Open Access Article. Published on 15 Medi 2020. Downloaded on 19/10/2025 16:28:08.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

Organic &
Biomolecular Chemistry

COMMUNICATION

’ '.) Check for updates ‘

Cite this: Org. Biomol. Chem., 2020,
18, 7545

Received 2nd September 2020,
Accepted 14th September 2020

DOI: 10.1039/d0ob01815e

catalysis¥

rsc.li/obc

Lewis acid-assisted palladium-catalysed dealkoxylation of
N-alkoxyamides has been developed. This reaction proceeded
smoothly with a range of N-alkoxyamides in the absence of an
external reductant, thereby establishing a convenient and reduc-
tant-free protocol. In addition, a gram-scale reaction could be
achieved. Preliminary mechanistic investigations indicated that
p-hydrogen elimination from a palladium alkoxide intermediate

generated an intramolecular hydride source.

N-Alkoxyamides are an important class of synthetic intermedi-
ates for a range of organic transformations.' In particular,
N-methoxy-N-methylamides, which are known as Weinreb
amides, have unique properties as acylating reagents that sup-
press the overalkylation of reaction products by forming
remarkably stable five-membered cyclic intermediates
(Scheme 1a).> This exceptional feature allows the transform-
ation of readily available and stable N-alkoxyamides® into
useful aldehydes and ketones in a single step. Recently,
N-alkoxyamides have emerged as versatile directing groups for
C-H bond functionalisation, and various transformations
employing N-alkoxyamides are currently available.” While
N-alkoxyamides are commonly used in various organic reac-
tions, the dealkoxylation of N-alkoxyamides has not been
explored enough yet (Scheme 1b).

Conventional dealkoxylation of N-alkoxyamides requires
stoichiometric metal-based reductants such as Sml,,” Na/Hg®
and lithium powder” (Scheme 2a). An organic, neutral super
electron donor has been developed as a stoichiometric reduc-
tant, and it gives results comparable to those obtained using
metal-based reductants.® Base-mediated formal reduction of
N-alkoxyamides has also evolved as a method for dealkoxyla-
tion.” Treatment of N-alkoxyamides with lithium diisopropyl-
amide,’® or tert-butyldimethylsilyl triflate and triethylamine®”
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resulted in the formal reduction of the amides, along with the
formation of formaldehyde. Although these reductants and
bases allow facile cleavage of the alkoxy groups from
N-alkoxyamides under very mild conditions, excess amounts of
reductants or bases are required for these reactions. In
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Scheme 1 Transformation of N-alkoxyamides: (a) nucleophilic addition
of organometallic reagents and (b) dealkoxylation of N-alkoxyamides.
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Scheme 2 Dealkoxylation of N-alkoxyamides.
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addition, these reducing reagents are sometimes expensive,
difficult to handle, and hazardous. Ruthenium-catalysed deal-
koxylation of N-alkoxyamides has been reported as an alterna-

Table 1 Optimisation of reaction conditions?

4 mol% Pd(dba),
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tive protocol for avoiding the use of such stoichiometric
reagents (Scheme 2b). Dealkoxylation proceeded in alcoholic
solvents, which also behaved as a stoichiometric reductant.'®
Although the catalytic reactions require only green and cheap
alcohols as stoichiometric reductants, it is necessary to add a
substoichiometric amount of Zn-Cu for activating the ruthe-
nium catalyst. Herein, we report the palladium-catalysed deal-
koxylation of N-alkoxyamides in the absence of an external

o 4 mol% DPPBz 0 reductant as a convenient and reductant-free protocol for deal-
)J\ 10 mol% Lewis acid )j\ . [
ph - OMe e koxylation (Scheme 2c). To the best of our knowledge, this is
Ve solvent, 150 °C, 6 h b the first report on the catalytic dealkoxylation of
1a 22 N-alkoxyamides without any external reductants.""
We began our investigation using N-methoxy-N-methyl-
Entry Lewis acid Solvent Yield (%) benzamide (1a) as a model substrate, which was heated in
1 _ Toluene 33 toluene at 150 °C in the presence of the Pd(dba),/DPPBz cata-
2 AlCl, Toluene NR lyst (Table 1). After 6 h, the desired secondary amide 2a was
3 AlMe, Toluene 87 formed in a moderate yield (entry 1). We then screened alu-
4 Ali-Buy Toluene 98 .. . id 1 . d . h
5 Al(OEt), Toluene 83 minium Lewis acids as co-catalysts in order to activate the N-O
6 Al(Oi-Pr); Toluene 94 bond."” The addition of aluminium(m) chloride (AICl;) sup-
7 Ali-Bu, pXylene 86 pressed the reaction completely (entry 2). Trialkylaluminium
8 Ali-Bug 1,4-Dioxane 86 iall lumini icallv i d th ield
9 Ali-Bu, CPME 99 or trialkoxyaluminium dramatically improved the yields
10 Ali-Bug Diglyme 85 (entries 3-6), and the best result was obtained when triiso-
E i{{'guﬁ gﬁgo 2‘11 butylaluminium (Ali-Bus) was employed as a co-catalyst (entry
-bu . .
13 Ali-Buz CPME 99 4)."* Solvent screening (entries 7-12) revealed that cyclopentyl
methyl ether (CPME) was the optimal solvent for affording the
a . .
Reaction conditions: 1 (0.3 mmol), Pd(dba), (4 mol%), DPPBz  gegired product in an excellent yield (entry 9)."* In addition,

(4 mol%) and Lewis acid (10 mol%) in CPME (0.3 M) at 150 °C for 6 h,
unless otherwise noted. ” Pd(dba),/DPPBz (2 mol% each) and Ali-Bu,
(5 mol%) were used as catalysts. The reaction time was 20 h.

this demethoxylation reaction could reach completion with
reduced catalyst loadings (entry 13).

Table 2 Palladium-catalysed demethoxylation of N-methoxyamides®

4 mol% Pd(dba),
4 mol% DPPBz

? 10 mol% Ali-B o
mol7 Al-Bu
1JJ\N/OMe ° 1JJ\N,Me
RO CPME, 150 °C, 6 h RE
Me H
1 2
o] o) Me O o] o]
Me Me Me _Me
’T‘/ Me\©)LN,Me I}‘, N TBSO Ve
| |
H H H
Me H Me .
2b 87% 2c 93% 2d 96% 2e 80%? 2f 90% 29 97%°
o o o} 0 o o
Me _Me _Me M M N _Me
; @A* J@A* AW e )
| | |
H H H =~ H
FaC F cl Nsges H ~ H
2h 91% 2i 94% 2j 52%° 2K 67% 2180% 2mi62%
o] o] o] o] o
_Me M _Me /\)J\ _Me hO\/\)J\ y _Me
& , rTl - / Ph N Ph l}l N N
\ H \ H H H H
2n 80% 20 93% 2p 70%” 2q 80%” 2r 85%9 2s 79%°

“Reaction conditions: 1 (0.3 mmol), Pd(dba), (4 mol%), DPPBz (4 mol%
wise noted. The yields represent the  average yield of two reactlon runs.
(20h). €
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and Ali-Bu; (10 mol%) in CPME (0.3 M) at 150 °C for 6 h, unless other-

Pd(dba),

(8 mol%), DPPBz (8 mol%) and Ali-Bus (20 mol%) were used

“The reaction time was 18 h. ¢ Pd(dba), (8 mol%), DPPBz (8 mol%) and All -Bu; (20 mol%) were used (18 h).

This journal is © The Royal Society of Chemistry 2020
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With the optimised reaction conditions in hand, we investi-
gated the scope of demethoxylation (Table 2). Introduction of
methyl groups at the para- and meta-positions of the benzene
ring (1b-d) did not affect the efficiency of transformations.
However, the reactivity decreased with o-methylbenzamide 1e,
and increased catalyst loadings were required to obtain a
reasonable yield of the desired secondary amide. Benzamides

(a) Sulfonamide

4 mol% Pd(dba),
), S 4 mol% DPPBz O\\ //O
S\N/OMe 10 mol% Ali-Bug S\N/Me
| CPME, 150 °C, 6 h |
Me H
3 4 (86%)

(b) Phsphoramide

4 mol% Pd(dba),
[o] 4 mol% DPPBz [o]
10 mol% Ali-Bug I

1l
PhO//P\ N _OMe . PhO’/P\N Me
PhO | CPME, 150 °C, 20 h PhO
Me H
5 6 (61%)

Scheme 3 Palladium-catalysed demethoxylation of sulfonamide 3 and
phosphoramidate 5.
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Scheme 4 A gram-scale reaction.
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Scheme 5 Palladium-catalysed debutoxylation of N-butoxy-N-methyl-
benzamide (1t) (conditions: 4 mol% Pd(dba),, 4 mol% DPPBz, 10 mol%
Ali-Bus, CPME, 150 °C, 6 h).
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bearing electron-donating and electron-withdrawing groups
1f-j were well tolerated under the optimal conditions.
Heteroaryl-substituted substrates 1k-o were also converted
into the desired secondary amides with high efficiency.
Cinnamamide 1p afforded the corresponding product without
the reduction of the olefin moiety.'® It is worth noting that the
demethoxylation of enolisable N-methyl-N-methoxyamides 1q-
s proceeded smoothly, and no side reactions were observed.

To further demonstrate the applicability of demethoxyla-
tion, other alkoxyamides were examined. Under the optimal
conditions, sulfonamide 3 gave the desired secondary sulfona-
mide 4 in a high yield (Scheme 3a). Moreover, phosphorami-
date 5 was found to be a promising substrate for the
demethoxylation to afford the corresponding product in a
good yield (Scheme 3b). In both cases, an N-O bond was selec-
tively cleaved, while the other heteroatom-heteroatom bonds
remained intact. In contrast to previous studies, reductant-free
demethoxylation was applicable to a wide range of N-methoxy-
N-methylamides, without the occurrence of any side reactions
or over-reactions. Furthermore, a gram-scale reaction was per-
formed with 1a in diglyme, and the desired product 2a was
obtained in 78% yield (Scheme 4).">

To gain insight into the reaction mechanism, a control
experiment was conducted (Scheme 5). When N-butoxy-N-
methylbenzamide (1t) was subjected to the standard reaction
conditions, butanal and its aldol condensation product were
produced along with the desired secondary amide 2a. These
byproducts may have been generated via the B-hydrogen elim-
ination from a palladium alkoxide intermediate. The results
reveal that an o-hydrogen atom with respect to the oxygen
atom of the alkoxy group functions as a hydride source.""*®

A plausible mechanism for the reductant-free demethoxyla-
tion is proposed on the basis of a previous report'' and our
preliminary mechanistic investigations (Scheme 6). The carbo-
nyl oxygen of alkoxyamide 1 coordinates to the aluminium
Lewis acid to form A, thereby weakening the N-O bond.
Subsequently, oxidative addition of the N-O bond to Pd(0) gen-
erates palladium alkoxide B, which undergoes p-hydrogen
elimination to generate palladium hydride intermediate C and
formaldehyde. Finally, reductive elimination from the inter-
mediate C affords secondary amide 2 and simultaneously
regenerates the catalytically active Pd(0) species.
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/&®/0Me RJ\N
R N |
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A
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Scheme 6 The plausible reaction mechanism for reductant-free demethoxylation.
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Conclusions

In summary, we achieved the demethoxylation of N-alkoxyamides
in the presence of a Pd/Al cooperative catalytic system. The reac-
tion proceeded with various N-alkoxyamides including a sulfona-
mide and a phosphoramide in the absence of an external reduc-
tant. The N-O bond was selectively reduced, and there were no
side reactions or over-reactions. Preliminary mechanistic investi-
gations revealed that p-hydrogen elimination of a palladium
alkoxide intermediate generated an intramolecular hydride
source. Further studies on palladium-catalysed reductant-free
demethoxylation are ongoing in our laboratory.
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