)|z,1i.
Furthermore, we can estimate the loss function

loss(y,z) = 1 � l(z)hz,1|U†(y)Yn+1U(y)|z,1i (111)

where l(z) is the label of instance z, which might be 1 or �1. For
a training set zj, l(zj), j = 1,. . ., N, the training process is to find
the optimal parameters q minimizing the loss functionPN
j¼1

lossðy; zjÞ. However, in the numerical simulations, they did

not find any case where the QNNs could show speedup over
classical competitors for supervised learning.485

Meanwhile in 2018, researchers from Xanadu investigated
the relationship between feature maps, kernel methods and
quantum computing.179 There contains two main steps in the
classification steps. They attempted to encode the inputs in a
quantum state as a nonlinear feature map that maps data to the
quantum Hilbert space. Inner products of quantum states in

Fig. 28 Classification of the metallic and insulating states of VO2 based on the quantum clustering algorithm. (a) Demonstrates the original data used for
classification. All training instances are 2-d vectors (pressure and temperature), while the label is denoted by color. Red dots represent the metallic state,
and blue ones represent the insulating state. Phase transition line is indicated by the black solid curve. The sublabels left after quantum clustering
algorithm is shown in (b), where each sphere represents a sublabel, with center corresponding to the centroid or meanvalue, and radius corresponding to
the number of instances. Prediction of test instances are shown in (c). Test instances in the blue part will be recognized with the label insulating, and the
label of test instances in the yellow part will be predicted as metallic. Figure is reproduced from ref. 318 (under Creative Commons Attribution 4.0
International License).
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the quantum Hilbert space can be used to evaluate a kernel
function. Then a variational quantum circuit is trained as an
explicit classifier in feature space to learn a decision boundary.
In the model, a vector (x1,x2)T from the input space X is mapped
into the feature space F which is the infinite-dimensional space
of the quantum system. The model circuit then implements a
linear model in feature space and reduces the ‘‘infinite hidden
layer’’ to two outputs. Though linear transformations are
natural for quantum theory, nonlinearities are difficult to
design in the quantum circuits. Therefore the feature map
approach offers an elegant solution. Classical machine learning
took many years from the original inception until the construc-
tion of a general framework for supervised learning. Therefore,
towards the general implementation much efforts might be
required as we are still at the exploratory stage in the design of
quantum neural networks.

In 2019, Adhikary and coworkers proposed a quantum
classifier using a quantum feature space,486 with both quantum
variational algorithm and hybrid quantum-classical algorithm
for training. The input are encoded into a multi-level system;
therefore, the required number of training parameters is
significantly lesser than those of the classical ones. Simulation
based on four benchmark datasets (CANCER, SONAR, IRIS and
IRIS2) shows that the quantum classifier could lead to a better
performance with respect to some classical machine learning
classifiers. In 2020, Wiebe’s group proposed a circuit-centric
quantum classifier,487 which is a class of variational circuits
designed for supervised machine learning. The quantum clas-
sifier contains relatively few trainable parameters, and con-
structed by only a small number of one- and two-qubit
quantum gates, as entanglement among the qubits plays a
crucial role capturing patterns in the data. The optimal para-
meters are obtained via a hybrid gradient descent method. The
circuit-centric quantum classifier shows significant model size
reduction comparing the classical predictive models.487

The impressive success of these hybrid methods provide an
alternative to study the chemistry classification problems.
There are plenty of attempts to study the phase diagrams

classification with classical machine learning methods.488,489

It would be of great interest to study these problems with
quantum or hybrid classifiers.

Recently490 a report has proposed a variational quantum
algorithm to classify phases of matter using a tensor network
ansatz. The algorithm has been exemplified on the XXZ model
and the transverse field Ising model. The classification circuit
is composed of two parts: the first part prepares the approx-
imate ground state of the system using a variational quantum
eigensolver and feeds the state to the second part which is a
quantum classifier which is used to label the phase of the state.
Since the quantum state is fed directly into the classification
circuit from the variational quantum eigensolver, it bypasses
the data reading overhead which slows down many applica-
tions of quantum-enhanced machine learning. For both the

parts, the quantum state jcð~yÞi is represented using a shallow
tensor network which makes the algorithms realizable on NISQ
devices. The first part of the algorithm represents the Hamilto-
nian matrix H of the system in terms of Pauli strings and

variationally minimizes the average energy hcð~yÞjHjcð~yÞi to
prepare the ground state. A checkerboard tensor network
scheme with a tunable number of layers L is used for the
representation. For an n-qubit state, the ansatz requires O(nL)
independent parameters, where L is the number of layers in the
circuit. In this scheme, the maximally entangled state would
require L ¼ n=2b c layers with periodic boundary conditions and
for critical one-dimensional systems L ¼ log2 nð Þb c is enough.
This can be contrasted with a UCCSD ansatz which requires
typically O(n4) parameters491 thereby necessitating a higher
dimensional optimization. As mentioned before, the second
part of the circuit, i.e., the classifier receives the state from the
VQE part and applies a unitary Uclass(f). The unitary is again
approximated using the Checkerboard tensor network ansatz.
Then the output of the circuit is measured in Z-basis to
determine the phase of the state using majority voting. For
the transverse field Ising model the report demonstrated a 99%
accuracy with a 4-layered classifier and for the XXZ model it was
94% accuracy with a 6-layered classifier (Fig. 29).

Fig. 29 A figure showing the prediction of the phases using a quantum classifier based on tensor network ansatz. The plot on the left (right) shows the
prediction of phase II as a function of the magnetic field (Jz) for the transverse-field Ising (XXZ) model. The Roman numbers I and II denote the phases of
the models. Reprinted figure with permission from A. V. Uvarov, A. S. Kardashin, and J. D. Biamonte, Machine learning phase transitions with a quantum
processor, Phys. Rev. A, 2020, 102, 012415. Copyright (2022) by the American Physical Society.
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Picking up an appropriate algorithm is always crucial when
dealing with the classification problems. The classifier evalua-
tion is often based on prediction accuracy. Here we present
three techniques to estimate classifier accuracy.161 One popular
technique is to split the training instances into two groups,
where two-thirds are regard as the training data and the other
third is regard as the test data. Another technique is known as
cross-validation. The training set is manually divided into
exclusive and equal-sized subsets initially. Then for each subset
the classifier is trained on all the other subsets. Thus, estima-
tion of the error rate of the classifier is obtained by calculating
the average of the error rate of each subset. The last one is
denoted as leave-one-out validation, which is a special case of
cross validation. In leave-one-out validation there is only a
single instance in each subset. If the prediction accuracy
cannot reach the demand, another supervised learning algo-
rithm should be selected, as shown in Fig. 25.

Additionally, we will present some remarks about the tech-
niques as follows. Even though the optimal solution always
depends on the task at hand, these remarks can prevent the
practitioners from selecting a wholly inappropriate algorithm.
Logic-based systems often perform better when dealing with
discrete features. Decision trees are in general resistant to noise
because of their pruning strategies. In contrast, most decision
tree algorithms cannot perform well when diagonal partition-
ing is required. Interference allows a class of quantum decision
trees to be penetrated exponentially faster by quantum evolu-
tion than by a classical random walk. However, these examples
could also be solved in polynomial time by different classical
algorithms.164 BN methods are able to achieve their maximum
prediction accuracy with a relatively small dataset. Besides, BN
methods train very quickly since they require only a single pass
on the data either to collect the frequencies or to compute the
normal probability density functions. The graph structure of
BNs can efficiently construct a quantum state representing the
intended classical distribution, and a square-root speedup time
can be obtained per sample by implementing a quantum
version of rejection sampling.173 Lazy learning methods require
zero training time as the training instance is initially stored. On
the other hand, k-NN is quite sensitive to the irrelevant
features, and is generally intolerant of noise. Quantum nearest
neighbor algorithm and quantum nearest centroid algorithm
both show significant speedup compared to the classical ver-
sion. In certain cases, there are exponential or even super-
exponential reductions over the classical analog.56 SVM meth-
ods generally perform better when dealing with classification
problems with multi-dimensions and continuous features.
Moreover, SVMs are still able to perform well when there exists
a nonlinear relationship between the input and output features.
However, a large sample size is required to achieve its max-
imum prediction accuracy. Optimization of quantum SVM is
implemented by the quantum algorithm solving linear equa-
tions, leading to exponential speedup compared to the classical
version.177

Let us now focus on unsupervised approaches to classifica-
tion briefly. The learning process is denoted as unsupervised

when the given training instances are not assigned with the
desired labels. Due to the absence of supervision, the unsuper-
vised learning can hardly be applied to distinguish various
types of chemicals or detect some certain structures. Instead,
unsupervised learning processes can find out the boundaries
that divide the instances, so that they could be beneficial in the
recognition of phase transitions. For instance, unsupervised
machine learning methods can be applied to identify the
phase transition to non-trivial many-body phases such as
superfluids,492 or to detect the topological quantum phase
transitions.493

One important approach in the unsupervised QML is clus-
tering methods. The clustering methods can be assigned as
instance-based learning algorithms. Consider the k-means pro-
blem of assigning given vectors to k clusters minimizing the
average distance to the centroid of the cluster. The standard
unsupervised learning method is Lloyds algorithm, which con-
tains the following steps:494,495 (1) pick up the initial centroid
randomly; (2) assign each vector to the cluster with the closest
mean; (3) recalculate the centroids of the clusters; (4) repeat
steps (1–2) until a stationary assignment is attained. Based on
the classical version, in 2013, Lloyd and coworkers proposed
the quantum unsupervised machine learning method,156

rephrasing the k-means problem as a quadratic programming
problem which is amenable to solution by the quantum adia-
batic algorithm. In 2018, Iordanis and coworkers proposed q-
means, a new quantum algorithm for clustering problem,
which provides substantial savings compared to the classical
k-means algorithm. In 2017, researchers implemented a hybrid
quantum algorithm for clustering on a 19-qubit quantum
computer,496 which shows robustness to realistic noise.

Inspired by the success of neural network-based machine
learning, Iris and coworkers proposed the quantum convolu-
tional neural networks (QCNNs) in 2019215 (see Section 3.3.2).
A paradigm is presented where the QCNN is applied to 1-D
quantum phase recognition. There are less applications of
unsupervised QML compared to supervised learning in
chemical classification problems reported so far. However,
recent advancements suggest the future that unsupervised
QML could take a place in the study of complex many-body
systems, especially in the recognition of phases.

5.3 Many-body structure and property prediction for
molecules, materials, and lattice models and spin-systems

5.3.1 Machine learning techniques on a classical proces-
sor. Obtaining an electronic structure description for material
systems has been a problem with continued research in Chem-
istry and materials science. Since this task is a many-body
problem, solving it with high accuracy is crucial as numerous
materials properties and chemical reactions entail quantum
many-body effects. For a significant duration, electronic struc-
ture calculations were performed using Density Functional
Theory (DFT), which is based on the effective single-particle
Kohn–Sham equations.497 In DFT, the ground state energy of a
many-electron system is written as a functional of the electron
density, thereby reducing the many-body problem for an N
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particle wavefunction to just one. This has yielded accurate
results with efficient computations compared to its predeces-
sors, but the functional form of the exact solution is unknown
and efficient approximations are made for practical purposes.
Attempts have been therefore made to obtain such density-
functionals using ML algorithms. One of the earliest studies
was by Snyder et al.312 who constructed a kinetic energy
functional for spinless fermions in a 1D box subjected to an
external potential made from the linear combination of several
Gaussians defined on a dense spatial grid. Many such randomly
selected external potentials were chosen as the training set with
the actual labelled density and kinetic energy obtained by
solving the Schroedinger equation as the training data. There-
after kernel-ridge regression was used to construct the kinetic
energy functional from the aforesaid known density with
excellent accuracy. The oscillations in functional derivative of
the so constructed kinetic energy functional were dampened by
using the principal components. From the knowledge of this
functional derivative a protocol to procure a self-consistent
density field that minimizes the energy was presented. Since
then many report have been made which have attempted
to construct density functionals especially the exchange-
correlation functional.498–505

Kernel-ridge regression (see Section 3.2.2) has been exten-
sively used in chemistry for a variety of other purposes too like
predicting the energy of the highest occupied molecular orbital
from three different molecular datasets506 using two different
technique to encode structural information about the molecule
or for the prediction of atomization energies313,507 through a
Coulomb matrix representation of the molecule wherein the
energy is expressed as a sum of weighted Gaussian functions.
Recently, many new schemes to represent structural features
have also been designed314,508 wherein information about the
environment of each constituent atom is encoded within its M-
body interaction elements each of which is a weighted sum of
several Gaussian functions. The distance metric between each
such interaction representation between element I and J is
considered to be the usual Euclidean norm. Atomization ener-
gies, energies for even non-bonded interaction like in water
clusters, predicted using such representations are extremely
accurate.314 More such examples can be found in topical
reviews like in ref. 509. Caetano et al.342 used Artificial Neural
Networks (ANNs) (a theoretical framework discussed in Section
3.3) trained using the Genetic Algorithm (GA) to solve the
Kohn–Sham equations for He and Li atoms. They used a
network comprising of one neuron in the input layer, one
hidden layer with eight neurons, and two neurons in the output
layer. For the GA based optimization, the number of individuals
N in the population was kept to 50. By generating the initial
orbitals randomly and building the electron density, an effec-
tive Hamiltonian is constructed. The ANN is trained using GA
to find the orbitals that minimize the energy functional and
then the total energy is calculated, which is repeated until
a convergence point. The results from the ANN were shown
to be in good agreement with those of the other numerical
procedures.

Performing higher order calculations like CCSD provides
accurate results but has a very high computational cost. While,
methods such as semi-empirical theory PM7, Hartree–Fock
(HF), or DFT provide less accurate results but scale efficiently.
The work by Ramakrishnan et al.510 corrects the lower-order
methods to provide accurate calculations by training their D
model to learn enthalpies, free energies, entropies, and elec-
tron correlation energies from a dataset consisting of organic
molecules. The property of interest was corrected by expressing

PtðRtÞ � Dt
bRb ¼ P

0
bRb þ

XN
i¼1

aikðRb;RiÞ (112)

where, ai are regression coefficients, obtained through kernel
ridge regression (a theoretical framework discussed in Section

3.2.8), kðRb;RiÞ ¼ exp
jRb � Rij

s
; with s being a hyperparameter

that is tuned, |Rb � Ri| is the Manhattan norm511 measuring
the similarity between the features of target molecule Rb and
molecule in the data Ri.

Burak Himmetoglu512 constructed a dataset incorporated
from PubChem comprising of the electronic structures of
16 242 molecules composed of CHNOPS atoms. Having con-
structed the Coulomb matrices as in ref. 511 defined by

Cij ¼
0:5Zi

2:4; i ¼ j
ZiZj

jRi � Rj j
; iaj

8<
: (113)

where, the atomic numbers are denoted by Z, and R is their
corresponding positions. Design matrices using the eigenva-
lues of the Coulomb matrices are constructed and two types of
ML approaches are used to predict the molecular ground state
energies. First, boosted regression trees (Theoretical framework
discussed in Section 3.2.5) and then ANNs are used, and their
performances are compared.

Geometry optimization is a crucial task, which directly
impacts the electronic structure calculations. The total energy
calculations can prove to be quite expensive depending on the
choice of the electronic structure method. Hence, the number
of evaluations of the potential energy surface has to be reduced
considerably. A novel gradient-based geometry optimizer was
developed by Denzel and Kästner,513 that exploits Gaussian
Process Regression or GPR (a theoretical framework discussed
in Section 3.2.8) to find the minimum structures. By comparing
Matérn kernel with the squared exponential kernel, the authors
show that the performance is better when Matérn kernel is
used. The performance of their optimizer was tested on a set of
25 test cases along with a higher dimensional molybdenum
system, molybdenum amidato bisalkyl alkylidyne complex, and
it was shown that the GPR based approach can handle the
optimization quite well.

In the work by Carleo and Troyer,346 it was shown that by
representing the many-body wavefunction in terms of ANNs,
the quantum many-body problem can be solved. They used this
idea to solve for the ground states and describe the time
evolution of the quantum spin models, viz. transverse field
Ising, and anti-ferromagnetic Heisenberg models. Expanding
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the quantum many-body state c in the basis |xi:

jci ¼
X

cðxÞjxi (114)

where, c(x) is the wavefunction represented in terms of a
restricted Boltzmann machine (RBM), which is the ANN archi-
tecture that was used in this study (Fig. 30a). The description of
neural-network quantum states (NQSs) results in the wavefunc-
tion c(x) to be written as c(x;y), where y denotes the tunable
parameters of the neural network. The quantum states can now
be expressed as

cMðx; yÞ /
X
hi

e

1
2

P
j

ajszjþ
P
i

bihiþ
P
ij

wijhiszj
(115)

where the values of sz
j & hi A {+1,�1}, aj & bi are the bias

parameters corresponding to the visible and hidden layer,
respectively, and wij is the weight associated with the connec-
tions between sz

j & hi (see Fig. 30(a)). For a given Hamiltonian,
the average energy written as a statistical expectation value over
|cM(x;y)|2 distribution is computed. For a specific set of

parameters, samples from the |cM(x;y)|2 distribution are taken
via Markov Chain Monte Carlo (MCMC) and the gradients of
the expectation value are calculated. With the gradients known,
the parameters are optimized in order to model the ground
states of the Hamiltonian. The accuracy of the results were
extremely high in comparison to the exact values. Recently
Choo et al.514 have also extended the method to model ground
states of molecular Hamiltonians. The protocol maps the
molecular Hamiltonian onto the basis of Pauli strings using
any of the fermion-qubit mapping like Jordan–Wigner or Bravi–
Kitaev encoding that is routinely employed in quantum
computing.515 Thereafter the wave-function as described in
eqn (5.3.1) is used to variationally minimize the ground state
energy by drawing samples using variational Monte Carlo
(VMC).514 Several insightful features like the fact that support
of the probability distribution in the space of spin configura-
tions is peaked over certain dominant configurations only near
the Hartree–Fock state, out-performance of RBM ansatz over
more traditional quantum chemistry methods like CCSD(T)
and Jastrow ansatz, the efficacy of the various fermion-qubit

Fig. 30 The RBM architecture evolution. (a) The RBM architecture consisting of a visible layer and a hidden layer. The neurons in the visible layer
represented encode a variable sz

i A {1,�1} have biases denoted by ai and the neurons in the hidden layer encode a variable hj A {1,�1} have biases denoted
by bj. The weights associated with each connection between the visible node and the hidden node are denoted by wij (schematic of RBM as illustrated in
ref. 346). (b) The three layered RBM architecture with the first two layers and their corresponding parameters the same as in (a). The third layer has one
neuron which encodes a variable s(x) (see eqn (121) for the case with (e,fi) = (0,0) 8i) and is known as the sign layer. The bias unit for the sign layer is
represented by ci and the weights associated with each connection between the visible node and the sign node is denoted by di (schematic of RBM as
illustrated in ref. 517). The sign layer does not share any connection with the hidden layer. (c) The three layered RBM architecture with the third layer
consisting of two units. c and e denote the bias parameters of the unit representing the real part of the complex layer, and the unit representing the
complex part of the complex layer, respectively; fi indicates the weights corresponding to the connections between sz

i and the unit representing the
complex part of the complex layer (schematic of RBM as illustrated in ref. 347, 518 and 519). (d) The quantum circuit to sample Gibbs distribution on
quantum hardware. In general for n neurons in the visible layer and m neurons in the hidden layer, this quantum circuit would require m � n ancilla qubits
as well. The circuit thus shown is for a special case of (n = m = 2). The circuit is responsible for simulating the amplitude field

ffiffiffiffiffiffiffiffiffiffi
PðxÞ

p
by sampling from the

distribution P(x) as defined in eqn (120) (schematic of a quantum circuit as illustrated in ref. 347 and 519).
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mapping techniques in classical quantum chemistry simnula-
tions, etc. were elucidated.

This NQS approach was then extended by Saito516 to com-
pute the ground states of the Bose–Hubbard model. Here,
the quantum state is expanded by the Fock states. One-
dimensional optical lattice with 11 sites and 9 particles, and
a two-dimensional lattice with 9 � 9 sites and 25 particles were
studied. The optimization scheme is similar to that in ref. 346
and the ground states calculated for the 1D and 2D cases were
shown to be in good agreement with those obtained from exact
diagonalization and Gutzwiller approximation, respectively.

In the work by Coe,520 NNs were used to select important
configurations in the configuration interaction (CI) method.
By using just a single hidden layer, with binary occupations of
the spin orbitals in the desired configurations, the transformed
co-efficient of the configuration that fitted to the co-efficients in
the training set is predicted. The important configurations of
stretched CO and Co at its equilibrium geometry were shown to
have accurate predictions. This work was extended in their
follow-up paper,521 in which the potential energy curves for N2,
H2O, and CO were computed with near-full CI accuracy.

Custódio et al.522 developed a feedforward neural network
(a theoretical framework discussed in Section 3.3) to obtain a
functional form for calculations pertaining to inhomogeneous
systems within DFT and Local Spin Density Approximation
(LSDA) framework. The network consists of an input layer with
3 neurons, a hidden layer with 20 neurons, and an output layer
consisting of one neuron. The network was trained on 20 891
numerically exact Lieb–Wu results for 1000 epochs. The
authors test their network on non-magnetic and magnetic
systems and through their results claim that the neural network
functional is capable of capturing the qualitative behavior of
energy and density profiles for all the inhomogeneous systems.
In another closely related study,523 the authors attempt to
construct the many-body wavefunction directly from 1D dis-
cretized electron density using a feed-forward neural network.
The network was trained by a supervised learning scheme with
the infidelity of the procured wave-function and the target
wave-function within the training data. The model showed
excellent performance for the Fermni–Hubbard Hamiltonian
in both the metallic and the Mott-insulating phases. To bypass
the need to construct the exponentially scaling many-body
wavefunction, the authors also construct the density–density
two-point auto-correlation function with remarkable accuracy.
From such auto-correlation function, the power-law scaling
parameters of different phases can be obtained.523

A deep neural network titled SchNet was introduced524 and
SchNOrd was introduced343, to predict the wavefunction on a
local basis of atomic orbitals. By treating a molecule as a
collection of atoms and having a descriptor for each atom,
the output properties being predicted are a sum of all these
atomic descriptions. The inputs to the network are the atom
types and the position of these atoms in the Cartesian coordi-
nates. The atom types are embedded in random initializations
and are convoluted with continuous filters in order to encode
the distances of these atoms. The interaction layers encode the

interaction between different atoms, which essentially dictates
the features of these atoms. These features are now input to a
factorized tensor layer, which connects the features into pair-
wise combinations representing every pair of atomic orbitals.
Multi-layer perceptrons (a theoretical framework discussed in
Section 3.3) are then used to describe the pair-wise interactions
within these pair of orbitals. This model was shown to predict
with good accuracy the energies, Hamiltonians, and overlap
matrices corresponding to water, ethanol, malondialdehyde,
and uracil.

Hermann et al.525 extended the work by Schutt et al.524 by
using SchNet for the representation of electrons in molecular
environments. The representation of the wavefunction through
their neural network titled PauliNet in association with the
training done using variational Monte Carlo approaches very
high accuracy for energies of Hydrogen molecules (H2), lithium
hydride (LiH), beryllium (Be), boron (B), and a linear chain of
hydrogen atoms (H10). The authors also investigated the scaling
of PauliNet with the number of determinants and with system
size on Li2, Be2, B2, and C2 and state the high accuracy in
comparison to diffusion Monte Carlo (DMC) can be achieved
quite fast. Having studied the energies for systems that have
benchmark results, the authors move on to high accuracy
prediction of the minimum and transition-state energies of
cyclobutadiene.

Faber et al.526 introduced representations of atoms as a sum of
multidimensional Gaussians in a given chemical compound for a
Kernel-Ridge Regression (KRR) (a theoretical framework dis-
cussed in Section 3.2.8) based model to predict the electronic
properties having learnt them from several datasets. By deriving
analytical expressions for the distances between chemical com-
pounds, the authors use these distances to make the KRR based
model to learn the electronic ground state properties. In a follow-
up paper from the same group,527 Christensen et al. provide a
discretized representation as opposed to comparing atomic envir-
onments by solving the aforementioned analytical expression. In
this work, the authors use KRR to learn the energy of chemical
compounds and three other regressors, viz., operator quantum
machine learning (OQML), GPR, and gradient-domain machine
learning (GDML), are reviewed for the learning of forces and
energies of chemical compounds.

In order to have an ML model that can generalize well
in large datasets and have efficient tranferability, Huang
and Lilienfeld528 introduced the atom-in-molecule (amon)
approach where fragments of such amons with increasing size
act as training data to predict molecular quantum properties.
Considering only two and three-body interatomic potential
based representations of amons, a subgraph matching proce-
dure is adopted, which iterates over all the non-hydrogen atoms
in the molecule, and identifies the relevant amons. The relevent
amons are identified by converting the molecular geometry to a
molecular graph with vertices specified by the nuclear charge of
atoms and bond orders, then verifying if their hybridization
state is preserved or not, and if such subgraphs are isomorphic
to other identified subgraphs with some additional checks.
Such amons are selected and sorted based on size.
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Obtaining the right material that can be explored experi-
mentally in a large database can prove to be a daunting task but
provides very rewarding results. Multilayer Perceptrons (MLPs)
were used by Pyzer-Knapp et al.529 in the High Throughput
Virtual Screening (HTVS) of the Harvard Clean Energy Project,
which was developed for the discovery of organic photovoltaic
materials. The network consisting of linear input and output
layers, three hidden layers with 128, 64, and 32 nodes, was
trained on 200 000 molecules and an additional 50 000 mole-
cules were considered to make up the validation set.

Having performed an FT based high throughput screening,
Choudhary et al.530 trained a Gradient Boosting Decision Tree
(GBDT) (a theoretical framework discussed in Section 3.2.5)
based supervised learning model on 1557 descriptors obtained
from classical force-field inspired descriptors CFID. The model
was used to classify the materials based on spectroscopic
limited maximum efficiency (SLME) to be greater than 10%
or not. The authors use this classification to prescreen over a
million materials available through large crystallographic and
DFT databases, with the goal of accelerating the prediction of
novel high-efficiency solar cell materials.

By using a series of random forest models (a theoretical
framework discussed in Section 3.2.5) trained at different
threshold temperatures, Stanev et al.531 showed that the mate-
rials in the SuperCon database can be classified into two
classes, above or below a critical temperature (Tc) of 10 K.
The features required to be learnt by the model are obtained by
using Materials Agnostic Platform for Informatics and Explora-
tion (Magpie) based predictors from SuperCon along with a set
of 26 predictors from AFLOW online Repositories. The authors
also develop a regression model to predict the Tc of cuprate,
iron-based and low-Tc materials.

Barett et al.532 showed the expressibility power of represent-
ing the wavefunction ansatz using an Autoregressive Neural
Network (ARN). ARNs are a class of generative, sequential
models that are feedforward, where observations from the
previous time-steps are used to predict the value at the current
time step. By developing an architecture with several sub-
networks, each made up of a multi-level perceptron, to model
the amplitudes and a separate sub-network to model the phase
of the wavefunction, the authors go on to introduce a unique
sampling procedure that scales with the number of unique
configurations sampled and describe the efficiency of ARNs by
computing the ground states of various molecules, achieving
standard full configurational interaction results.

In order to discover non-centrosymmetric oxides, Prasanna
V. Balachandran et al.533 developed a methodology combining
group theroretic approach, ML, and DFT and applied it towards
layered Ruddlesden–Popper oxides. Using group theory to
establish a dataset consisting of 3253 total chemical composi-
tions and performing PCA (a theoretical framework discussed
in Section 3.2.3) and classification learning, the authors iden-
tify 242 relevant compositions that displayed potential for NCS
ground state structures. Then, taking advantage of DFT, 19
compositions were predicted that were suggested for experi-
mental synthesis. Autoencoders (a theoretical framework

discussed in Section 3.3.4) are known for their ability to reduce
the dimenisonality of the problem at hand and can be used to
design molecules with specific desirable properties. This was
used by Gómez-Bombarelli et al.534 by coupling an autoencoder
with a neural network to generate molecular structures along
with predicting the properties of molecules, which were repre-
sented by points in the latent space. Neural networks have also
branched into the domain of generating complex crystalline
nanomaterials, thanks to the work by Baekjun Kim et al.535 In
this work, the authors base their approach with the use of
Wasserstein GAN (WGAN) (a theoretical framework discussed
in Section 3.3.6) with gradient penalty on the loss function on
the critic (which is a renamed discriminator specific to the
WGANs). By considering a training set consisting of 31 713
known zeolites, the network takes energy and materials dimen-
sions (with the materials grid subdivided into silicon and
oxygen atom grids) as the input, to produce 121 crystalline
porous materials. Considering methane potential energy to
be the energy dimension, and a user defined range from
18 kJ mol�1 to 22 kJ mol�1, the authors were able to success-
fully demonstrate inverse design of zeolites. Since the combi-
natorial space of multi-principal element alloys (MPEAs) is
extensive, it becomes necessary to have a reliable method that
accurately and rapidly predicts the intermetallics and their
formation enthalpies. In accordance with this necessity, an
ML model using GPR (a theoretical framework discussed in
Section 3.2.8) with a sum kernel, which consists of the square
exponential kernel and a white noise kernel, was developed.536

In this work, the ML model is trained on 1538 stable binary
intermetallics from the Materials Project database and uses
elemental properties as descriptors in order to learn the dis-
tribution that maps these descriptors to the formation enthal-
pies. By doing so, the authors show that stable intermetallics
can be predicted using this method. They also perform transfer
learning to predict ternary intermetallics in the aforementioned
database, thereby informing about the generalizability of the
model. With growing interest in superhard materials for var-
ious industrial applications, Efim Mazhni et al.537 developed a
neural network on graphs model, with a linear embedding
layer, followed by three convolutional layers, a pooling layer,
and two linear transformations with softmax activation layers,
to calculate hardness and fracture toughness. By training their
network on the database of crystal structures by Materials
Project, consisting of 8033 structures, the authors predict the
bulk modulus and the shear modulus, from which Young’s
modulus and Poisson’s ratio is obtained.

Tensor networks have been discussed in Section 3.4. Tensor
networks have been applied to solve numerous problems in
physics, chemistry and materials science (to review tensor
network algorithms for simulating strongly correlated systems
refer ref. 538). Recently Kshetrimayum et al.539 published a
report developing tensor network models for strongly corre-
lated systems in two spatial dimensions and extending them to
more realistic examples. The specific material the authors
chose is that of a quantum magnet Ca10Cr7O28 which is known
to show properties of a quantum spin liquid in inelastic
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neutron scattering experiments.540 The material possesses a
distorted breathing bilayer Kagome lattice crystal structure that
is composed of Cr5+ ions with spin-1/2 moments. Despite
having even number of spin-1/2 Cr5+ ions, the interactions lack
the tendency to form a singlet state. The description of the
lattice is shown in Fig. 31. The two Kagome layers are different
from each other and each of them consists of two non-
equivalent alternating triangles. The Hamiltonian of this com-
pound consists of five distinct Heisenberg type interactions and
is as follows:

H ¼ Jinter
X
hi; ji

~Si � ~Sj þ JD1
X
hi; ji

~Si � ~Sj þ Jr1
X
hi;ji

~Si � ~Sj

þ JD2
X
hi; ji

~Si � ~Sj þ Jr2
X
hi; ji

~Si � ~Sj

(116)

where hi, ji corresponds to the nearest-neighbor interaction
between Cr5+ ions only in the lattice. The first term with an
interaction strength of Jinter is ferromagnetic and defines the
coupling between two layers in the lattice (see Fig. 31). The
second term JD1 is responsible for coupling spins within the
‘up’-triangles in first layer and is ferromagnetic too. The third
term Jr1 is similar to the second term but for the ‘down’-
triangles and is anti-ferromagnetic. Terms with interaction
matrix elements labelled by JD2 and Jr2 are similar to the first
two terms but for the second layer. The combination of
ferromagnetic and anti-ferromagnetic interactions leads to
spin-frustration. The magnetization curve of the material along
the z-direction is obtained by adding the following term:

Hfield ¼ H þ
X
i

gsmBBzS
z
i (117)

where gs E 2 and mB is the Bohr magneton and is equal to
5.7883818012 � 10�5 eV per Tesla and Bz is the strength of the
external field along the z-direction. The ground state of the
above model was investigated using the Projected Entangled

Simplex State (PESS) algorithm in the thermodynamic limit.541

as a function of bond dimensions. Trends in the ground
state energy, heat capacity and magnetization and magnetic
susceptibility indicated a gap-less spectrum of a spin-liquid.

The DMRG algorithm (see Section 3.4.5) has been extremely
useful in finding the ground state of one-dimensional systems.
Despite the success of DMRG, the method is not suitable for
simulating a high-dimensional system. It requires projecting
the multi-dimensional state into one dimension which causes
the computation time to grow many-fold. Murg et al. in their
report542 demonstrate a general approach to simulate ground
states of systems in higher dimension using the tree tensor
network ansatz (see Section 3.4.2). By exploiting the advantages
of correlation scaling of TTN (correlations in TTN only deviates
polynomially from the mean-field value compared to MPS
which deviates exponentially)542 they efficiently simulate the
two-dimensional Heisenberg model and interacting spinless
fermions on a square lattice. They also demonstrate its working
on the simulation of the ground state of Beryllium atom.
Another study by Barthel et al.543 proposed an ansatz, Fermio-
nic Operator Circuit (FOC), to simulate fermionic systems in
higher dimension by mapping the fermionic operators onto
known tensor network architectures, namely, MPS, PEPS, and
MERA (see Sections 3.4.1, 3.4.3 and 3.4.4, respectively). FOC is
composed of products of fermionic operators and are known to
be parity symmetric. The biggest challenge in formulating a
FOC is to manage the sign factors while reordering the fermio-
nic operators. Authors propose an efficient scheme to contract
an FOC which computationally scale similar to the contraction
of standard TN architectures. The efficiency of the scheme
emerges from the fact that while contracting Jordan–Wigner
string within a causal cone (specifically referring to the MERA
based FOC), the strings outside it are not accounted. The
scheme provides a method to formulate fermionic problems
in the tensor network notation so that they can be benefited
from the existing tensor network algorithms. In another
study,544 authors propose a PEPS based algorithm to classify
quantum phases of matter in a fermionic system with a specific
emphasis on topological phases. Authors introduce a Grassman
number tensor network ansatz to study the exemplary Toric
code model and fermionic twisted quantum double model
which support topological phases. While working with fermio-
nic problems in quantum chemistry, the choice of the most
suitable orbital is very crucial. Author in the report545 propose a
tool to optimize the orbitals using a tensor network.

Thermal state or Gibbs state provides efficient description of
systems in equilibrium (see ref. 546 for a detailed review).
Simulating these states at a finite temperature for higher
dimensions is computationally challenging. Authors in the
report547 propose an algorithm based on projected entangled
pair states (see Section 3.4.3) to compute the thermal state of
two-dimensional Ising model and Bose–Hubbard model on
infinite square lattice. They use a method akin to annealing,
i.e., cool down the state from a high temperature to attain the
desired finite-temperature state. A thermal state can be
described as, r = e�bH, where H is the Hamiltonian of the

Fig. 31 The crystal structure showing only the Cr5+ ions in Ca10Cr7O28.
Five different interaction matrix elements as illustrated in eqn (116) are
depicted. Reprinted from A. Kshetrimayum, C. Balz, B. Lake and J. Eisert,
Tensor network investigation of the double layer Kagome compound
Ca10Cr7O28, Ann. Phys., 2020, 421, 168292, Copyright (2022), with per-
mission from Elsevier.
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system and b is the inverse temperature. In the infinite
temperature limit, the thermal state is described by just an
identity matrix. The evolution of state can be performed by the
operator e�DbH which can be approximated by Suzuki–Trotter
expansion. The final state’s description reads as

r ¼ ðe�DbHÞm=2Iðe�DbHÞm=2 (118)

where mDb = b (m is the number of temperature steps). The
state evolution operator is represented in the Projected
Entangled Pair Operator (PEPO) notation.

Moving a step further, there are states which do not ther-
malize due to many-body localization (MBL) and studying them
is both interesting and difficult. In the report,548 authors
propose an algorithm based on infinite PEPSs to simulate time
evolution of disordered spin-1/2 XXZ Hamiltonian on a square
lattice. They initialize the system in the Néel state |c0i and
update it with the time evolution operator as

|c(t)i = e�iHt|c0i.

They estimated the expectation value of the local particle
number to determine the phases of the system for varying
disorder dimensions and disorder strengths.

5.3.2 Quantum-computing enhanced machine learning
techniques. The above studies involved the usage of ML in its
classical sense. Implementing neural networks where a quan-
tum computer is involved to either in part (hybrid classical-
quantum approach) or in entirety is suspected to achieve speed-
ups that could be very beneficial to many fields of study, in
particular chemistry. A parameterized quantum circuit-based
quantum-classical hybrid neural network was proposed by Xia
et al.206 This study uses the fundamental idea that a neural
network is composed of a linear part and a non-linear activa-
tion part (a theoretical framework discussed in Section 3.3.1).
The linear part is now made of a quantum layer and the non-
linear part is composed of measurements, which is also the
classical part of the hybrid quantum-classical method. The
quantum layer is constructed using parameterized quantum
circuit (PQC). Having encoded the input data as quantum
states, the PQC is optimized to approximate the output state,
and the outputs are extracted as the expectation values by
measurements. The encoding of the input along with the usage
of PQC and computing the outputs can be repeated several
times to construct a hybrid multi-layer neural network and is
trained in an unsupervised fashion for the ground state ener-
gies on a few bond lengths. The trained network is now used to
predict the energies for other bond lengths. The authors show
high accuracy for obtaining the ground state energies of H2,
LiH, and BeH2.

Xia and Kais517 also developed a hybrid quantum machine
learning algorithm, which involves a three-layered RBM
approach as shown in Fig. 30(b). The first two layers encode
the amplitude field similar to ref. 346, while the third layer
consisting of one unit is to deal with the lack of sign (
1) in the
electronic structure problems. Now the ansatz for state-vector

|ci is given by:

jCi ¼
X
x

ffiffiffiffiffiffiffiffiffiffi
PðxÞ

p
sðxÞ xj i; (119)

where

PðxÞ ¼

P
fhg

e

P
i

aisziþ
P
j

bjhjþ
P
ij

wijszi hj

P
x0

P
fhg

e

P
i

aisz
0
i
þ
P
j

bjhjþ
P
ij

wijsz
0
i
hj

(120)

sðxÞ ¼ tanh cþ
X
i

disi

 !
þ i eþ

X
i

fisi

 !" #
(121)

In order to simulate the distribution P(x), a quantum
algorithm is proposed to sample from Gibb’s distribution.
The quantum circuit mainly consists of two types of operations:
� Single-qubit Ry gates that correspond to a rotational

operation whose angle is determined by the bias parameters
ai (visible) and bj (hidden) and is responsible for simulating the
non-interaction of the distribution in eqn (120).
� A three-qubit gate C1–C2–Ry (efficiently representable by

two-qubit and single-qubit operations) that is a controlled–
controlled–rotation whose angle is determined by the connec-
tion parameter wij and is responsible for simulating the inter-
action between the visible and hidden layers of the distribution
in eqn (120). The target qubit of each such controlled opera-
tions is an ancillary qubit which was re-initialized and re-used
post-measurement.

A Boltzmann distribution for all configurations of the visible
and hidden layers can be generated through the quantum
circuit similar to as shown in Fig. 30(d). This algorithm is
based on sequential applications of controlled-rotation opera-
tions, and tries to calculate the interacting part of the distribu-
tion P(x) with an ancillary qubit. The ancillary qubit was
thereafter measured and conditioned on the measurement
results sampling from P(x) is deemed successful. With P(x)
computed through the quantum circuit and s(x) computed
classically, |ci can now be minimized by using a gradient
descent. Having described the method, the authors show the
results corresponding to the ground states of H2, LiH, and H2O
molecules (Fig. 32).

An extension to the work by Xia et al.517 was proposed in the
study by Kanno,518 wherein an additional unit in the third layer
of the RBM was introduced in order to tackle periodic systems
and take into account the complex value of the wavefunction.
So, the sign layer contains two units, one to encode the real part
and the other to encode the complex part of the wavefunction
as shown in Fig. 30(c). The authors construct the global
electronic structure using DFT, then an effective model with
just the target band. By using the maximally localized Wannier
function for basis construction for the effective model, a
Hubbard Hamiltonian for the target bands is built. The choice
of the material is graphene with the target band being the
valence band contributed by the 2pz orbitals of the two carbon
atoms within an unit cell. Using the algorithm by Xia and
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Kais,517 this study shows the pristine valence band of graphene
in the presence and absence of band splitting for a finite
repulsion U parameter within the Hubbard Hamiltonian.518

In the above, ref. 517 and 518, the efficacy of the quantum
circuit was tested by simulating it on a classical computer. To
benchmark the performance on an actual quantum device,
repeated use of a single ancilla qubit would not be operation-
ally convenient. A slightly modified variant of the quantum
circuit with (m � n) qubits in the ancilla register has been used
thereafter to act as targets of the controlled operations347,519 as
shown in Fig. 30(d). One must note that m denotes the number
of neurons in the hidden layer and n denotes the number of
neurons in the visible layer. Sureshbabu et al. in ref. 519 uses
this circuit to benchmark implementation on two 27 qubit IBM-
Q devices for the valence bands (within the tight-binding
framework) of hexagonal boron nitride (h-BN) and monolayer

graphene, respectively. A Hubbard Hamiltonian similar to
ref. 518 was used to explore band-splitting as shown in
Fig. 33(a and b). Excellent results were obtained even on an
actual NISQ device through the use of measurement-error
mitigation and repeated warm starting with well converged
results for nearby k points in the energy trajectory.

The classical-quantum hybrid algorithms described above
focus their attention on only computing the ground states of
molecules and materials. In the work by Sajjan et al.,347 the
authors use the idea of constrained optimization to obtain any
arbitrary energy eigenstates of molecules and materials
through a user-defined choice. The authors define a quadratic
minimization problem with a penalty procedure to achieve the
target state.347 The procedure is capable of producing a mini-
mum energy state in the orthogonal complement sub-space of a
given user-defined state. The latter state can be obtained from a
prior run of the same algorithm. The authors also elucidate the
protocol to systematically filter states using a symmetry opera-
tor (say S) of the Hamiltonian by sampling the symmetry
eigenspace labelled by the eigenvalue (say o). Apart from this
in the same reference Sajjan et al.347 also deduce a generic
lower bound for the successful sampling of the quantum circuit
and thoroughly discuss special limiting cases. The lower bound
can be surpassed with a tunable parameter which the user can
set to ensure the ancilla register collapses into the favorable
state enough number of times on repeated measurements
of the quantum circuit as shown in Fig. 30(d). Only such
measurements are important in constructing the distribution
in eqn (120). The role of measurement error mitigation
and warm-initialization on the algorithm, measurement statis-
tics of the algorithm, transferability of the algorithm to
related tasks, and the effect of hidden node density to name
a few were thoroughly explored. Specific examples used
were important categories of 2D-materials like transition metal
di-chalcogenides (TMDCs) whose entire set of frontier bands
(both valence and conduction), band-splitting due to spin–orbit
coupling (SOC), etc., were accurately obtained even when
implemented on 27-qubit IBMQ processors. Representative
data for monolayer Molybdenum di-Sulfide (MoS2) for valence
and conduction bands are shown in Fig. 33(c) and for symmetry
filtering using squared-orbital angular momentum (L2) opera-
tor in Fig. 33(d and e). Molecular examples to study the effect of
multi-reference correlation were explored both in the ground
and excited states. In each case the performance of the algo-
rithm was benchmarked with metric like energy errors, infide-
lity of the target state trained on the neural network, constraint
violation, etc.

Tensor networks as described in Section 3.4 have been used
as an ansatz to classically simulate numerous quantum systems
with limited entanglement. One can map a quantum many-
body state represented on a tensor network to quantum circuits
so that it can harness the quantum advantage. The goal is to
prepare variational states using quantum circuits which are
more expressive than tensor networks or any other classical
ansatz and also are difficult to simulate on classical computers.
In a recent report, the authors549 use this idea to represent

Fig. 32 (a–c) Ground state energies of H2, LiH, and H2O, respectively. (d)
Ground state energy of LiH having used a warm starting procedure. The
inner panels indicate the error with respect to exact diagonalization values.
The panel is reproduced from ref. 517 with permission under Creative
Commons CC BY license.
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Fig. 33 Band structures of 2D materials as computed from RBM implementation on classical computer, quantum simulator (qasm) and actual IBM-Q
devices.519 (a) Valence band of graphene with the Hubbard U interaction = 0 eV. (b) Valence band of graphene with the Hubbard U interaction = 9.3 eV
(Reprinted (adapted) with permission from S. H. Sureshbabu, M. Sajjan, S. Oh and S. Kais, J. Chem. Inf. Model., 2021, 61(6), 2667. Copyright 2021 American
Chemical Society). (c) Valence (VB) and conduction bands (CB) of MoS2 obtained along with the infidelity of the target state learnt by the network in each
flavor of RBM implementation. CB is obtained through the constrained minimization procedure.347 (d) The energy, constraint violation error, energy error
and state infidelity comparison corresponding to symmetry filtering for MoS2 with the operator (L2) using the constrained minimization procedure.347 The
eigenspace of this operator is labelled by o = 0. (e) The energy, constraint violation error, energy error and state infidelity comparison corresponding to
symmetry filtering for MoS2 with the operator (L2) and o = 4 a.u. (Reprinted (adapted) with permission from M. Sajjan, S. H. Sureshbabu, and S. Kais, J. Am.
Chem. Soc., 2021, DOI: 10.1021/jacs.1c06246. Copyright 2021 American Chemical Society.)
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quantum states with variational parameters of quantum circuit
defined on a few qubits instead of standard parameterized
tensor used in DMRG (see Section 3.4.5). They show that
sparsely parameterized quantum circuit tensor networks are
capable of representing physical states more efficiently than the
dense tensor networks. Authors refer to the standard tensor
networks with all variable elements as Dense with a prefix ‘D’
while the quantum circuit tensor networks are referred with
their names prefixed with ‘q’. In theory, the number of gates
required to exactly recover a q-qubit unitary grows exponentially
with q. The bond dimensions (D) between local tensors of
tensor networks are encoded into quantum circuit using an
unitary operator defined on q qubits where q = log2(D). Contrary
to this, the authors claim that only a polynomial number of
variational parameters of two qubit unitaries and isometries are
sufficient to express the quantum state. Authors work with
three types of local circuits to represent the unitary:
� Brick-wall circuit: it has a layered structure with successive

layers fully connected via two-body unitary gates. In Fig. 34(a) a
brick-wall circuit is shown with depth t = 6. The effective
correlation length is proportional to the depth; hence, the
correlations in brick-wall circuit are known to spread slowly
with increasing depth.
� Ladder circuit: it also has a layered structure with denser

connections. The first and the last qubits are entangled to each
other in the first layer itself. This structure allows efficient propaga-
tion of correlations. Fig. 34(b) shows a ladder circuit with depth t = 4.
� MERA circuit: its architecture is inspired from the MERA

tensor networks (described in Section 3.4.4). It has isometric
tensors and unitary disentanglers arranged in alternate layers.
Fig. 34(c) shows a MERA circuit with depth t = 5.

Two different paradigmatic Hamiltonians – Heisenberg and
Fermi–Hubbard model have been used to test the efficacy of the
technique using both local DMRG like optimization and global
gradient based optimization. The minimization of the energy
(E = hc|Ĥ|ci) is performed using conjugate gradient550 and
LBFGS-B.551

Empirically the relative error dE in the ground state energy
was found to be inversely proportional to the polynomial of
number of variational parameters n.

dE(n) B an�b (122)

The results obtained by implementing different local quantum
circuit tensor networks are shown in Fig. 35. Fitting the
eqn (122) on the data generates set of (a,b) parameters which
are summarized in Table 2.

The parameter b gives the asymptotic behaviour of accuracy
of the circuit depending on the number of parameters. A higher
b indicates that for the same number of parameters, the model
is approximating the ground state better. Hence, it is quite
evident that ansatz based on quantum circuit tensor networks
is more expressive compared to the standard classical variants
studied in the report as the former yields comparable accuracy
to the latter with a lower parameter cost. This clearly explicates
the need for simulating tensor networks on a quantum-
hardware to realize its optimum potential for understanding
many-body quantum systems.

Being limited by the number of noiseless qubits available on
any quantum hardware in the NISQ era, a recent report552 has
illustrated how to decompose a 2N-qubit circuit into multiple
N-qubit circuits. These N-qubit circuits can be run on NISQ
devices while their results can be post-processed on a classical
computer. In this formulation, the state |ci on 2N qubit system
can be partitioned into smaller states defined on N qubits using
Schmidt decomposition (similar to MPS defined in Section
3.4.1).

jci ¼ ðU � VÞ
X2N
n¼1

lnjbni � jbni (123)

where |bni are the N-qubits states in the computational basis, U
and V are unitary operators acting on the two subsystems that
transform the computational basis to the desired state and lns
are the Schmidt coefficients which determine the degree of
correlation present within the system. Using the above state,
the expectation of a 2N-qubit operator defined as O = O1 # O2

Fig. 34 A schematic diagram showing architectures of different local circuits. (a) A brick-wall circuit, (b) ladder circuit, and (c) MERA circuit. Each rank-4
tensor is represented by a circle denoting two-qubit unitary gates. The different colours represent different layers of the circuit. The arrows in the circuits
show the direction of canonicalization. Depths of the circuits are six, four, and five, respectively. Reproduced from ref. 549 under Creative Commons
Attribution 4.0 International license.
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can be written as

hOi ¼
X2N
n¼1

ln2hbnj ~O1jbnihbnj ~O2jbni þ
Xn�1
m¼1

lnlm

 

�
X
p2Z4

ð�1Þp fp
bnbm

D ��� ~O1 fp
bnbm

��� E
fp
bnbm

D ��� ~O2 fp
bnbm

��� E!

(124)

where Õ1 = U†O1U and Õ2 = V†O2V, and fp
bnbm

��� E
¼

ðjbni þ ipjbmiÞ
� ffiffiffi

2
p

with p 2 Z4.
Authors use this approach to simulate the ground state of

water molecule using VQE simulation. They use the frozen core
approximation and to enforce spin symmetry set U = V. This

yields ten spin orbitals of the water molecule in the STO-6G basis
set which using the aforesaid scheme can be encoded into five
qubits on the quantum processor. The formalism yields excellent
values of energies for geometries which are distorted through
stretching of the O–H bond in H2O molecules by using just 3
Schmidt coefficients even though the results degrade from the
exact value for deformations of the H–O–H bond angle.

Another algorithm has been proposed based on tensor net-
works to solve for any eigenvector of a unitary matrix Q, given
black-box access to the matrix. When working with a given
Hamiltonian for a physical system, the black-box unitary can be
prepared by applying the unitaries of the problem Hamiltonian
and the mixing Hamiltonian alternatively for different times. In
that case Q will be characterized by time-parameters. A para-

meterized unitary Uð~yÞ is used to define the state ansatz. The
loss function for estimating the ground state of Q is simply
maximizing the probability of projecting each qubit to |0i. If k
denotes a k-ebit matrix product state (MPS) then the value k
value is iteratively increased until the desired accuracy is
achieved. k ranges from 1 to n=2d e because the maximum
entanglement produced by an n-qubit quantum circuit of depth
m is min n=2d e;mf g ebits. The implementation complexity of the
algorithm (measured in terms of number of CNOT gates used)

Fig. 35 A comparison of expressibility of quantum circuit tensor networks (qMPS, qMERA), standard tensor networks (dMPS and dMERA), and global
quantum circuits (QC). The expressibility (or variational power) is measured by seeing the relation between relative energy error dE versus the number of
variational parameters in the ansatz. Figures (a–c) are for Heisenberg model while (d–f) are for Fermi-Hubbard model of lattice size 32. The post-fixes ‘b’
and ‘l’ denote the brick-wall and ladder circuit. (a, b, d and e) The comparison between brick-wall and ladder qMPS acting on different number of qubits
(q), QC and dMPS. (c and f) Comparison between qMERA-b with varying q, qMPS-b, and dMERA. Reproduced from ref. 549 under Creative Commons
Attribution 4.0 International license.

Table 2 The (a, b) values obtained numerically from the various ansatz
employed in ref. 549

Ansatz Heisenberg (a, b) Hubbard (a, b)

qMPS-b (20, 4) (9, 1.9)
qMPS-l (14, 3.1) (10, 1.9)
qMERA-b (15, 3.1) (6.0, 1.4)
dMPS (DMRG) (15, 2.9) (8.0, 1.5)
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scales as O(l�n�r2) where n is the number of blocks and r is the
rank of tensor network and l is the number of steps required to
terminate the optimization routine. This algorithm has a sig-
nificant advantage over other variational techniques in that it
terminates when the state reaches the eigenstate of system.

5.4 Estimation and parameterization of force fields in
molecular dynamics

5.4.1 Machine learning techniques on a classical proces-
sor. The use of molecular dynamics (MD) simulations to unravel
the motion of molecules dates back to 1977 by McCammon
et al.553 Their study simulated dynamics of folded protein for
E10 ps which unraveled the fluid-like nature of the interior
region of protein for the first time. Since then the field of
molecular dynamics has seen various incarnations from increas-
ing the simulations system size to million-atoms554 to simulating
it for a longer time scale using parallel computing.555 While
performing MD simulations Newton’s laws of motions are
numerically integrated at each time step, which requires a set of
initial conditions (position and velocity of each particle) and a
comprehensive understanding of atomic forces acting on the
system. The best way to obtain these forces is via first-
principles, i.e., solving the Schrödinger equation for a particular
configuration of the nuclei. Unfortunately getting an exact analy-
tical solution for the Schrödinger equation (SE) is a herculean task
for most of the chemical species. Thus some levels of approxima-
tions are considered while solving the exact SE. In this approach,
the size of the problem increases exponentially as a function of
degrees of freedom (DOFs) and thus increasing the computation
cost. For example advance ab initio electronic structure calcula-
tions, such as coupled cluster singles-doubles (CCSD), its pertur-
bative triples variant CCSD(T) scales as Oðn7Þ where n is the
number of basis functions used.

Thus ab initio calculations are known for their precision but they
are computationally expensive restricting their application to smaller
systems in the gas phase or solid-state periodic materials. To model
larger systems we have to use a higher level of approximation and
use empirical force field (FF) methods. Their computational effi-
ciency allows the simulation of systems containing millions of
atoms554,556 and exploration of much longer simulation time scales
(100 ms).557 An FF is an analytical expression that denotes intera-
tomic potential energy as a function of the coordinates of the system
(for a particular configuration) and set of parameters. Depending on
the intricacy of the underlying system different FFs are employed
and today’s scientific literature provides a myriad choices. But a
standard expression for an FF resembles like

U ¼
X
bonds

1

2
kboðr� reqÞ2 þ

X
angles

1

2
kanðy� yeqÞ2

þ
X

dihedral

Vdih þ
X

improper

Vimp

þ
X
LJ

4eij
s12ij
r12ij
�
s6ij
r6ij

 !
þ
X
ij

qiqj

rij

(125)

The first four terms are intramolecular contributions (the
first term corresponds to bond stretching followed by bending,
dihedral rotation, and improper torsion). The last two terms
correspond to van der Waals (12-6 Lennard-Jones potential) and
coulombic interactions. The parameters in FF (kbo, req, kan and
yeq) are usually obtained via ab initio or semi-empirical calcula-
tions or by fitting to experimental data such as X-ray and
electron diffraction, NMR, infrared, and Raman spectroscopy.
A general review of the force fields for molecular dynamics can
be found in ref. 558 and 559. The final aim of FF is to express all
the quantum mechanical information in classical terms, split-
ting up the total electronic energy of the system into well-
divided atom–atom contributions (coulombic, dispersion, etc.).
However, it is an arduous task to split up the total electronic
energy even after using precise quantum mechanical calcula-
tions. Thus while determining inter-molecular forces we need
to consider crucial physical approximations which limit the
accuracy. So depending on the system one chooses a certain
level of approximation and uses the input data to optimize
parameters which makes this approach empirical. Basic steps
to form a new force field involve accessing the system to select a
functional form for the system’s energy. After this, we need to
choose the data set which determines the parameters in the
function defined earlier. Earlier people used to use experi-
mental data from X-ray or neutron diffraction (for equilibrium
bond lengths) and different spectroscopic techniques (for force
constants). But in most of the cases, the experimental data used
to be insufficient or inaccurate, thus nowadays ab initio data are
preferred. Next, we optimize these parameters, in general; there
exists colinearity between them i.e. these parameters are
coupled (changing one would change another), so the optimi-
zation is done iteratively. The last step involves validation
where we calculate different properties of the system which
are not involved in the parametrization.

Thus the underlying assumptions behind an FF eventually
limit the accuracy of the physical insights gained from them.
Since conventional FFs do not explicitly model multi-body inter-
actions, polarizations and bond breakings during a chemical
reaction make their predictions highly inaccurate. Although
there are specially developed FFs (AMOEBA, ReaxFF, RMDFF,
ARMD)560–563 that include these effects at a certain computational
cost, in most of these cases there exists ambiguity regarding the
necessity of inclusion of these effects. Mixed Quantum
Mechanics/Molecular Mechanics (QM/MM)564 becomes a handy
tool while dealing with huge systems (bio-molecules). As the name
suggests it employees quantum mechanical treatment for a subset
of the problem (reactive region) and the rest of the problem
(environment) is being treated classically. This way the QM/MM
approach includes certain quantum correlations in bigger systems
improving its accuracy (compared to FF). Although it may seem
that the QM/MM approach is the most optimal way to simulate
huge problems but one needs to consider huge ‘‘reactive region’’
to get converged results which eventually increases the
computational cost.

Machine Learning Force Fields (ML FFs) combine the accu-
racy of ab initio methods with the efficiency of classical FFs and
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resolve the accuracy/efficiency dilemma. ML approaches evade
solving equations and rely on recognizing the underlying
pattern in the data and learning the functional correspondence
between the input and the output data with unparalleled
accuracy and efficiency.507,565 Unlike conventional FFs ML
FFs do not require predetermined ideas about the bonding
pattern assumptions. This distinctive feature makes ML
approaches admirable in the chemical space and there are
huge number of options ML models are available or MLFFs
ranging from PhysNEt,566 sGDML,565 GAP,567 SchNet,568

HDNN569 and ANI.570 However, it is not trivial to extend the
classical ML formalism to generate FFs. The reason being
exacting standards are imposed on the ML FFs which offers
an alternative to the already established benchmark FFs. Addi-
tionally, classical ML techniques (Natural Language Processing
(NLP), Computer Vision, etc.) assume huge reference data sets
while optimizing thousands of training parameters, whereas it
is very difficult to get such extensive data sets in the case of
natural sciences, since each data set is generated either from an
expensive ab initio calculation or from rigorous experimental
measurement. Thus data efficiency becomes a key factor while
developing ML FFs, which is resolved by encoding the physical
knowledge or laws directly into the architecture of the ML
models.565,568 Ref. 571–573 discuss the construction of
potential energy surfaces using different supervised machine
learning techniques for complex chemical systems and electro-
nically excited molecular states. A recent review by Unke
et al.574 presents an in depth overview of ML FFs along with
the step-by-step guideline for constructing and testing them.
The rest of the section focuses on the application of ML to
optimize the FF parameters in ReaxFF575 which eventually leads
to more accurate physical insights. We will show specific
example576 where ML is used for parameter optimization.

Refinement of parameters is essential while employing
ReaxFF MD for chemical reactions. To get insights about static
properties (energy, force or charge distribution) fitting of FF
parameters is done by using specific quantum mechanical
(QM) training data. Genetic algorithm577,578 and its multi-
objective variant579 have been developed to ease out the para-
meter optimization using QM data. However, application of
ReaxFF for dynamic non-equilibrium chemical reactions
(chemical vapour deposition) is not straightforward, as it is
unfeasible to gain QM training data set for fitting. In addition,
the dynamical properties we would like to predict decide the
computational cost and resources needed for parameter fitting.
In such situations, ML-based approaches comes to our rescue.
Hiroya and Shandan576 recognized the flexibility that ML-based
models offer and used it to efficiently optimize the parameters
in ReaxFF. Their approach uses the k nearest neighbor algo-
rithm to get several local minima and then optimization is
done using ML. The most distinctive feature in this approach is
that it can combine efficiency from ML-based optimization with
accuracy from other optimization techniques (Monte Carlo/
genetic) making itself a powerful tool.

The first step in parameter optimization is creating a reference
parameter data set (Pbe1, Pbe2,. . ., Dij, Rvdw,. . ., Pval2,. . .) for the

given ReaxFF. The ReaxFF parameters encode the information
about the system’s potential energy’s different terms (bonding,
lone pairs, van der Waals etc.). This reference data set is then used
for the random generation of N (E100) different data sets. While
generating random samples from the reference data two different
strategies are implemented; in the first strategy, a random change
is made in the ReaxFF parameter set which is followed by the
second strategy where we exchange parameters between different
ReaxFF data sets. During the random sampling process, it is
important to find the sweet spot where the sampling process
should not result in a huge deviation making the resultant
random sample unphysical at the same time the resultant ran-
dom sample should not be too close to the reference data (the
model will be stuck at the local minima) (Fig. 35 and 36).

The next step involves score assessment where a score
S(pi)

ReaxFF is calculated for each training reference data set pi.

SðpiÞReaxFF ¼
XNQMtype

j

wjSjðpiÞ
NQMtype

(126)

SjðpiÞReaxFF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNQMtype
j

k

QReaxFF
k; j ðpiÞ �QQM

k; j

� �2
N

QMtype
j

vuuut (127)

Here NQMtype is the number of geometry sets and
NQMtype

j corresponds to the number of different structures in
the jth geometry set. These structures constitute a specific
physical property (potential energy change as a function of
volume change in a-Al2O3 crystal).

After evaluating the score of every training data ML is used
for data analysis. There are three major steps: (1) use Random
forest regression to extract important features, (2) update initial
parameters by the k-nearest neighbor (k-NN) algorithm and (3)
use grid search to get the optimal parameters. In the first step,
random forest regression is employed, where the objective
function for minimization can be written in the form of
difference between the actual score calculated via ReaxFF and
the estimated score via ML:

vrmse ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i

SðpiÞReaxFF � SðpiÞML

N

vuut (128)

vjrmse ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i

SjðpiÞReaxFF � SjðpiÞML

N

vuut : (129)

Here N is the number of random samples created and j
denotes each structure group. The ML model is build by
minimizing eqn (128) and (129). At the end of ML training
important features are extracted which will be used further
during grid search parameter optimization. The second step
consists of applying the k-NN algorithm to divide the training
data into k different groups on the basis of closest distance. For
each group scores (eqn (127)) are calculated and the parameter
set corresponding to the minimum score is selected eventually
modifying the initial parameter set. The modified initial
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parameter set after the k-NN algorithm is not fully optimized,
the reason being in a way it is being chosen from the initial
data set. Thus grid search parameter optimization is used in
the third step which is combined with the extracted parameters
from the trained ML model.

Grid search parameter optimization (GSPO) is defined by
three parameters n, l and m. Every geometry set (containing
NQMtype various physical properties) has a corresponding ML
model with different variations of important features. Depend-
ing on the importance of particular feature, groups are formed
containing n elements. In Fig. 37 we take n = 4, the parameters
corresponding to model A are sorted according to their impor-
tance (sensitivity). Since n = 4, first four important parameters
are clubbed together forming group A; the next set of 4 will be

named group B so on so forth. This process is repeated with all
the ML models. Since each ML model has varying feature
importance levels the groups will contain different parameters.
GSPO is then carried out on individual groups by splitting it
into m grid points. As each group contains n parameters the
total number of grid points becomes mn. Getting scores
eqn (126) for every grid point for comparison is a laborious
task. ML alleviates this issue by selecting l test parameter sets
from the haystack of mn different parameter sets. At every
group, the scores of l test parameters are compared with the
initial sets of parameters obtained from k-NN. If the score of a
particular parameter set (in l) is less than the score of the initial
sets of parameters the parameters are updated. However, it is
still a time-consuming task to repeat the process for all the

Fig. 36 Schematic representation of random sampling (a) initial parameter references (A, B, and C inside denote the initial parameter set to generate the
reference ReaxFF parameter set); (b) definition of a parameter set and explanation about random modification scheme; and (c) entire image of the
sampling space using the random modification scheme. The open dashed circles A, B, and C on the right side denote the sampling space in the vicinity of
the initial ReaxFF parameter sets A, B, and C. The open dashed circle D denotes a new sampling space, which is different from A, B, and C. Figure adapted
with permission from ref. 576.

Fig. 37 Illustration showing entire the machine learning scheme. Figure adapted from ref. 576.
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groups (A, B,. . ., Z). Since the score does not change much when
the group is not sensitive enough. A new cutoff term nlayer is
introduced which determines when to stop computing score for
a particular group and move on to the next. For instance, if
nlayer = 2 GSPO is carried out on group A (most important) and
group B (next most important). After this GSPO moves on to ML
model B.

To summarize, while optimizing the parameters of ReaxFF
broadly, there are three major steps involved: (1) use random
forest regression to construct ML models and extract important
features, (2) locate probable local minima using the k-nearest
neighbour algorithm and (3) use grid search optimization to
optimize the parameters using information from developed ML
models. It is important to note that different optimized para-
meters sets will predict the potential energy decently (in agree-
ment with QM), although their estimation for different physical
properties will diverge. The reason is an unavoidable uncer-
tainty is carried out corresponding to a particular physical
property during the parameter estimation. Hiroya and
Shandan576 used this approach on a pilot test in which the
optimized parameters of ReaxFF were further used to simulate
chemical vapour deposition (CVD) of an a-Al2O3 crystal. The
optimized parameters decently predicted the crystal structure
of a-Al2O3 even at high temperatures (2000 K). Stochastic
behavior or the random forest algorithm used in different ML
approaches results in hundreds of error evaluations during
training for complex training jobs, where each error evaluation
involves minimizing the energy for many molecules in the
training data. Recently Mehmet et al.580 proposed a novel
method that employs an automatic differentiation technique
from the JAX library developed by Google to calculate the
gradients of the loss function. It is impressive that the effi-
ciency of the gradient-based local optimizer is independent of
the initial approximation made for ReaxFF. Given reasonable
computing resources, ML-assisted parameter optimization
techniques are powerful tools that can be used to simulate
wide spectra of reactive MD simulations.

In Non-Adiabatic (NA) Molecular Dynamics (MD) simula-
tions Born–Oppenheimer (BO) approximation breaks down and
the electronic and nuclear degrees of freedom cannot be
treated independently. These simulations perform a pivotal
role while understanding the dynamics of the excited states.
Recently, supervised machine learning techniques have been
employed which interpolate NA Hamiltonian along the classical
path approximated NA-MD trajectories581–583 eventually speed-
ing up NA MD simulations.45,584–586 NA MD simulations act as a
robust resource especially while predicting macroscopic obser-
vables such as quantum yield without knowing the mechanism
for the larger systems involving strong couplings in which it is
difficult to choose a reaction coordinate.587–589 But they come
with a cost of expensive ab initio calculations of geometry-
dependent forces and energies or the different states. In such
situations, ML techniques come to the rescue by predicting
band gaps and NA coupling using a small fragment of ab initio
training data.45,585,586,590,591 To predict the physical properties
of materials, unsupervised ML techniques592–595 have been

employed on the trajectories of NA MD simulations while
explaining the dominant structural factors.596–598 Many times
Mutual Information (MI) is used to identify unanticipated
correlations between many important features. Results from
MI are easier to interpret and it is supported by information-
theoretic bound which makes it not sensitive to the size of the
data set.598,599 These properties make it popular for its applica-
tion in the chemical regime. For instance, a model of metal
halide perovskites (MHPs) based on unsupervised MI unveiled
the importance of geometric features as compared to the
atomic velocities while predicting non-adiabatic Coupling
(NAC).596

In a recent study by How et al.,600 supervised and unsuper-
vised ML techniques have been used for feature selection,
prediction of non-adiabatic couplings, and excitation energies
of NA MD simulations of CsPbI3 metal halide perovskites
(MHPs). MHPs have high optical absorption, low cost of
manufacturing and long carrier diffusion601–603 which make
them an ideal candidate for their use in optoelectronics and
solar energy harvesting materials. In order to improve the
design of MHPs it is important to develop a computationally
efficient and a systematic NA MD which utilizes the theory as
well as simulations to predict the physical properties of MHPs.
How et al.600 fill this knowledge gap by employing MI on the NA
MD trajectory data set of CsPbI3 perovskite and extracting the
most important features that determine the NA Hamiltonian.
The ML model is then validated by checking the performance of
the extracted important features to predict the band gap and
NAC. Their model showed surprising and counterintuitive
results suggesting that the NA Hamiltonian can be predicted
by using a single most important feature of the chemical
environment information of any of the three elements in
CsPbI3. This eventually leads to a drastic reduction in the
dimensionality of the original 360-feature ML model developed
from ML force fields to merely 12 featured ML models which
can produce high-quality NA-MD simulation results which are
further confirmed by the present theoretical knowledge about
the electronic properties of CsPbI3. This dimensionality
reduction technique helps alleviating the high computational
cost of ab initio NA-MD and to extend NA-MD simulations to
larger, more complex systems and longer time scales.

5.4.2 Quantum-computing enhanced machine learning
techniques. Previously variational quantum algorithms (VQAs)
have been applied for simulation of small systems604 with
strongly bounded intramolecular forces.605 Most of these
approaches relies on complete electronic basis set of the
hamiltionian. Smaller coherence times needed in VQAs makes
them ideal fit for the current generation Noisy Intermediate
Scale Quantum (NISQ) processors devices. However it is diffi-
cult to employ them for simulation of weak intermolecular
interactions as it requires consideration of core electrons (for
dispersive forces) leading to a bigger orbital sets eventually
requiring large number for qubits. Recently Anderson et al.606

resolved this issue by developing a VQA compatible coarse
grained model that scales linearly with the system size. Inspired
by the maximally coarse grained method607 their model
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represents the polarisable part of the molecular charge distri-
bution as a quantum harmonic oscillator in which the para-
meters are finely tuned empirically to emulate reference
polarisability values corresponding to a real molecule. The
model contains zero point multipolar fluctuations by definition
and thus dispersion interactions exist inherently. Additionally
it does not define force laws between atoms and molecules
(interaction potentials) which are predicted by using coarse
grained electronic structures. Thus the model combines prop-
erties from empirical approach and first principle ab initio
approach. Another advantage that this approach has is the
number of unique quantum circuits required to measure the
given Hamiltonian after considering all possible dipole inter-
actions scales linearly OðnÞð Þ with the number of quantum
oscillators compared to Oðn3Þ scaling when we consider an
orbital based VQE Hamiltonian with n orbitals.608

Anderson et al.606 showed the solubility of the proposed
model by presenting a proof of principle example by calculating
London dispersion energies for interacting I2 dimers on IBM
quantum processor. While relaxing the harmonic approxi-
mation, classical methods heavily rely on path integral and
Monte Carlo techniques for efficient sampling of two point
correlators for Gaussian states created by harmonic
Hamiltonians.609 Since sampling process for non-Gaussian
ground states of anharmonic potentials is very expensive
anharmonic electron-nuclear potentials remain unexplored
using classical computational techniques. The VQA base
approach shows a quantum advantage as it suffers negligible
experimental overhead while performing relaxation of the
harmonic approximation. Thus the VQA based approach pro-
vides a road-map that includes anharmonicity and higher order
terms for simulation of realistic systems which are inaccessible
for current classical methods. In conclusion quantum machine
learning provides an efficient and accurate way to model
realistic systems and may show a quantum advantage in the
future.

A detailed theoretical description of the nonadiabatic (NA)
process is limited by intricate coupling between nuclear and
electronic degrees of freedom (DOF) eventually leading towards
adverse scaling of classical computational resources as the
system size grows. Although in principle Quantum Computers
can simulate real-time quantum dynamics within polynomial
time and memory resource complexity, quantum algorithms
have not been extensively investigated for their application
towards the simulation of NA processes. A recent study by
Ollitrault et al.610 proposed a quantum algorithm for simula-
tion of a rapid NA chemical process which scales linearly as the
system size. Specifically, they propagated the nuclear wave
packet across k diabatic surfaces having nonlinear couplings
(Marcus model). The algorithm requires three quantum regis-
ters. First quantization formalism is used for DOF, so the
space and momentum are discretized and encoded in the
position quantum register. The population transfer between k
diabatic potentials is encoded in ancilla registers and the
nonlinear coupling in coupling register. The encoding scheme
is efficient in terms of number of qubits required as it scales

logarithmically with the precision. This majestic memory com-
pression while storing the propagated wave function denotes
an exponential quantum advantage as compared to its classical
counterparts (Fig. 38).

The algorithm was applied to simulate NA dynamics of a
wave-packet on a simple two one-dimensional harmonic
potential which is shifted in energy by a variable offset. In total
18 qubits were required to simulate this simple model. The
characteristic feature of decline in the population transfer of
the Marcus model in the inverted region was clearly observed in
the simulation, showing an excellent agreement with the exact
propagation. Although the simulation was not entirely imple-
mented on the quantum processor the reason is the huge
circuit depth of the quantum circuit corresponding to the
dynamics parts which requires higher coherence time not
attainable by the current generation of quantum processors.
But the first part of the algorithm which prepares an initial
Gaussian wave packet610 was implemented on an IBM Q device.
The extension of this algorithm to higher dimensions is
straightforward and a d dimensional polynomial potential
energy surface (PES) can be encoded with Oðd log2ðNÞÞ (N is
the number of discrete grid points). Current classical
algorithms611,612 are limited to simulations of molecular sys-
tems which are characterized by up to ten vibrational modes.
Hence a quantum processor offering approximately 165 qubits
with sufficient coherence time would alleviate this hurdle thus
providing an immense quantum advantage while understand-
ing fast chemical processes involving exciton formation, inter-
system crossings, and charge separation.

Although Quantum Machine Learning (QML) shows
quantum advantage in electronic structure calculation, its

Fig. 38 (a) Graphical description of the Marcus model; and (b) quantum
circuit representation for the time evolution of the wave packet. The
blocks represent the evolution operators shown in the form of quantum
gates. CQFT, Vi, K and C correspond to centred quantum Fourier transform
(used to switch from position to momentum space), ith potential, and
Kinetic and coupling terms, respectively. Figure adapted from ref. 610.
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application towards force field generation remains unexplored.
A recent study by Kiss et al.613 learns a neural network potential
energy surface and generates a molecular force field via sys-
tematic application of parametrized Quantum Neural Network
(QNN) techniques on the data set generated from classical ab
initio techniques. The proposed QNN model was applied on
single molecules and the results show the competitive perfor-
mance of the QNN model with respect to its classical counter-
parts. Additionally, the results suggest that a properly designed
QNN model exhibits a larger effective dimension resulting in
fast and stable training capabilities. This potentially hints
towards a possible quantum advantage of QML’s application
in force field generation.

5.5 Drug-discovery pipeline and pharmaceutical applications

To deploy machine learning or deep learning algorithms in
computer-aided drug discovery (CADD)615,616 it is important to
access large molecular databases wherein such structural infor-
mation about the target (receptor) and/or drug (ligand) candi-
dates may be found. Such databases are screened to generate
prospective hits based on either the binding affinity with the
target above a threshold for structure based protocols or by
looking at chemical similarities with previously known bio-
active candidates for ligand-based protocols. For the second
category, chemical databases like PubChem,617,618 ChEMBL,619

Drug-Bank,620 and DUD-E621 may be good choices. DUD-E
contains many decoys (ligands/drug candidates which show
similarity in properties but are not topologically similar in
structure) which may be useful for the testing and validation
of the trained models. For the first category wherein physical
information about the target protein is necessary, databases

like UnitProt,622 PDB,623–625 and PDBbind626 may be a useful
resource. Combination databases, BindingDB,627 which con-
tain experimental data for several ligands and targets together
have also been employed extensively too. Most of these data-
bases do encode the structural/physico-chemical attributes of
the candidate molecule and/or the target into a computer-
inputable format which are either numerically describable or
string-based. These are called features or very simply molecular
descriptors and often depending on the choice of the user other
molecular descriptors can be generated using the accessed
structural information with libraries like RDKit, etc. For the
ligand/drug, generic features like number of atoms, molecular
weight, number of isomers, etc. are often called 0D features as
they do not describe the specific nature of the connectivity of
atoms within the molecule and remain oblivious to conforma-
tional changes. 1D features like SMILES,628–630 SELFIES,631,632

and SMARTS633,634 which encode the connectivity pattern
within the molecule using strings are quite commonly used.
On the other hand, numeric features are based on fingerprints
which usually represent the molecule as a binary vector with
entry 1 (0) corresponding to the presence (absence) of certain
prototypical substructures/functional groups. These are further
divided into many categories like circular fingerprints like
ECFP635 which are extremely popular as they are quickly
generated, Morgan fingerprints,636 Molecular ACCess System
(MACCS),637 Tree based fingerprints,638 and Atom pairs639,640 to
name a few. Graph based 2D descriptors641,642 are also com-
monly used with the atoms in the molecule represented
as vertices and the bonds between them as connectivity
pattern. Adjacency matrix derived from such a graph can act
as a molecular descriptor. Fig. 39(b) shows an example for

Fig. 39 (a) The schematic overview of the key steps in computer-aided drug discovery (CADD). (b) Encoding the prospective drug/molecule into various
representative formats614 for machine learning algorithms to act on. Reprinted from – a review on compound-protein interaction prediction methods:
data, format, representation and model, 19, S. Lim, Y. Lu, C. Y. Cho, I. Sung, J. Kim, Y. Kim, S. Park and S. Kim, Comput. Struct. Biotechnol. J., 2021, 19,
1541–1556, Copyright (2021), with permission from Elsevier.
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representing a given molecule in the commonly used 1D and
2D formats. However, these 1D and 2D descriptors even though
widely used are often less sensitive to stereochemistry within
the molecule which may be important for evaluating binding
proclivity with the target. 3D descriptors are useful for this
purpose as detailed structural information like dihedral angles
are important for this encoding.643,644 Higher dimensional
encoding with information like specific conformational state,
interaction with the solvent or the background residues of
the target may also be used to enhance the predictive capacity
of the model.643,644

5.5.1 Structure-based drug designing protocols using clas-
sical machine learning techniques. We first see the perfor-
mance of machine learning techniques on the structure-based
drug designing protocols (see Fig. 39(a)). The primary goal for
such studies is to determine whether the prospective candidate
molecule can bind effectively (and thereafter evaluate the
binding pose and compute the binding affinity) to the target
receptor given that the structural information about the target
protein is available from prior experimental (like X-ray, NMR,
etc.) or theoretical studies.615,644 Even though experimental
assurances are the most trusted means of evaluating such an
interaction, yet simulation of the process gives an insight into
understanding the interaction between a prospective candidate
and the desired target relegating the need for direct labor and
money intensive experimental verification at a later stage
before clinical trial thereby leading to efficient screening.
Recently, convolutional neural-network (CNN) (basic theoreti-
cal formalism discussed in Section 3.3.2) and recurrent neural
network based models (RNN) (Basic theoretical formalism
discussed in Section 3.3.3) are being used to investigate the
process. In a celebrated study by Ragoza et al.,339 3D conforma-
tional images of the protein and molecule (ligand/drug) are
taken and trained with a CNN to identify which poses are
suitable for binding and which are not. The SAR-NRC-HiQ
dataset was used645 containing 466 ligand-bound receptors
(proteins). Two training sets are generated from it by re-
docking using Smina646 and labelled using the Auto Dock Vina
scoring function.647 These re-docked 3D structures are discre-
tized into grid near the binding-site with a length of 24 Å on
either axes and 0.5 Å resolution. The ligand and protein atoms
within each such grid point were differentiated. This served as
input to the CNN. The CNN model used had an architecture of
five 3 � 3 � 3 hidden layers with ReLU activation and addi-
tional max pooling layers. The model was trained using Caffe
Deep Learning framework648 minimizing multi-dimensional
logistic loss function using gradient descent as the training
algorithm. CNN outperformed AutoDock Vina scoring in pose-
prediction ability, i.e., grouping which poses afford a good
binding affinity. The superior performance of the model was
upheld for virtual screening too. Compounded datasets by
combining training examples from both the tasks were used
and the CNN model based training was found to be as effective
as their separate counterparts. Even though the CNN was not
trained on mutated protein datasets for binding affinity, yet it
was able to register the amino acid residues within the protein

critical for binding which afforded an easily interpretable
visualization of the features that the network is learning. The
work envisioned developing protocols to perform tasks like
pose-ranking, binding affinity prediction, and virtual screening
using a highly multi-task network trained on a much larger
dataset which can ameliorate its performance even more.

In a similar study Yang-Bin Wang et al.649 developed a
computational model with memory based on LSTM to con-
struct a framework for drug–target interaction. Information
about the drug–target pairs was obtained using Kegg,650

DrugBank651 and Super Target databases.652 Four classes of
targets were considered, i.e., enzymes, ion-channels, GPCRs
and nuclear receptors. From the dataset curated from the above
bases, the drug–target interaction pairs with known affinities
are set as positive examples while the remaining are treated as
negative examples. The structural features of the protein was
described using Position Specific Scoring Matrix (PSSM).649 For
a protein consisting of N amino acids, PSSM is an N � 20
matrix with the (i,j)th element of the PSSM denoting the
probability of mutating the ith amino acid in the sequence
with the native amino acid from the list of 20. The PSSM was
constructed using PSI BLAST.653 Legendre moments using the
elements of PSSM was then constructed to remove redundancy
in features. At the end 961 features were obtained for each
protein sequence. The structural features of the drug were
encoded molecular fingerprints. PubChem database was used
for this purpose which defines 881 sub-structural features. As a
result each drug/ligand was represented by an 881 dimensional
Boolean vector denoting the presence or absence of these
tagged molecular substructures. A total of 1842 dimensional
vectors (881 + 961) for the molecule and the receptor target was
reduced to 400 size feature vectors using sparse principal
component analysis (SPCA). This combined feature vector was
fed into the classifier. Multiple LSTM layers were stacked to get
a deep LSTM setup, i.e., 4 hidden layers with 36 neurons were
used. Overfitting was compensated by using dropout of ran-
domly chosen neurons during the training process. Different
performance metrics were used like ACC, true positive rate or
even the standard AUC as defined before.654 Both hyperbolic
tangent and logistic sigmoid were used as the activation func-
tion depending on the case (see Section 3.3.1). The output layer
being a classifier uses a softmax. The method attained great
accuracy across all performance metrics for all the 4 classes of
drug–target chosen in comparison to traditional machine
learning techniques or even multi-layer perceptrons. The
multi-layer perceptron they trained had the same number of
hidden units as the LSTM network being used for a fair
comparison. The method performed reasonably well even with
a small training sample size like 180 as was available for the
nuclear-receptor family. In another recent study by Zheng
et al.,655 a deep learning algorithm is developed with both
CNN and LSTM. The target/receptor proteins are processed
into a fixed length feature vector using a dynamic attentive
CNN. 16–32 filters and 30 residual blocks were used in the
construction of the dynamic attentive CNN.656 The drug candi-
date was represented as a 2D matrix similar to ref. 657. This is
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processed using a self-attentional LSTM network655 known as
BiLSTM which extracts features. The number of hidden layers
in the BiLSTM network was 64. Three kind of databases were
used for numerical experiments. The first is DUD-E.658 This
dataset has 102 target receptors across 8 protein families. Each
receptor has 224 active drug molecules and 10 000 inactive
ones. The final dataset curated from this database had 22 645
active drug–protein interaction pair examples and 1 407 145
negative ones. The second database used was Human659 con-
taining 1998 unique proteins and 6675 interactions. The third
database used is Binding DB660 which contains experimental
results of binding affinities. The dataset curated from this had
39 747 positive examples and 31 218 negative binding inter-
action pairs. The two feature vector of the target and the protein
are combined and fed into a classifier which generated a
probabilitty vector from it using sigmoid activation. This prob-
ability vector was then minimized against the data label of
positive and negative interaction pairs using cross-entropy with
regularization. The metric used to evaluate the final perfor-
mance of the model is area under the ROC (Receiver-Operating
Characteristic)661 curve. This metric is often abbreviated as
AUC in the literature. Receiver-Operating Characteristic (ROC)
curve enrichment metric (RE) is also used for the DUD-E
dataset. For the Human dataset, the method achieved 98.7%
for AUC, outperforming all traditional methods like Random
Forests, Support-Vector Machines, etc. For DUD-E dataset, the
method outperformed Vina647 and AtomNet662 to name a few.
On BindingDB with seen and unseen drug–target pairs too, the
model outperformed all traditional competitive algorithms.
Visual demonstration of which amino acid residues of the
target and what structural features/moieties in the drug are
important for interaction was also provided.

5.5.2 Ligand-based drug designing protocols using classi-
cal machine learning techniques. Next we move onto to ligand-
based drug designing protocols (see Fig. 39(a)). The objective of
these methods is to analyze what kind of prospective drug/
ligand candidates obtained by screening compound libraries
share similar structural features with previously known drug
candidates (used as reference) against the given target. In this
paradigm one operates under the premise that ligands with
such features will have similar bio-activity too against the said
target. These methods are therefore useful when direct struc-
tural information of the target is not available615,644 but the bio-
activity of some reference compounds against the target is
known from previous domain knowledge. One most commonly
employed technique in this category is constructing quantita-
tive relationship between structure and activity (QSAR). QSAR is
the analytical quantification to the degree to which structural
related molecules will share isomorphic bio-activity and hence
allows prediction of the behavior of the newly screened com-
pounds against the specified target. This facilitates the identifi-
cation of what structural features are responsible for the activity
and hence provides insight into the rational synthesis of drugs
in the future.

The first report for the use of deep-learning models in QSAR
prediction after the publically accessible Merck challenge was

due to Dahl et al.663 QSAR studies mainly focus on under-
standing what chemical composition and structural features of
the prospective molecule of choice (ligand) might have the
desired pharmacological activities against a chosen target
(receptor). The study by Dahl et al. focused mainly on the
effectiveness of multi-tasking while designing architectures
for neural-networks (basic theoretical formalism discussed in
Section 3.3). Multi-tasking refers to the ability of the network
design wherein different outputs of interest are simultaneously
retrievable. For instance, in the aforesaid study a single-task
network would be training using molecular descriptors
obtained from compounds within a single assay (data-set) as
input features and using the activity of the said molecule as a
performance label for comparing the output. However, this
model of training requires huge data assemblies from single
assays alone which may not always be available. To circumvent
this issue, the authors of the aforesaid study combined data
from multiple assays using an architecture in the final output
layer wherein individual neurons are dedicated to each assay.
The same molecule may have appeared in different assays with
different activity labels. For any given such molecule, the input
feature vector is the molecular descriptor. The output at each of
the neurons in the final layer are the activity/inactivity classi-
fication values learnt by the network for each assay. This output
is then compared against the recorded activity label obtained
from the corresponding assay for back-propagation. The study
used data from 19 such assays from PubChem database (see
Table 1 in ref. 663) with each assay containing 104–105 com-
pounds. The molecular descriptors used were generated using
Dragon software664 as a feature vector of length 3764 for each
compound. Although the model is a binary classification study,
the performance metric used is AUC as defined before. The
network was trained using Stochastic-Gradient Descent algo-
rithm with momentum and the problem of over-fitting due to
many tunable parameters was eschewed using drop-out.205 It
was seen that the deep-learning network used outperformed
traditional machine learning models in 14 out of the 19 assays.
Among these 14, multi-task networks outperformed single-task
models in 12 of the assays. These favorable results were
retained by grouping similar molecules across different assays
into a customized composite data-set. The depth of the neural
network/addition of more hidden layers did not always produce
improvement in the performance of the multi-task network
which the authors attribute to the smallness of the data within
each assay. All the deep-learning models used handled reason-
ably well correlated features in the input feature vector. In a
related study Ramsundar et al.665 resolved certain questions
about the efficacy of multi-task neural networks in virtual
screening of candidate molecules against several targets using
extremely large data-sets. 259 assays were used and divided into
4 groups – PCBA, DUD-E,658 MUV, and Tox21. Together all these
databases had 1.6 M compounds. The validation scheme used
is AUC as before and the feature vector of the studied com-
pounds were ECPF4 fingerprints.635 All such collection of
fingerprints for the molecule were hashed into a single bit
vector. The trained network as before is a multi-task classifier
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with each neuron at the output layer having a softmax
activation666 corresponding to each assay. The study found that
such multi-task NN performed better than several ML models
and the performance metric can be improved with increasing
number of tasks and/or increasing the volume of data per task.
Certain data-sets in the study showed better performance than
others which was attributed to the shared set of compounds
among such databases. However the biological class of the
target receptor did not affect the performance metric too much.
The study concluded by saying that extensive data-sharing
among proprietary databases needs to happen to benchmark
the performance of such models with bigger data-sets. Another
study which thoroughly benchmarked the performance of deep
neural networks against a commonly used machine learning
model like Random Forest (RF) was due to Ma et al.667 The
report used 15 Kaggle data-sets for training and another 15 for
validation too. Each such data-set had around 104–105 candi-
dates as molecular designs for drugs each labelled with
response activity against designated target(s). The type of
descriptors used for each of these molecules included combi-
nation of atom pairs and global donor–acceptor pairs668 as
input feature vectors. The report used the squared Pearson
correlation coefficient (R2)669 between observed and predicted
activities in the testing set as the preferred metric of perfor-
mance. The study showed that there was a mean improvement
in R2 of 0.043 when using deep-neural network as opposed to
RF against arbitrarily selected parameters. 4 of the data-set
showed dramatic improvement in favor of deep-neural network
whereas one favored RF. When refined parameter set was used
instead of arbitrarily chosen ones, the trend is retained with an
expectedly higher mean improvement of 0.051. Increasing the
number of hidden layers and also number of neurons in each
such hidden layer displayed a R2 in favor of deep neural
network. Changing the activation function from sigmoid to
ReLU666 also favored the deep network model for 8 data-sets. R2

was found to also favor networks when it is not pre-trained.
5.5.3 Machine learning and drug-induced toxicity. Another

area wherein machine learning algorithms are important is
identifying if a particular drug when administered in a biolo-
gical medium would be toxic or not. Such adverse effects due to
an administered drug may lead to serious health complications
culminating in the eventual withdrawal of the drug during
development/testing or even post-marketing, thereby leading
to wastage of resources. Many such studies has been initiated
like in ref. 670. The earlier investigations primarily used
machine learning methods. This can be exemplified from the
work of Rodgers et al.671 which created a model using the k-
nearest neighbor (kNN) (basic theoretical formalism discussed
in Section 3.2.4) for identifying whether a drug candidate from
Human Liver Adverse Effects Database (HLAED) belongs to two
categories-hepatotoxic in humans or not based on labelled
markers from five liver enzymes. With a dataset of over 400
compounds, the algorithm was successful in classifying with
a sensitivity of Z70% and a specificity Z90%. The model was
extended to test unseen cases in World Drug Index (WDI)
database and Prestwick Chemical Library (PCL) database with

a good success ratio. To do so, a compound similarity metric
based on Euclidean norm between molecular candidates was
used and an applicability domain threshold was constructed
using the metric. Predictions for candidates with similarity
scores outside the applicability domain threshold were consid-
ered unreliable. Chemical features like aromatic hydroxyl units
in drugs like Methyldopa672 or pyrimidyl units in drugs like
Trimethoprim673 were identified to play a key role in the
assignment of high hepatotoxic activity of the respective drugs
as they are prone to oxidation and can form hapten adducts
with cellular proteins. In yet another study316 a classification
task among molecular candidates was designed using Support-
Vector Machines (Basic theoretical formalism discussed in
Section 3.2.7) with the Gaussian Radial Basis Function (RBF)
as the kernel to group molecules into active and inactive
categories with respect to susceptibility to induce phospholipi-
dosis (PLD). Phospholipidosis refers to intracellular accummu-
lation of phospholipids induced by drug candidates when they
bind to polar phospholipids in the lysosome.674 The model was
trained by curating dataset from three databases: National
Institutes of Health Chemical Genomics Center (NCGC) Phar-
maceutical Collections (NPC),675 the Library of Pharmacologi-
cally Active Compounds (LOPAC) and Tocris Biosciences
collection, and the target cell used was HepG2.676 The model
developed was found to accomplish the selection task with high
sensitivity and specificity as seen from the AUC metric. The
training was found to be sensitive to the nature of molecular
descriptors used and also to the size of the dataset. Certain
simple chemical attributes like size of hydrophillic moieties are
often used as indicators to characterize if a drug can induce
PLD. Such features even though showed correlation with the
identified active compounds in some cases did not agree on
some others. On the contrary, features like the presence of
positively charged nitrogen center correlated well across the
entire dataset. Identification of such features may be important
to chemist for avoiding or replacing such structural moieties
during the early developmental stage of the drug.

Deep learning models have also been deployed for the said
purpose. In a recent one using artificial neural network, toxicity
due to epoxide formation is thoroughly investigated.341 The
study identified among a given set of drugs/ligands and targets
which drug is susceptible to be epoxidized with natural oxi-
dants in the biological medium by oxidants like cytochrome
P450. Formation of such epoxidized metabolities can be harm-
ful for the body as has been explicitly noted in the case of an
anti-epileptic drug like carbamazepine677 which after epoxida-
tion binds to nucleophillic sites within a protein forming a
hapten adduct thereby triggering immune response.678 The
product of such reactions need not always be an epoxide
as the study suggests from previous reports679 for drugs like
N-desmethyl triflubazam wherein a DNA adduct is formed post
a transient epoxidation. The neural-network model used in the
study not only decides if a given drug is epoxidizable but also
focuses on identifying if the site of epoxidation (SOE) is a
double bond or an aromatic ring. It further delineates such
sites from site of hydroxylation (SOH) which shares some key
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structural features with SOEs and can also potentially lead to
harmful oxidation products. The Accelrys Metabolite Database
(AMD) was used from which a dataset of 389 molecules were
curated having toxicity labels. These molecules had 411 aro-
matic SOEs, 168 double bond SOEs and 20 even single bond
SOEs. Non-epoxidizable molecules were also included in the set
thereafter to afford a proper distinction. To describe each bond
within the specific molecule, 214 molecular descriptors/
features were identified – 89 each for the left and right atom
sharing the bond, 13 specific bond descriptor and 23 overall
molecular descriptors. The neural network used had 1 input
and 2 output layers. The top output layer was for the molecular
epoxidation score whereas the last one for the specific bond
epoxidation score. The training data involved using labelled
binary vector within the molecule with the designated SOE
marked as 1. Cross-entropy minimization was used as the cost
function. The final metric of performance as before was AUC.
The model outperformed logistic regression and other compe-
titive algorithms in all departments like identification of SOEs,
differentiation of SOEs and SOHs. The model could correctly
identify SOE in carbamazepine which is absent in substitutes
like oxcarbazepine with similar functionality, in the furan ring
of furosemide680 and in severely hepatotoxic sudoxicam vs. its
less problematic cousin like meloxicam.680 More such examples
can be found in specialized topical reviews like ref.670.

5.5.4 Power of quantum computers and quantum-com-
puting enhanced machine learning techniques. As discussed
in other domains, quantum computing enhanced machine
learning techniques are also beginning to gain attention in
the overall drug production pipeline. An early review681 identi-
fied the efficacy of quantum computers in the drug discovery
process by noting the key areas wherein quantum computers
can impact. The study reported that for structure based drug
designing protocols, quantum computers may help in under-
standing the structure of target protein sequence better. It
claimed that using both gate model of quantum computing
and quantum annealers, simple problems like the Miyazawa–
Jernigan model were investigated for understanding the
dynamics of protein folding for smaller peptides.682 Unfortu-
nately such model problems may not accurately assess the real
situation in all cases especially for complicated situations like
the presence of several protein conformations with minimal
free energy difference thereby rendering them accessible via
thermal fluctuations or how the native 3D conformation of the
protein is sustained due to its interaction with the surrounding
media. In most cases for biologically significant proteins,
crystallized 3D structure is not available in the database due
to sheer size of the protein and/or lack of solubility etc.615 As a
result structure-based designing protocols are often thwarted.
Better computational models for predicting the protein struc-
ture is therefore necessary and can influence the drug-discovery
pipeline immensely. Banchi et al.683 used Gaussian Boson
sampling to identify the highest affinity binding poses of a
given ligand with the active centre of the target. The primary
workhorse of the protocol is to map the active centre and the
ligand onto a pharmacophoric feature space of few descriptors.

Each such descriptor corresponded to a vertex in a graph and
the edges defined the Euclidean distance between the corres-
ponding structural motif in the lowest energy 3D geometry. The
resultant encoded graphs were then used to construct a
binding-configuration graph wherein the structural features
of the ligand and the target that are compatible to bind are
represented by weighted vertices. The maximum-weighted cli-
que (a closed sub-graph) within the binding-configuration will
be the preferred binding pose. Such configurations are identi-
fied with high-probability using a Gaussian Boson sampler with
the input state of photons being in the squeezed states and
identifying the detector wherein the photon appears at the
output. Such detectors correspond to vertices on the binding-
configuration graph. If the combination so-attained at the
output is not a clique then the authors have defined greedy
shrinking of vertices or expansion of vertices by probing the
local environment to modify the search space for next iteration.
Recently, an efficient hybrid-variational algorithm amenable to
the NISQ architecture has also been proposed which using an
N-sequence amino acid can construct a sample of the lower
energy 3D-conformations.684 Previous reports tackling the same
problem were either inefficient or offered problem specific
solutions.685 The work represented the given sequence by
stacking monomeric units on a tetrahedral lattice. 4 qubits
were assigned for each of the 4 different directions the lattice
could grow from a given monomer. New ancillary qubits were
also used to define the interactions between l nearest neighbor-
ing (l-NN) monomeric units. A graph Hamiltonian was con-
structed with these interactions and the self-energy terms of
each residue. Overlapping positions of the amino acids were
avoided by including penalty terms corresponding to such
assignments. The ground state of this Hamiltonian is the most
stable conformation. To solve the problem, a variational circuit
was constructed parameterized by tunable rotation angles of
both the single-qubit and entangling gates involved. The var-
ious bit-strings obtained from the measurement of the circuit
encoded the 3D structural arrangement of the amino acid
residues in the tetrahedral lattice and the energy distribution
would highlight the relative stability of these various arrange-
ments/conformations. The circuit was optimized variationally
to selectively enhance the chances of sampling the lower energy
conformations corresponding to the tail of the aforesaid energy
distribution. The number of qubits in the method scales as
O(N2) and the number of terms in the Hamiltonian is O(N4).
The model was tested on a 10 amino acid peptide Angiotensin
using 22 qubits and also on a designed 7 amino acid neuropep-
tide using 9 qubits on IBMQ processors. In the former the
probability of collectively sampling all the lower energy con-
formations was reported to be 89.5% which augmented further
with increase in the number of measurements.

However, recently, a study from Google’s DeepMind (UK),686

has made enormous strides in predicting the 3D structure of a
peptide from just a given sequence of amino acids solving this
50 year old grand challenge. Even though the algorithm uses a
neural-network architecture trainable on a classical computer
(and hence is not a quantum-computing enhanced algorithm),
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yet the performance of the method is so good that it deserves a
special discussion. This novel algorithm has won the CASP14
challenge which involves a blind assessment of the efficacy of
structure determination from amino acid sequence for pro-
teins/peptides whose structure has been recently solved
through explicit experimentation yet has not been publicly
released in common databases. The neural network design is
broken down into three components. The first component in
the neural network architecture takes as input a 1D sequence of
amino acid residues and searches multiple databases to gen-
erate multiple sequence alignments (MSAs) which are essen-
tially sequence of previously identified amino acids closely
resembling the target one and understanding the evolutionary
history of the mutation of these MSAs. This is important to
derive information about structural proximity between amino
acid pairs which shows correlated mutation. This component
then generates a template 3D structure also called pair repre-
sentation as an initial hypothesis that is to be modified at later
stages. The next functional unit is called the Evoformer and is
the heart of the design. This takes as input both the pair
representation and the MSA and subsequently refines the
representation of each self-iteratively using the architecture of
transformer.459 The third block takes the refined MSA and the
pair representation and generates a 3D structure which is
essentially cartesian co-ordinates of the individual atoms, i.e.,
the native 3D conformation of the protein/peptide. This process
is repeated several times by feeding back the 3D structure into
the Evoformer block until convergence. The final prediction
seems to have surpassed all previously known methods with an
accuracy of 0.95 Å root-mean square error from the target
structure for 95% of the residues. This will definitely be a
landmark study and for years to come one has to investigate the
efficacy of the method for antibodies, synthetic peptide
sequences for which evolutionary data to generate the initial
MSA will be scarce. This method will positively impact under-
standing protein–protein interactions and also bring in new
insight into diseases like Alzheimer’s and Parkinson’s. For
structure based drug-discovery since at least one method exist
now which can determine the 3D conformation efficiently
thereby massively speeding up the product development pipe-
line, quantum computers can now help in understanding the
drug–protein affinity and molecular docking mechanisms. The
review by Cao et al.681 already identifies this possibility by
noting that with algorithms like quantum phase estimation
on fault-tolerant devices and variational eigensolvers for near
term devices, we are capable of computing the potential energy
surfaces of larger molecular systems efficiently and hence
force-field calculations as is required for understanding mole-
cular docking will also be greatly impacted.

For QSAR studies too, benchmarking the performance of
quantum computer against classical processors has been docu-
mented recently in the work of Batra et al.317 The authors have
used several molecular databases to identify prospective
ligands for diseases like M. tubercolosis, Krabbe disease,
SARS-CoV-2 in Vero cells, plague and hERG. With the curated
data from the compound datasets feature vectors were

constructed and used for binary classification of the compound
in active or inactive using kernel-based SVM techniques (see
Section 3.2.7 for basic theoretical formalism). The authors used
several techniques to reduce the size of the feature vector such
that the classification can be performed on a NISQ device
(ibmq_rochester was used) using Qiskit. It was seen that for
most datasets comparable accuracy on a quantum computer
was attained too using the feature reduction techniques
employed by the authors. A hybrid quantum-classical approach
was also used for high-throughput virtual screening data
screening with good accuracy and slightly faster run time for
processing the data on a quantum computer than on a classical
computer. Representative data from the study are displayed in
Fig. 40.

Beyond the precincts of academic research, even the interest
of industrial players on quantum-enabled technologies seems
to be escalating rapidly. The report by Zinner et al.687 has
identified that 17 out of 21 established pharmaceutical com-
panies and 38 start-ups are directly working on enhancing and
ameliorating the technical challenges in the drug discovery
pipeline using quantum computers. 75% of such companies so
far have been identified to be geographically in Europe and
North America. The cumulative funding received by all the
start-ups as per the report687 is h311 million with the top five
funded start-ups being Cambridge Quantum Computing,
Zapata, 1QBit, Quantum Biosystems and SeeQC. Most of the
activity is directed towards virtual screening for ligand-based
drug designing protocol and subsequent lead optimization.

The reports from Langione et al.688 and Evers et al. from
McKinsey689 also systematically delineate what pharmaceutical
industries should do to prepare themselves so as to attain a
favorable position in order to leverage the quantum revolution.
Both the reports agree that bio-pharmaceutical companies
should start now to reap the benefits of early movers advantage.
In fact ref. 688 mentions that it might be possible that tech-
giants equipped with quantum computers with higher number
of qubits and better noise-tolerance might enter the race of in
silico drug discovery in the future relegating the task of post-
design synthesis, clinical trials and commercialization to phar-
maceutical companies. This can lead to a situation wherein
companies may race to patent the best molecule that are
responsive to a particular disease. However pharmaceutical
companies are at an advantage here due to years of experience
with computational drug-designing protocols. So strictly they
do not have to change the inherent model or the business goal
they already follow. They will likely be using a more capable
device like a quantum computer to attain that goal. In order to
avoid such undue competition, pharmaceutical companies
should start now by assessing and answering a few key
questions about the probable impact quantum computers
are likely to have on the workflow and the specific product
design the respective company is targeting. This can happen by
understanding what are the key areas where development can
be sought in the product design model the company is follow-
ing and more importantly if those areas fall into the category of
problems that can be solved efficiently on a quantum

Review Article Chem Soc Rev

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
G

or
ff

en
na

f 
20

22
. D

ow
nl

oa
de

d 
on

 0
4/

11
/2

02
5 

01
:3

1:
52

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2cs00203e


This journal is © The Royal Society of Chemistry 2022 Chem. Soc. Rev., 2022, 51, 6475–6573 |  6549

computer. The key directions to think would be would a
quantum-computer enabled business provide an unprece-
dented value to their supply-chain or an undue advantage to
their competitors. If the analysis is positive, one needs to then
think of the time scale of such developmental changes and
whether the resources the company has access to would be
enough to sustain entry into the domain. Some of above
resource overheads can be solved through appropriate mem-
berships through consortium like QuPharm that categorically
specializes in the designated area. QuPharm, as an organiza-
tion, was developed by many member pharmaceutical compa-
nies for specifically understanding and optimizing the benefits
the quantum revolution can have on the pharmaceutical indus-
try. The consortium is known to have a collaboration with
Quantum Economic Development Consortium (QED-C).687

Hardware needs can be sorted through collaborations with
end-to-end technological providers like Google, IBM, Honey-
well, Rigetti, Xanadu, etc. each of which have quantum com-
puters of varying architecture and even on different platforms
and have even promised to develop larger scale ones in the near
future. For example Amgen, a pharmaceutical company has
declared collaboration with both Amazon Braket and IBMQ.687

Boehringer, another pharmaceutical company has established
collaboration with Google QuantumAI to develop algorithms

for molecular dynamics simulation.687 New software solutions
are necessary to interface with the quantum hardware for which
commercially available varieties like Qiskit (IBM), OpenFer-
mion (Google), and tKet (Cambridge Quantum Computing)
can be leveraged. Companies can also initiate partnerships
with firms like ProteinQure, GTN, Rahko, Qulab etc. which
are developing softwares to specifically cater to advancing
quantum-computing algorithms for drug discovery. Classical
computing algorithms have also benefited from the ideas that
were synthesized to initiate a rapid discovery of quantum
algorithms over the last few years. Companies like Qubit
Pharmaceuticals, Turbine etc. are developing such approaches
and combining them with machine learning. Such collabora-
tions with global and local companies with specialized exper-
tise can result in engineering custom solutions to tackle
specific problems during the drug discovery pipeline. Pharma-
ceutical companies can thus immensely benefit from such
collaborative ventures.

Partnerships can be built with other pharmaceutical com-
panies or start-ups too to share expertise and develop mutually
beneficial quantum computing based drug-development
protocols. The report by Zinner et al.687 has identified 17
pharmaceutical companies with publically disclosed collabora-
tions with at least 12 start-ups. All the pharmaceutical

Fig. 40 (a) Classification of ligands into active and inactive ones based on performance against SARS-CoV 2 in the space of the two most dominant
features after application of two methods of feature extraction as in ref. 317; and (b) classification of ligands into active and inactive ones based on
performance based on performance against M. tubercolosis in the space of the two most dominant features.317 (c) The run time required for screening
training datasets of varying sizes on a quantum computer (QC) and a classical computer (CC). The training time shows sublinear scaling on QC displaying
an advantage.317 Reprinted (adapted) with permission from K. Batra, K. M. Zorn, D. H. Foil, E. Minerali, V. O. Gawriljuk, T. R. Lane and S. Ekins, J. Chem. Inf.
Model., 2021, 61, 6. Copyright 2021 American Chemical Society.
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companies are members of QuPharm, NEASQC etc. Among the
big pharma corporations Merck (Germany) has invested h4
million on start-ups like SeeQC and has disclosed active
collaboration with Rahko, HQC.690,691 Merck (USA) has made
financial investment in Zapata.692 Non-equity partnerships like
that by Amgen with QSimulate to develop advanced molecular
simulation tools or like that by AstraZeneca with ProteinQure to
design amino-acid sequences have also been seen.693 Some new
collaborations are also announced which depicts not only the
prospective promise associated with the technology but also the
seriousness of the industry players. For example, Cambridge
Quantum Computing has announced a collaboration with
CrownBio and JSR LifeSciences about using quantum machine
learning algorithms to identify multi-cancer genes
biomarkers694 which can positively impact bioinformatics
research. Apart from this, it would also be beneficial for
pharmaceutical companies to collaborate with scientists in
academia. Adopting a strategy that allows effective co-
operation among all involved parties internal and/or external
beyond the traditional organizational structure will accelerate
growth and foster efficient and fast sharing of resources and
knowledge which can otherwise be harder to access due to
institutional barriers. The reports688,689 identify that recruit-
ment of skilled technicians and professionals with training in
developing algorithms on a quantum computer is necessary for
pharmaceutical companies to enhance quantum-enabled
research. The report by Zinner et al.687 conducted a thorough
search across 21 pharmaceutical companies with a combined
revenue of h800 billion in 2019 and reported that only about 50
employees were found designated to quantum-enabled tech-
nology. This is partly because quantum computing is an emer-
ging technology and hence such a skillset may not be readily
available among the usually hired talent pool of the pharma-
ceutical industries.688 Companies like IBM which hold out-
reach programs and workshops in quantum computing
interfaces like Qiskit can be a useful resource. The other
alternative might be looking into developing specialized pro-
grams internally to train scientists and engineers once hired.

6 Insight into learning mechanisms

Despite the enormous success of machine learning coming
from network based models with large number of tunable
parameters, little progress has been made towards understand-
ing the generalization capabilities displayed by them.695 The
choice of hyperparameters in these models have been based on
trial and error with no analytical guidance, despite them
showing enormous potential in analyzing data sets. Physics
on the other hand has provided us with white box models of the
universe around us that provide us with tools to predict and
examine observed data. Intuition from statistical mechanics
has helped provide understanding with respect to the learning
limits of some network models. Seminal contributions in this
regards include methods from spin glass theory, that have been
used to extensively study associative memory of Hopfield

networks696 and Valiants theory of learnable models that
introduced statistical learning into the then existing logic
based AI.697 Another major contribution comes from Gardner’s
usage of replica trick to calculate volume in the parameter
space for feed forward neural networks in the case of both
supervised and unsupervised models.698,699 The problem of
learning was also shown to exhibit phase transitions in refer-
ence to generalization and training efficiency.700 A typical
example of one such parameter is the ratio of input size to
the number of model parameters. A diminishing value usually
results in overfitting while a large one allows for successful
generalization. The reader is encouraged to refer ref. 701–703
for some of the early studies that made use of statistical physics
to understand multi layered network learning.

We will see that some self averaging statistical properties in
large random systems with microscopic heterogeneity give rise
to macroscopic order that does not depend on the microscopic
details. Learning these governing dynamics can play an impor-
tant role in tuning the performance of machine learning
techniques. One of the tools that provides an analytical handle
in analyzing these details is the replica method.704 Replica
methods have been used to explore the teacher–student model
to provide information theoretic best estimates of the latent
variables that teacher uses in generating the data matrix
handed over to the student.705 This problem can be specialized
to the case of providing a low rank matrix decomposition
matrix of underlying input data. Interest on statistical methods
has stayed dormant since 1990, due to the limited tractability of
algorithms used in learning. It was sparked again with the
contribution of Decelle706 to use spin glass theory to study
stochastic block model that played a major role in understanding
community detection in sparse networks. They observed second
order phase transitions in the models that separated regions of
efficient clustering when solved using belief propagation
algorithms.707 For a comprehensive list of physics inspired
research in the machine learning community, refer ref. 708.

Generative models are suitable for feature extraction apart
from doing domain sampling. Within every layer of one such
network, one could imagine some form of feature extraction
being made to provide for a compact representation, which
might later be used by generative models to learn the distribu-
tion of classifiers to do prediction. We point towards this
feature extraction as the central idea for relating machine
learning to renormalization group. We investigate to see if
concepts like criticality and fixed points have something to
reveal about the nature in which learning happens in the
framework of deep learning and machine learning in general.
Fig. 41 provides a schematic sketch of the methods that have
been primarily explored in studying network models. In here we
shall restrict our attention to cavity methods, Renormalization
group and Replica methods. Refer ref. 709 for a thorough
exploration of message passing algorithms.

A somewhat non rigorous argument for the remarkable
working of these machine learning algorithm comes from
noting the following two observations. Consider a vector of
input size n taking v values and thus can span a space of vn
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possible configurations. Despite this being exponentially a
large space for image datasets, we have managed to build
relatively small networks that learn to identify the features of
the image accurately. This is to be attributed to the realization
that the class of relevant images comes from a relatively small
subspace that is efficiently learnt by the neural network with
relatively fewer nodes that scale as nv instead.710 This is much
similar to how low energy states of interest of Hamiltonian
mapping to small subspace of the Hilbert space. This simpli-
fication comes from the Hamiltonian having a low polynomial
order, locality and symmetry built into it. Secondly, despite the
vastness of all possible inputs that can be generated, most
input data can be thought of coming from a Markovian process
that identifies at each stage a select set of parameters. Thus the
work of a deep learning machine would be to reverse some
form of heirarchial markovian generative process using some
minimal statistic function (A function f is minimal statistic if
for some random variables y and x we have P(y|x) = P(y|T(x)))
that retains the features of the probability distribution by
preserving mutual Information.

The methods in the following subsection describe its work-
ing in the context of Ising model, so we start by describing one
briefly. Ising is a model for representing classical spins or
magnets arranged in a 2d lattice whose interaction with one
another is quantified by the strength of the coupling. Each spin
takes a binary configuration (+1, �1) of choosing to align up or
down. At low temperatures spins prefer aligning in the same
direction forming a magnet. At high temperatures the thermal
fluctuations kill any order within the system causing them to
arrange chaotically with no net observable magnetic field. A
general Ising Hamiltonian is given by,

HðsÞ ¼ �
X
ijh i

Jijsisj �
X
j

hjsj (130)

where hiji indicates the sum over nearest neighbour pairs. The
probability of any given configuration is determined by the
Boltzmann distribution with inverse temperature of the system
scaling the governing Hamiltonian. Expectation values of
observables correspond to averages computed using the dis-
tribution. Given any observable O the expectation value at a

given inverse temperature b is given by

hoib ¼
X
fsg

e�HðsÞ

Z
OðsÞ: (131)

6.1 Replica method

Replica method is a way of computing self averaging expecta-
tion values of observables O(x) such that x is a minimizer of
H(x,D) where D is the distribution of some input space. A typical
example of H would be the cost function of a learning problem
and D would be the dataset used for training in the problem.
Fig. 42 provides a schematic representation of the use of replica
method. Here we shall explore it in the context of Ising
Hamiltonians. Consider the Ising model of N spins, given by
the following Hamiltonian:

Hðs; JÞ ¼ �1
2

X
ij

Jijsisj (132)

where the connectivity matrix entries Jij has been sampled
independently from a Gaussian distribution with zero mean
and variance 1/N. The spins take values from +1, �1. In a bath
of inverse temperature b this results in an equilibrium distri-
bution that is governed by the Gibbs distribution given by

PJðsÞ ¼
1

Z½J�e
�bHðS;JÞ (133)

where Z is the partition function. We would like to analyze the
structure of low energy patterns that is independent of the
realization of the couplings Jij in the large N limit. Properties of
disordered system can be learnt by studying self averaging
properties (have zero relative variance when averaged over
multiple realizations). Steady states emerge in the large N limit
as a result of diverging free energy barriers causing time
average activity patterns that no longer look like Gibbs aver-
aging, due to broken ergodicity.

To study the patterns encoded within the Gibbs distribution,
we start with computing the free energy average over all the
realizations of J. This involves computing expectations of a
logarithm which can be simplified using the following
Replica trick:

b F ½J�h iJ¼ lnZ½J�h iJ¼ lim
n!0

Zn � 1

n


 �
J

¼ lim
n!0

@

@n
Znh iJ : (134)

Fig. 42 A schematic representation showing the use of replica replica
trick and replica ansatz to compute the expectation value of self averaging
observables.

Fig. 41 A schematic representation of the techniques borrowed from
statistical physics that have been used to study model learning of networks
in machine learning.
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Evaluating hZni is much simpler as this can be expressed as an
average over replicated neuronal activity, i.e.,

Znh iJ¼
X
Sa

e
b
Pn
a¼1

P
ij

Jij s
a
i
saj

* +
J

(135)

where sa denotes the set of replicated spins over which the
averaging is done. The Gaussian integrals can be easily eval-
uated resulting in

Znh iJ¼
X
Sa

e

1
4
Nb2
P
ab

Qab
2

(136)

where the overlap matrix Qab ¼
1

N

PN
j¼1

saj s
b
j . Minimizing the free

energy amounts to retaining patterns with maximal overlap.
The non zero averaging can be interpreted as certain patterns
being promoted within replicas and enforced across different
realizations of J. The minimization of free energy gives a self
consistent equation for Q,

Qab = hsasbi (137)

where h�i refers to averaging over the distribution

Pðs1; s2; . . . ; snÞ ¼ 1

Z
e�b

~H ; where ~H ¼
P
ab

saQabs
b. The Hamilto-

nian H̃ is symmetric with respect to permutation of indices and
thus Qab = q for all a a b. Minimizing the free energy with
respect to the variable q gives a self consistent equation

q ¼ tanh 2 b
ffiffiffi
q
p	 


zz
� �

(138)

where z is a random variable with Gaussian distribution of
mean zero and variance 1/N. For b o 1, i.e., high temperature,
q = 0 is the only solution, representing a paramagnetic phase
while for b 4 1, i.e., low temperatures we have a continuously
raising q value from zero, suggesting a phase transition. How-
ever, the replica symmetric saddle point solution for Qab

derived for the Ising Hamiltonian is unstable and is thus
inconsistent with physical predictions.711

6.2 Cavity method

The cavity method712 provides for an alternative analysis to the
results derived from Replica method. Consider the Ising Hamil-
tonian over N neurons reordered in the following fashion:

H(s,J) = �s1h1 + H�1 (139)

where h1 ¼
PN
i¼2

J1isi is the local field at site 1 and H�1 ¼

�1
2

PN
ij¼2

Jijsisj is the remaining Hamiltonian that defines the

interaction over other spins. The distribution of h1 in the
system of the remaining N � 1 neurons is given by

P�1ðh1Þ ¼
1

Z�1

X
s2;...sN

d h1 �
XN
i¼2

J1isi

 !
e�bH�1 : (140)

The joint distribution of h1, s1 is thus given by

PNðs1; h1Þ ¼
1

Z
e�bs1h1P�1ðh1Þ: (141)

Since the cavity field in this method decouples with the
remaining neurons, we can approximate the distribution for

h1 with a Gaussian of mean
PN
i¼2

J1ihsii�1 and variance

1� 1

N

PN
i¼1
hsiiN2. The variance has inbuilt into it an approxi-

mation of vanishing correlations hsisji�1 that is equivalent to
the single energy well approximation made in the Replica
solution. Under this approximation we can write

PNðs1; h1Þ / exp �b s1h1 �
1

2� q
h1 � hh1i�1ð Þ

� �� �2

: (142)

We expect hih i�i¼
P
kai

Jik skh i�i to be self averaging and have a

Gaussian distribution (as Jik is uncorrelated with hski�i) with a 0
mean and variance q over random realizations of Jik in the large
N limit. Replacing the averaging over the neurons with an
average over the Gaussian distribution we get

s1j
ffiffiffi
q
p

z; 1� q
� �

N
¼ tanhb

ffiffiffi
q
p

z: (143)

Since all the neurons are equivalent, neuron 1 replaced with
any other neuron in eqn (142). The mean activity of neuron i is
thus given by

sij
ffiffiffi
q
p

z; 1� q
� �

N
¼
X
si

siPNðsi; hiÞ: (144)

We can average over the above expression to write a self
consistency condition on q. We thus get

q ¼ 1

N

XN
i¼1

sij
ffiffiffi
q
p

z; 1� q
� �

N
2: (145)

Substituting a generalized version of eqn (143) for each neuron
i in the above equation we derive 138, obtained from the replica
method.

6.3 Renormalization group and RBM

Renormalization group (RG)713 is based on the idea that
physics describing long range interactions can be obtained by
coarse graining degrees of freedom at the short scale. Under
this scheme small scale fluctuations get averaged out iteratively
and certain relevant features becomes increasingly more pro-
minent. This helps in building effective low energy physics,
starting from microscopic description of the system. Despite its
exactness and wide usage within the fields of quantum field
theory and condensed matter, any form of exact RG computa-
tions in large systems is limited by computational power. RG
was introduced within the context of Quantum Electrody-
namics (QED)714 and played a crucial role in addressing the
problem of infinities. A proper physical understanding was
given by Kadanoff within condensed matter systems while
proposing the idea of block spin renormalization group.715

This formed the ground for the later seminal work of Kenneth
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Wilson in producing the scaling laws of correlations near the
critical point.716

RG can be analytically studied for 1d Ising model, as
decimation does not produce additional interaction terms,
leaving the hierarchy of effective Hamiltonians tractable. Con-
sider the following Ising spin Hamiltonian with N spins whose
interaction is given by

H0ðsÞ ¼ J0
X
i2½N�

sisiþ1 (146)

where i runs over all the spins of the current description. Here
J0 is the strength of the uniform coupling and no external
magnetic field. We study how the couplings transforms by
doing a decimation over the odd spins (summing over the
degrees of freedom labelled odd). This results in the following
Hamiltonian that only depends on the remaining N/2 spins
with no new interaction terms generated:

H1 ¼ J1
X
i

sisiþ2 (147)

where J1 ¼
1

2
lnðcoshð2J0ÞÞ. This can be repeated recursively k

times giving rise to Hk that depends on the remaining N/
2k spins.

For the 2d Ising model doing renormalization using spin
decimation is not feasible as this produces higher order inter-
actions that are not tractable. Approximations of higher order
interactions have been introduced to allow for analytical
extensions.717 At the critical temperature the system exhibits
conformal symmetry and this fixes the 2 point and higher point
correlations along with the scaling dimensions. To verify that
an observable A0 defined over the renormalized degrees of
freedom remains invariant under renormalization, we will
compute the expectation value over the initial probability
distribution. Let p refer to the probability distribution gener-
ated by the initial Hamiltonian H over spins s and p0 be the
probability distribution generated by the renormalized Hamil-
tonian H0 over spins s0. Thus,

A0h ip ¼
1

Z

X
fsg

e�HðsÞA0ðs0ðsÞÞ

¼ 1

Z

X
fs0g

A0ðs0Þ
X
fs?g

e�Hðs?Þ

¼ 1

Z

X
fs0g

A0ðs0Þe�H0ðs0Þ

¼ A0h ip0 :

(148)

Note that this is only true for observables that are defined on
the coarse grained degrees and does not work for those defined
on the observables that are defined on the microscopic degrees
as these correlations are washed out during renormalization. In
the remainder of this section we shall talk about methods of
generating RG flows using RBM on a uniform 2d Ising Hamil-
tonian. Any indication of RBM generating flows that approach

criticality like RG should be indicated through correlators that
follow the behavior of conformal fields.

RG flows can be well described in the space of parameters
that weighs different operators that make up the Hamiltonian.
As one coarse grains the Hamiltonian from UV (microscopic
description) to an IR (macroscopic description) prescription, we
observe that certain parameter weights flow to zero (monoto-
nically decrease). These are termed as irrelevant operators as
they play no role in the flow. Operators which regulate the flow
with monotonically increasing weights are relevant operators.
Within the space of all possible Hamiltonians lies a critical
surface where the theory respects conformal symmetry with
length scales that run to infinity. When the RG flow meets such
a surface it results in a fixed point referred to as critical point.
Critical points are usually associated with phase transitions.
For example, the critical temperature of uniform 2d Ising with
no external magnetic field is given by Tc = 2.269 and marks
the demarcation between low temperature ferromagnetic and
high temperature paramagnetic phases. We shall describe
three different methods of generating RBM flows using: (a)
learned weights (b) variational RG and (c) real space mututal
information.

6.3.1 From learned weights. In this method flows are
generated through a Markov Chain of alternatively sampling
the hidden and visible layer starting from a given distribution
of initial configurations q0(v) that correspond to a Hamiltonian
with parameters l0. The RBM then generates a flow as follows:

q0ðvÞ ! ~q0ðhÞ ¼
X
v

pðhjvÞq0ðvÞ

~q0ðhÞ ! q1ðvÞ ¼
X
h

pðvjhÞq0ðhÞ:
(149)

This produces a new distribution q1(v) that corresponds to a
flow within the probability distribution and can be seen as the
distribution generated by some Hamiltonian of the same
statistical model with parameters l1. This would correspond
to a flow within the parameter space (l0 - l1). We would like to
verify if such an transformation on the parameter space actually
corresponds to an RG flow. We do that by implicitly computing
correlation functions of certain operators and comparing
against known results from RG.

The number of nodes in the successive layers is kept the
same as the same RBM is used to produce the flow, unlike RG
with reducing degrees of freedom as one flows. Its observed
that the RBM flow generated in this method approaches the
critical point, despite the RG flow moving away from unstable
points. Despite these differences the authors still manage to
provide accurate predictions of the cirtical exponents in ref. 15
and 16. At the critical temperature the Ising model enjoys
conformal symmetry, giving rise to operators whose correla-
tions scale by well known power laws. The authors of the paper
have used sij = sij � �s that has a weight of Ds = 1/8 and e =
sij(si+1, j + si�1,j + si, j+1 + si,j�1) � �e that has a weight of De = 1. The
former operator sij acts as a estimator of reproducing long
range correlations, as it dies off faster, while eij acts as a
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estimator for being able to reproduce short correlations when
testing on the RBM.

Monte Carlo is used to generate 20 000 samples of 10 �
10 square lattice Ising configurations according Boltzmann
distribution at each temperature over 0 to 6 with increments
of 0.1. A neural network is trained over these samples with
supervised learning to predict the temperature. The RBM is
then used to generate flows for temperatures close to the
critical temperature. Samples collected from flow lengths of
greater than 26 allows for predicting the proportionality con-
stant A/Tc and scaling dimension Dm with a very high accuracy
by fitting against

m / jT � TcjDm

Tc
: (150)

Fitting the average magnetization, m with temperature T
from 2 different flows, eqn (150) helps compute the critical
exponent Dm. We could rather compute the scaling dimension
Ds and De from a single flow at different temperatures. This
then allows us to interpolate and predict the dimension for the
critical temperature. Ds is reproduced with a very high preci-
sion, indicating that the RBM flow preserves long range corre-
lation, while high errors in predicting de shows that short range
correlations are usually lost.

6.3.2 Variational RG. Here the hidden layer of an RBM is
used to construct the output of a single step of a variational
RG.718 This is unlike the previous method where the number of
spins were kept fixed with every iteration. To generate a flow
several RBMs are stacked with each one using the output from
the previous RBM hidden layers. The correlation pattern
between the visible and hidden nodes are studied to check
for any RG like connection. The quantity hvihji as defined below
is computed on the block spin renormalization procedure.

vihah i ¼ 1

N

X
k

v
ðkÞ
i hðkÞa (151)

where vi is a node within the visible layer, hj a node in the
hidden layer, a indexes the samples against which the correla-
tion has been computed and N refers to the total number of
samples. This is then used to compute the following correlation
function:

xixj
� �

¼ 1

Nh

X
a¼1

Nh vihah ivjha: (152)

The above correlation is plotted with against |i � j| for
renormalization over lattices of different sizes at the critical
temperature for a RBM trained on data from a 2d Ising
Hamiltonian with nearest neighbour interaction. A fall in
correlation with the separation is noticed for large lattices
and no pattern is obtained for small Ising lattice keeping the
decimation ratio fixed. The RBM thus has managed to preserve
the correlations with nearest neighbours showing some remi-
niscent behaviour of RG under some circumstance.

6.3.3 Real space mutual information. An alternative
representation719 of block spin renormalization can be defined

to capture relevant features by using information theoretic
expressions. Lets consider a spin system, where a subset of
spins V (visible) are to be effectively represented using spins
H (hidden) such that the replacement retains the maximal
mutual information with remaining spins (environment) E of
the system. Refer ref. 720 for a detailed study about mutual
information in the context of RG flow. Thus we would like to
maximize

IðpðeÞjpðhÞÞ ¼
X
e;h

pðe; hÞ log pðe; hÞ
pðeÞpðhÞ

� �
(153)

where p(e) is the probability distribution over the environment
and p(h) is the probability distribution over the hidden layer.
The choice of maximization is motivated from the fact that the
coarse grained effective Hamiltonian be compact and short
ranged (see ESI in ref. 719). We construct p(h) by marginalizing
the joint probability distribution over an RBM that provides for
p(v,h). The samples for learning p(v,h), p(e) can come from a
Markov Chain with 2 RBMs employed to learn these distribu-
tions. The updates to the RBM that learns the distribution
p(e,h) comes from minimizing �I(p(e)|p(h)). Note that this
process needs to be repeated on every iteration of the renorma-
lization procedure.

This procedure reproduces the Kadanoff renormalization
when tested on a 2d lattice with 4 visible spins. Samples are
generated from a square lattice of size 128 � 128. The effective
temperature can be computed against a neural network trained
with samples at different temperatures or as described in the
earlier section or by plotting the temperature against the
mutual information. The procedure reveals a clear separation
in the phase transition while predicting the critical temperature
with a very high accuracy.

6.4 Learnability of quantum neural networks

The examples discussed in previous sections demonstrate the
power of neural networks with regards to generalization, for
problems related to classification and generative modelling.
We also seen how some of these classically inspired models can
be understood from the standpoint of classical physics. Here
we would like to address the question of learnability of quan-
tum models with regards to expressibility, trainability and
generalization for Quantum Neural Networks (QNN). The work-
ing of QNN involves 2 components:
� Feature encoding layer: feature extraction is performed on

raw classical data to extract relevant features for the model to
train on. This might for example include denoising, data
compression, privacy filtration. Unlike classical ML, for QNN
we need to have an efficient method of encoding the feature
output as part of quantum states. One might go for qubit
encoding (phase encoding), basis encoding (initialize starting
state in the computation basis state) or amplitude encoding
(using QRAM).
� A function: in neural networks a generic non linear

function this is implemented using layers of fully connected
nodes, that seem to resemble multiple layers of RBM stacked
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over. In the case of QNN, a general unitary constructed from
paramaterized quantum circuits is used. The ansatz that
defines the unitary could be inspired by the problem at hand
or could be a very general multilayered hardware efficient one.

Following this an optimizer is enrolled to compute gradients
on the cost function of interest. The gradients of these opera-
tors may not directly correspond to another unitary operator, in
which one needs to re-express them as a sum of terms with
term corresponding to an efficient computation of expectation
value of some observable for the corresponding unitary that is
being the output. An example of this would be to use para-
meters shift rule to re-express gradients as differences.

6.4.1 Expressibility of QNN. Just like in DNN where the
depth adds to the networks capacity to fit the training data, we
would like to quantify the circuits ability to generate states from
the Hilbert space. When very little is known about the system
that one is dealing with, one might choose to work with generic
random ansatz that is agnostic to the system built from hard-
ware efficient elementary gates as layers with repeating ele-
ments. The expressibility of such an ansatz721 can be expressed
in terms of the deviation from the the Haar722 integral

At ¼
ð
Haar

ðVj0ih0jVyÞ�tdV �
ð
y
ðUðyÞj0ih0jUyðyÞÞ�tdy

����
����

(154)

where 8�8 refers to the Hilbert Schmidt norm and t the moment
up to which one would like to approximate. The above
definition forms the basis for verifying if a given circuit is a
t-design723 approximation and quantifies the extent to which
the ansatz can sample the hilbert space uniformly. Hubregtsen
et al.724 showed that this correlates to the classification accu-
racy of the circuits on MNIST dataset. We would like to next
point out that despite expressibility being a good thing to
achieve better approximations, the trainability of such ansatz
is prone barren plateaus.

6.4.2 Trainability of QNN. Let L(y,z) represent the loss
function we would like to optimize to build the learning model,
where y represent the parameters to be optimized and
z ¼ [nj¼1fð~xj ; yjÞg. Here -

xj represents the input vector and yj

represents the label assigned to it. Thus the optimization
procedure solves the following empirical minimization pro-
blem:

y	 ¼ argmin
y

Lðy; zÞ ¼ 1

n

Xn
j¼1

lðyj ; ~yjÞ þ l kyk 2 (155)

where ỹj represents the label predicted by the classifier and
l8y82 is a regularization term added to prevent over-fitting.
Some of the major sources for errors include noisy quantum
gates, decoherence of qubits (ex:depolorizing noise), errors in
measurement and errors coming from finite measurement
statistics. Having defined a loss function, one can then define
the following metrics,

R1ðyT Þ : ¼ krLðyÞkh i
R2ðyT Þ : ¼ LðyT Þ

� �
� Lðy	Þ (156)

where yT denotes the parameters in the training iteration T and
the averaging is done over randomness in the noisy quantum
gates and multiple measurements. Here R1 quantifies the rate
of convergence to a stationary point and R2 quantifies the rate
of convergence and excess error in the loss function. Yuxuan
et al.725 showed that R1 and R2 (for l A [0,(1/3p)] , [1/p,N])
satisfy the following bounds:

R1 � ~O poly
d

Tð1� pÞL;
d

BKð1� pÞL;
d

ð1� pÞL

� �� �

R2 � ~O poly
d

BK2ð1� pÞL þ
d

ð1� pÞL

� �� � (157)

where D is the number of parameters, T the number of itera-
tions to be executed, K number of measurements made, B batch
size used for computing gradients, p is the gate noise and L is
the circuit depth. One key result in establishing these bounds
was to show that the empirically estimated gradients via
measurements is biased. A multiplicative bias that depends
on (1 � p)L and an additive bias that comes from a distribution
that depends on the labels, K and (1 � p)L. Functionally this
marks another distinction between DNN and QNN. The noise
models explicitly added to DNN as are bias free and help with
the convergence, where as the intrinsic noise that come from
gate and measurement errors, results in a bias that degrades
learning. The bounds on R1 and R2 indicate that increasing K,
B and reducing p, d and L can result in better trainability of the
quantum circuit model. We notice that the exponential power-
ing of the noise by the circuit depth L, indicates that training
deep circuits will be infeasible in the NISQ era.

6.4.3 Generalizability of QNN. Generalizability is an impor-
tant aspect of an ML model that caters to the ability of that
model to generalize a given task. One way to speak about the
generalizability of a model is by looking if it capable of
transfering the knowledge learnt from a task to perform a
similar task with just a little additional training as opposed
to training the model from scratch for the second task. In the
work by Andrea Mari et al.,208 it was shown that a QML model is
indeed capable of performing transfer learning. The generic
transfer learning approach can be summarized as considering a
network trained on a dataset for a particular task, using only
the first few layers of this network as a feature extraction
network and appending a new network to it that can be trained
on a new dataset for a related new task. One can consider the
first network to either be classical or quantum and subse-
quently the second appendable network to also be either
classical or quantum, resulting in four possible combinations.
The classical-classical network is a common framework,
while in this work, the authors provide relevant examples for
the other three cases corresponding to classical-quantum,
quantum-classical, and quantum–quantum networks, thereby
providing evidence that QML models can be generalized for
tasks using transfer learning. Generalizability is also the ability
for the model to perform well when new data are shown having
trained on a given set of data. There have been studies that
show the performance of QML models on the testing set for
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their respective models.348,726 However, a general framework to
study the generalization abilities of QML models was intro-
duced in ref. 727. In this work, the authors establish a quanti-
tative metric on the generalization of QML models for
classification tasks with an error bound based on the Rényi
mutual information between the quantum state space and the
classical input space, thereafter showing that overfitting does
not occur if the number of training pairs considered is greater
than base 2 exponentiation of the mutual information.

6.4.4 Barren plateaus in training variational circuits. Bar-
ren plateaus are characterized by vanishing variance of sample
gradients, causing the optimizer to perform random walks in
regions on diminishing gradients, with a very low probability of
leaving them. McClean728 in 2018 first showed that on an
average the variance of the gradient is exponentially vanishing
in the number of qubits for any t-design circuit leading to
barren plateaus anytime the gradient vanishes. Fig. 43 shows
the rapidly falling variance of sample gradients with increasing
number of qubits.

As polynomially deep (in terms of the number of qubits)
ansatz built out of 2 qubit unitaries as form 2-design circuits,729

one is likely to encounter barren plateaus while training
circuits with sufficiently large number of qubits. Barren pla-
teaus can also arise from the use of global cost functions.730

Examples of this include computing ground state energies of
highly non local Hamiltonians and preparing a given density
matrix with high fidelity. Lorocca et al.731 shows that for
controllable systems (roughly refers to ansatz with highly
expressibility) the gradients decay by the dimension of the
symmetry subspace to which the initial state prepared by the
circuit belongs to (in the lack of any symmetry subspaces, it will
be the dimension of the Hilbert space). However, one can tailor
the ansatz to remain in the uncontrollable regime and sacrifice

on expressibility to achieve approximately good results. Another
unavoidable source of barren plateaus is the presence of gate
noise in NISQ devices. Samson et al.732 show rigorously that for
a noisy circuit the gradients vanish exponentially in the number
of qubits with increasing depth.

7 Conclusions

In this review, we have explored some of the popular algorithms
in machine learning that are used frequently for many physico-
chemical applications. We discussed in detail not only the
vanilla protocol implementable on a classical computer but
also the quantum computing enhanced variants wherever
applicable. Equipped with this underlying theoretical frame-
work, we thereafter ventured to investigate five distinct
domains of applications which includes tomographic state-
reconstruction, state-classification methodologies, electronic
structure and property prediction, paramaterizing force-fields
for molecular dynamics and even drug discovery pipeline. Such
an organizational paradigm places equal emphasis on the
methodologies and the applications unlike in most other
reviews, and is expected to be beneficial to new entrants in
the field especially when supplemented with domain-specific
examples as is the case in this review. Last but not the least, we
offered an insight into the learning mechanisms, using tools
from statistical physics and computer science, that have been
used by researchers in recent years to understand the opera-
tional mechanism behind the training and feature-extracting
ability of the deep-learning algorithms. In particular in the
context of Ising Hamiltonians, the Replica and Cavity method
provides for calculating observable expectation values that
correspond to the least free energy (cost function). We followed
this with a discussion on renormalization group searching for
connections within deep learning and presented some methods
that have been used in exploring the same. The kind of insight
we believe reduces the obscurity of these models and the
common reluctance associated with the fact that the learning
dynamics of these protocols are unreliant on hard-coded phy-
sical principles or domain intuition.

The applications explicated in this review cover a wide
spectrum. As discussed even though the quantum-computing
enhanced protocols are beginning to be duly recognized, we
anticipate that we are still at a nascent stage scratching just the
surface. For example, for modeling the electronic structure of
molecules and materials there already exists a huge variety of
methods ranging from learning the functional form of density
functionals, approximating wavefunction, to learning the
atomic environment descriptors to predict the atom types and
properties which have shown great accuracy. Applying these ML
methods with the help of quantum computers can further
augment our capabilities especially when solving the electronic
Schrodinger equation of large and strongly correlated systems
are concerned. One can use the variational quantum generator
(VQG) based hybrid quantum-classical architecture developed
by Romero and Guzik733 in order to generate continuous

Fig. 43 The plot shows sample variance of the gradient of a two-local
Pauli term plotted as a function of the number of qubits on a semi-log plot.
Reprinted from ref. 728 with permission under Creative Commons Attri-
bution 4.0 International License.
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classical probability distributions to perform chemical analysis,
quantum state preparation, etc. The critical point and the
critical exponents for a quantum phase transition can be
determined using a QML approach through the finite-size
scaling (FSS) analysis.734 Therefore, the development of QML
approaches has a huge role to play in the coming years in the
domain of electronic structure, materials, and property predic-
tion methods. Similar statements can also be extended to
computation of force-fields wherein classical ML techniques
even though successful have only efficiently modelled small
systems. For the drug discovery pipeline, as has been indicated
in Section 5.5, key players in both industry and academia are
recognizing the potential of quantum computers through
investments and collaborative ventures. In the context of inter-
pretability, analytically understanding how generalization of
some of the models presented work while increasing the
number of parameters with respect to the size of input space
and the number of learning samples is still open. We would like
to have a handle over the limit points of a given deep learning
model and perturb to understand the neighborhood space
much akin to having a conformal field theory that describes
the critical surface and is used to explore the space of quantum
field theories. Studies have been conducted in the context of 2d
Ising model along the lines of analyzing information flow for
RG and deep neural networks.735 Convergence towards critical
points in these models is in stark contrast with it being an
unstable point in the RG flow. It is important that further
studies be conducted in models that have self organized
criticality to probe if there exists a definitive relation and if
the fixed points have anything to tell us about how choices are
to be made in the models that we study, with respect to
hyperparameters, cost function, optimizer choice and learning
ability.

Since machine learning tasks are data-intensive efficient
protocols for loading entries from a high-dimensional classical
vector onto a quantum state without smarter preprocessing for
feature extraction continues to be a significant challenge. The
early domain of QML algorithms included HHL178 for PCA and
clustering, required the assumption about the oracular
presence of qRAM to enable efficient encoding of data. While
the development of qRAMs is still an ongoing field of research,
recent results claims that the exponential speedup in a subset
of such algorithms is only due to the assumption that the
encoding of data is efficient.736 Quantum inspired classical
algorithms737 that manipulate l2 norm sampling distributions
provide an exponential speedups in the case of recommenda-
tion systems imply the lack of provability concerning the
quantum speedups of certain early QML algorithms. Another
primary concern for the development of any quantum algo-
rithms even beyond ML applications is the inherent presence of
noise manifested from shorter coherence times of qubits and
greater gate-infidelities especially of multi-qubit operations.
The fundamental research related to the development of better
qubits, improving gate fidelities in unitary operations, and
improving the qubit connectivity is very much an active field
of investigation among hardware engineers and physicists. New

reports have been demonstrated with protected qubits resilient
against certain kind of hardware noises.738 Fault-tolerant
quantum computation wherein logical qubits are protected
using more physical qubits like in stabilizer codes739 or
qubit configurations based on topological properties of the
underlying interactions81,740 have been proposed and is actively
under development. First-ever such operation has been recently
demonstrated on a trapped-ion platform.741 The process of
such error correction can itself suffer from noise which can
be mitigated by the quantum fault-tolerant threshold
theorem742 provided noise levels are low. Partial suppression
of bit and phase-flip errors have also been demonstrated.743 On
the algorithmic side, algorithms that utilize the specific pro-
blem structure smartly have also been proposed.744 One also
needs to thoroughly understand the noise resilience of some of
the existing methods and investigate how much of hardware
noise can be tolerated before the results are corrupted beyond a
certain threshold and the proclaimed quantum advantages are
lost. Proper certification schemes and figures of merit for
benchmarking such algorithms are beginning to gain
attention.745 With the increased activity on developing quan-
tum ML algorithms underway, creating a provision for general-
izability of these models is an important consideration and this
aspect has been already discussed in Section 6.4.3. Some of the
key open questions in this area would be a proper theoretical
demonstration of asymptotic universality (as was discussed in
Section 4) for the function class which quantum models can
learn in the presence of trainable unitaries of finite circuit
depth309 thereby relaxing the assumptions used thereof.
Another interesting question would be proposing real-life
applications tailored to take advantages of the universality in
such function classes such that quantum benefits over classical
learning can be seen. Resource dependence of such algorithms
from the perspective of foundational aspects of quantum
mechanics is also an interesting avenue for research. With
regards to the trainability of ML models one of the major
menaces to tackle is the presence of barren plateaus (see
Section 6.4.4) in exploring high dimensional feature spaces to
find optimal parameters that minimize the cost function. Much
of the questions concerning how the possibility of such expo-
nentially vanishing gradients needs to be handled and miti-
gated are essentially open to further investigation.

One must also note that there are other applications which
have not been discussed in this review at all. Perhaps the most
important one from the point of view of chemistry is modelling
chemical reactions and computer aided rational design of
molecules and synthetic strategies. In this technique one con-
siders retro-synthetic pathways arising from a given product
until a set of precursors which are commercially available or
synthetically known in literature is obtained. Such pathways are
scored on efficacy based on number of reactions involved,
intermediates, reaction conditions, etc. Two different kinds of
strategies are known in this regard. The first involves retro-
synthetic disconnection based on domain knowledge or com-
monly used chemistry-inspired rules followed by subsequent
ranking of the precursor steps. This can suffer for unknown or
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rare reactions where such intuition may not be available. The
second category uses simple translation of the molecular
descriptors of the reactants into products as is used in
machine-induced linguistic translations. Promising results
have been obtained for either category using ML/DL
algorithms.746–750 For further information, the reader may
consult already existing topical reviews like.41,751 To the best
of our knowledge, the role of quantum computing in this area
has not been explored. Another area which is very important is
understanding non-unitary dynamical evolution of quantum
systems and the role of coupling to the environment and the
emergence of decoherence.752,753 Such open system dynamics
have also begun to receive attention from the point of view of
machine learning wherein the density matrix of the state is
encoded as within an efficiently constructible ansatz. In a
recent report128 Kernel-Ridge Regression (see Section 3.2.2)
has been used to faithfully recover long-time dynamical
averages of the spin-boson model when linearly coupled to a
harmonic bath characterized by the Drude–Lorentz spectral
density. Hierarchical equation of motion approach (HEOM)
was used to train the model using short-time trajectories but
the results when extrapolated beyond the training time inter-
vals using Gaussian kernels leads to unprecedented accuracy.
LSTM networks (see Section 3.3.3) have been used to model
dynamical evolution of density operators for a coupled two-level
system vibronically coupled to a harmonic bath.754 The popula-
tion difference between the two levels and the real and ima-
ginary part of the coherence was used as time series data for
training at shorter times from the numerically exact multi-layer
multi-configurational Time Dependent Hartree method (ML-
MCTDH). Remarkable accuracy was seen being preserved even
in the long-time limit. A similar result was also obtained with
CNN755 (see Section 3.3.2) where input training data was the
density matrix elements at various time steps and the predic-
tion of the network through successive series of convolutions
and max-pooling yielded accurate values of averages of the
system operators (like the Pauli-z or sz(t)). For further elabora-
tion on other such methods, the interested reader is referred to
ref. 756–759.

Yet another promising area which is left untouched here is the
use of physics-inspired machine learning algorithms which even
though is beginning to gain attention in problems of physical or
technological interest760–764 but has been sparsely adopted in
chemistry.765 Reader may consult a recent review for further
discussion.766 We thus see that the road ahead is ripe with
possibilities that can be explored in future especially for the
quantum-computing based ML variants. Hopefully with better
error mitigating strategies767 and large scale devices with over
1000 qubits being promised in recent future by tech-giants,768 this
burgeoning field will pick up momentum with enhanced capabil-
ities to conduct many pioneering investigations.
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M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre and
N. P. Sawaya, et al., Chem. Rev., 2019, 119, 10856–10915.

88 K. Head-Marsden, J. Flick, C. J. Ciccarino and P. Narang,
Chem. Rev., 2020, 121, 3061–3120.

89 X. Yuan, S. Endo, Q. Zhao, Y. Li and S. C. Benjamin,
Quantum, 2019, 3, 191.

90 M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin,
S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan and
L. Cincio, et al., Nat. Rev. Phys., 2021, 3, 625–644.

91 B. Bauer, S. Bravyi, M. Motta and G. K.-L. Chan, Chem. Rev.,
2020, 120, 12685–12717.

92 E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen,
T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean and
P. Lougovski, Phys. Rev. Lett., 2018, 120, 210501.

93 S. L. Wu, J. Chan, W. Guan, S. Sun, A. Wang, C. Zhou,
M. Livny, F. Carminati, A. Di Meglio and A. C. Li, et al.,
J. Phys. G: Nucl. Part. Phys., 2021, 48, 125003.

94 W. Guan, G. Perdue, A. Pesah, M. Schuld, K. Terashi,
S. Vallecorsa and J.-R. Vlimant, Mach. Learn.: Sci. Technol.,
2021, 2, 011003.

95 H.-P. Cheng, E. Deumens, J. K. Freericks, C. Li and
B. A. Sanders, Front. Chem., 2020, 1066.

96 R. Orus, S. Mugel and E. Lizaso, Rev. Phys., 2019, 4, 100028.
97 S. Lloyd and S. L. Braunstein, in Quantum Computation Over

Continuous Variables, ed. S. L. Braunstein and A. K. Pati,
Springer Netherlands, Dordrecht, 2003, pp. 9–17.

98 A. Aspuru-Guzik, A. D. Dutoi, P. J. Love and M. Head-
Gordon, Science, 2005, 309, 1704–1707.

99 T. Albash and D. A. Lidar, Rev. Mod. Phys., 2018, 90, 015002.
100 D-Wave System Documentation, https://docs.dwavesys.com/

docs/latest/doc_getting_started.html, Accessed: 2021-10-22.
101 P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori and

W. D. Oliver, Rep. Progress Phys., 2020, 83, 054401.
102 H. N. Djidjev, G. Chapuis, G. Hahn and G. Rizk, Efficient

Combinatorial Optimization Using Quantum Annealing,
2018.

103 R. Y. Li, R. Di Felice, R. Rohs and D. A. Lidar, npj Quantum
Inform., 2018, 4, 1–10.

104 F. Neukart, G. Compostella, C. Seidel, D. Von Dollen,
S. Yarkoni and B. Parney, Front. ICT, 2017, 4, 29.

105 R. K. Nath, H. Thapliyal and T. S. Humble, 2021, arXiv
preprint arXiv:2106.02964.

106 S. Ruder, CoRR, 2016, https://arxiv.org/abs/1609.04747.
107 T. M. Breuel, CoRR, 2015, https://arxiv.org/abs/1508.02788.
108 Q. A. Wang, J. Phys. A: Math. Theor., 2008, 41, 065004.
109 Y. Ouali, C. Hudelot and M. Tami, CoRR, 2020, https://

arxiv.org/abs/2006.05278.
110 V. K. Garg and A. Kalai, CoRR, 2017, https://arxiv.org/abs/

1709.05262.
111 W. B. Powell, CoRR, 2019, https://arxiv.org/abs/1912.03513.
112 V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare

and J. Pineau, Found. Trends Mach. Learn., 2018, 11,
219–354.

113 B. Scholkopf and A. J. Smola, Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond,
MIT Press, Cambridge, MA, USA, 2001.

114 M. G. Genton, J. Mach. Learn. Res., 2001, 2, 299–312.
115 T. Azim and S. Ahmed, Composing Fisher Kernels from Deep

Neural Models, Springer, 2018, pp. 1–7.
116 M. Schuld and F. Petruccione, Supervised learning with

quantum computers, Springer, 2018, vol. 17.
117 M. Schuld and N. Killoran, Phys. Rev. Lett., 2019,

122, 040504.
118 B. Ghojogh, A. Ghodsi, F. Karray and M. Crowley, 2021,

arXiv preprint arXiv:2106.08443.
119 S. L. Brunton and J. N. Kutz, Data-driven science and

engineering: Machine learning, dynamical systems, and con-
trol, Cambridge University Press, 2019.

120 D. W. Marquardt and R. D. Snee, Amer. Statist., 1975, 29,
3–20.

121 G. C. McDonald, Wiley Interdiscip. Rev.: Comput. Mol. Sci.,
2009, 1, 93–100.

122 A. E. Hoerl, R. W. Kannard and K. F. Baldwin, Commun.
Stat. Theory Methods, 1975, 4, 105–123.
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542 V. Murg, F. Verstraete, Ö. Legeza and R. M. Noack, Phys.

Rev. B: Condens. Matter Mater. Phys., 2010, 82, 205105.
543 T. Barthel, C. Pineda and J. Eisert, Phys. Rev. A: At., Mol.,

Opt. Phys., 2009, 80, 042333.
544 C. Wille, O. Buerschaper and J. Eisert, Phys. Rev. B, 2017,

95, 245127.
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