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ABSTRACT

The acidic pH of tumor tissue has been used to trigger drug release from nanoparticles. 

However, dynamic interactions between tumor pH and vascularity present challenges to 

optimize therapy to particular microenvironment conditions. Despite recent development of pH-

sensitive nanomaterials that can accurately quantify drug release from nanoparticles, tailoring 

release to maximize tumor response remains elusive. This study hypothesizes that a 

computational modeling-based platform that simulates the heterogeneously vascularized tumor 

microenvironment can enable evaluation of the complex intra-tumoral dynamics involving 

nanoparticle transport and pH-dependent drug release, and predict optimal nanoparticle 

parameters to maximize the response. To this end, SPNCD nanoparticles comprising 

superparamagnetic cores of iron oxide (Fe3O4) and a poly(lactide-co-glycolide acid) shell loaded 

with doxorubicin (DOX) were fabricated. Drug release was measured in vitro as a function of 

pH. A 2D model of vascularized tumor growth was calibrated to experimental data and used to 

evaluate SPNCD effect as a function of drug release rate and tissue vascular heterogeneity.

Simulations show that pH-dependent drug release from SPNCD delays tumor regrowth more 

than DOX alone across all levels of vascular heterogeneity, and that SPNCD significantly inhibit 

tumor radius over time compared to systemic DOX. The minimum tumor radius forecast by the 

model was comparable to previous in vivo SPNCD inhibition data. Sensitivity analyses of the 

SPNCD pH-dependent drug release rate indicate that slower rates are more inhibitory than 

faster rates. We conclude that an integrated computational and experimental approach enables 

tailoring drug release by pH-responsive nanomaterials to maximize the tumor response.
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INTRODUCTION

Nanoparticles have emerged as a promising tool with a wide range of potential medical 

applications including diagnosis, imaging, and therapy (1-3) and have boosted cancer therapy, 

efficacy, and safety in preclinical and clinical studies (4). Several pathological characteristics 

influence the tumor response to nanoparticle-mediated drug delivery, including vascular 

heterogeneity, tissue acidity, and immune interactions (5). By understanding these 

characteristics for particular tumors, nanoparticles can be tuned to release anticancer drugs to 

more specifically target the tumor environment and optimize therapy (6). Tumor tissue typically 

has lower pH than normal tissue due to the Warburg Effect (7), which yields lactate, an acid, 

during anaerobic glycolysis. Accordingly, many pH-sensitive nanoparticles have been designed 

to release their payload in the acidic tumor microenvironment in order to increase local dosage 

while reducing off-target effects in normal (non-acidic) tissue (8-10). 

It has proven challenging to understand, and thus to optimally design, pH-dependent 

nanoparticle drug release because of differences across local tumor conditions —particularly 

due to dynamic interactions between tissue pH and vascularity (11).  We recently developed a 

pH-sensitive nanomaterial that enables accurate quantification of drug release from 

nanoparticles deep within breast tumors, which is made possible by exploiting the unique 

physical properties of magnetic particle imaging (MPI) in concert with superparamagnetic Fe3O4 

nanocluster@poly(lactide-co-glycolide acid) core−shell nanocomposites loaded with 

chemotherapeutic drugs (12). The approach is based on the fairly-new, high-penetration depth 

imaging modality MPI, which directly images superparamagnetic iron oxide particles (SPNs) to 

produce MPI signal (13) and enables drug release quantification. The linearly quantifiable signal 

at low magnetic fields makes the MPI and SPN combination ideal to provide quantitative in vivo 

measures of nanoparticle-mediated drug release (12). In this paradigm, clustered 

superparamagnetic cores of iron oxide (Fe3O4) nanoparticles and a poly(lactide-co-glycolide 
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acid) (PLGA) shell comprise SPNC; loading the common chemotherapy doxorubicin then yields 

SPNCD. In the tumor acidic environment (pH ~6.5), SPNCD simultaneously release DOX and 

iron oxide NPs, producing linearly correlated signal. Importantly, the SPNCD nanocomposite 

releases drug based on the pH but remains stable at the neutral pH in normal tissue (12).

Yet despite success in development of this drug release monitoring technology, the specific 

parameters such as the drug release rate with which to design and tune the nanocomposites 

remain unclear to maximize the tumor response. Vascular heterogeneity across and within 

breast tumors may require this release to be customized; ideally, the NP design would be 

evaluated and tuned prior to treatment. Optimized pH-dependent release rates are a function of 

several key tumor-specific parameters, including vascularity that affects oxygenation and tissue 

pH. Moreover, it is important to account for the fact that the particle itself degrades into 

constituents that contribute to the acidic microenvironment in a potentially self-propelling 

degradation mechanism (12). Analysis of such complex system dynamics involving nanoparticle 

transport and pH-dependent drug release in the heterogeneously-vascularized tumor 

microenvironment could benefit from, or even require, mathematical modeling and 

computational simulation (14). These tools have been employed to gain insight into tumor 

growth and treatment response (15). In particular, simulation of heterogeneously vascularized 

tumor growth allows evaluation of therapeutic response based on transport barriers and 

associated tissue conditions such as hypoxia and lactate build-up (16-20). Other models have 

provided pre-clinical insight into various nanotherapies (14, 15, 21, 22), including simulation of 

nanotherapy targeting non-small cell lung cancer lesions (23), tumor vasculature (24), and liver 

metastases (25).  Anti-tumor performance of systemically administered pH-sensitive polymer 

nano-assemblies has been explored as a function of nano-assembly release profiles, tumor 

tissue vascularization, and associated levels of tissue acidity (26).  
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Despite this progress, an unfulfilled goal remains prediction of nanoparticle parameters (e.g., 

pH-dependent drug release) to maximize tumor response as a function of complex intra-tumoral 

dynamics including nanoparticle transport and vascularity. In this study, we advance this goal by 

developing a computational modeling strategy that evaluates intra-tumoral injection of SPNCD 

as a means for controlled nanotherapy assessment and then comparing the results to current 

experimental data. We aim to provide a means to assess pH-dependent nanotherapy based on 

the drug release rate from nanoparticles, and thereby to extract key nanomaterial design 

considerations to optimize therapy. This study emphasizes the utility of applying experimentally 

derived adjustable parameters in mathematical modeling of drug delivery to evaluate and 

potentially improve pH-dependent cancer nanotherapy response. 
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EXPERIMENTAL

Preparation of SPNCD

Following our previous fabrication strategy (12), Fe3O4 nanoparticles (Imagion, 25 nm, 1 mg) 

were mixed with 5 mg PLGA (Millipore Sigma, Molecular weight: 4000 – 15000 Da) in 1 mL 

chloroform to form a mixture. The mixture was transferred to 4 mL of 3% (W/V) PVA (Millipore 

Sigma, Molecular weight: 13,000-23,000 Da) aqueous solution. After vortex and sonication, the 

emulsified solution was injected dropwise into 20 mL of 1% (W/V) PVA aqueous solution. The 

emulsion was stirred overnight to evaporate chloroform and form nanoclusters. The obtained 

nanoclusters (SPNC) were washed with DDI water 3 times and then dispersed in DDI water. 

Doxorubicin (DOX)-loaded nanoclusters were prepared by mixing SPNC and DOX in DDI water 

(pH=7.4) and stirring for 24 h. The resulting SPNCD nanocomposites were separated by 

centrifugation at 6,000×g and washed with DDI water 3 times and then dispersed in DDI water. 

A Nanodrop (ND-ONE-W, USA) confirmed successful loading of DOX on SPNC. 

Characterization of SPNCD

A Malvern Zetasizer (Malvern, UK) was used to characterize the diameter of SPNCD. 

Transmission electron microscopy (TEM) (JEOL 2200FS, Tokyo) and scanning electron 

microscopy (SEM) (JEOL 7500F, Tokyo) were used to characterize the morphology of SPNCD.

SPNCD degradation at different pH

The pH of SPNCD solution was adjusted to pH 7.1, 6.8, 6.0 and 5.5, respectively. 20 µL of the 

samples were taken out at specific timepoints (0, 1, 3, 6, 24 and 48 h) and added into 1 mL DDI 

water for the size measurement by using Malvern Zetasizer. SPNCD degradation was 

calculated by quantifying the DLS (dynamic light scattering) peak changes of each sample. 

Drug release from SPNCD at different pH
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An assay to test DOX release from SPNCD at pH 7.4, 7.1, 6.8, 6.5, 6.0 and 5.5 was conducted. 

SPNCD were added to MINI Dialysis Devices (MWCO: 20K) and the volume of release medium 

was 3 mL. At fixed timepoints from 1 h to 48 h, 2 µL of the outlet medium was removed to test 

the rate of DOX release via Nanodrop UV-Vis spectroscopy (ND-ONE-W, USA). The cumulative 

drug release (CDR) percentage was calculated by the following equation: 

CDR (%) = Wreleased/Wloaded x 100% (1)

Here, CDR represents the cumulative drug release percentage, Wreleased represents the mass of 

released DOX in the release media, and Wloaded represents the total mass of DOX. 

 Localization of SPNCD within murine tumor tissue

All animal procedures were carried out in strict compliance with the guidelines of the Institutional 

Animal Care & Use Committee (IACUC) and performed with the approval of Campus Animal 

Resources of Michigan State University (IACUC#: PROTO202200377). As in our previous study 

(12), SPNCD were intra-tumorally injected to allow for controlled nanotherapy assessment. The 

localization of SPNCD in breast tumor tissue was evaluated using Prussian Blue staining. 4T1 

triple-negative breast cancer cells were collected, centrifuged, and resuspended in PBS. 4T1 

cells (1106 cells per mouse) were implanted into the mammary fat pads of six-week-old female 

Balb/c mice. Orthotopic tumor-bearing mice were considered ready for in vivo studies when the 

tumor volume reached >100 mm3. The tumor volume was calculated by the following 

equation: V = W2 × L/2, where W and L are width and length of the tumor measured by calipers, 

respectively. Then the 4T1 tumor-bearing mice were intra-tumorally injected with SPNCD every 

2 d for 15 d. Tumors were harvested on day 15, processed with Prussian blue staining, and 

imaged by Digital Microscopy (Keyence VHX-6000) to spatially quantify localized iron oxide 

nanoparticles.

SPNCD washout in vivo
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SPNCD (1.22 mg/kg DOX) were intravenously injected into Balb/c mice (six-week-old, female). 

At predetermined time points (0, 0.17, 0.5, 1, 2, 5, 9, 14 and 24 h post-injection), blood was 

collected from mouse retro-orbital plexus, then placed in Eppendorf tubes and centrifuged to 

obtain plasma at 10000 g for 10 mins. SPNCD concentration in the plasma was measured by 

Nanodrop (ND-ONE-W, USA). Percent injected dose (ID %) = (Concentration of SPNCD at 

specific timepoint / Initial SPNCD concentration) x 100%.

Computational Model

The computational model represents tumors as continuous tissue and the vasculature as 

discrete vessels, as previously described in (26-29). Briefly, within a growing tumor inside a 2D 

Cartesian coordinate system, regions of viable, hypoxic, and necrotic tissue arise over time due 

to the limited diffusion of oxygen and nutrients from local vessels. Neovascularization from a 

pre-existing capillary grid, stimulated by tumor angiogenic factors (TAF) produced by the 

hypoxic tissue, provides additional oxygen and nutrients to the tumor tissue, enabling further 

growth. The main parameters of the model are in Table 1. 

Simulation of Tumor Growth

The tumor growth is described in (30). Briefly, tumor growth velocity is generally (non-

dimensionally) represented using Darcy’s law as:

 = - E                            (2)𝑣𝑐 𝜇∇𝑃 + 𝑥 ∇𝐸

where  is tissue velocity,  is cell mobility cell-mobility encapsulating the net effects of cell-cell 𝑣𝑐 𝜇

and cell-matrix adhesion,    is oncotic pressure, E is haptotaxis, and  is extracellular matrix 𝑃 𝑥 𝐸

(ECM) density. Detailed descriptions of these parameters are in (26, 30). Overall tumor growth, 

measured as a function of velocity, can be represented as:

                             (3)∇ ∙ 𝑣𝑐 = 𝜆𝑝
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where cell density is assumed to be constant in the proliferating region, and  is the non-𝜆𝑝

dimensionalized net proliferation rate (defined in Equation 13 below).

Simulation of Angiogenesis

Tumor-induced angiogenesis is simulated by coupling vessel growth with blood flow (31), where 

neo-vessel sprouts arise and grow towards a gradient of tumor angiogenic factors (TAF) 

released by hypoxic tissue. The tissue pressure and distance from a vascular source varies 

across the vascular grid and gives the tumor cells heterogeneous access to oxygen and 

nutrients (28, 30). The angiogenesis component has been previously described in (28, 30).

Simulation of Tumor Vascular Heterogeneity

Vascular heterogeneity affects tumor growth and the ensuing production of lactate in the tumor 

microenvironment (32), which would affect the SPNCD drug release and the tumor response to 

the SPNCD.  Accordingly, the proportion of hypoxic and necrotic tissue and the extent of tissue 

vascularization were varied in the simulations by changing the response to tumor angiogenic 

factors, as in (33). Tumor vascularization due to angiogenesis was varied to simulate three distinct 

levels of vascular heterogeneity, labeled “LOW”, “MEDIUM”, AND “HIGH.” The values for these 

levels and the associated tumor characteristics are summarized in Table 2. Due to the semi-

stochastic angiogenesis model, replicates were employed to account for slight differences in 

simulated tumor characteristics and to allow for statistical comparisons. N=4 replicate tumors 

were computationally generated for each level of heterogeneity and subjected to each 

treatment. 

Simulation of Lactate Production (acidity)

Anaerobic glycolysis along with increased lactate production (leading to lower pH within tumor 

tissue) is known as the Warburg effect (34). This study implements lactate produced by 

Page 10 of 38Nanoscale



proliferating and hypoxic tumor cells and diffusing through the surrounding tissue. It is removed 

from the environment by tumor uptake and washout through the vasculature. Lactate production 

is represented as 2 moles of lactate obtained for every mole of glucose during anaerobic 

respiration (35): 

   (4)0 = ∇ ⋅ (𝐷𝐿𝑎𝑐.∇𝐿) + 𝜆 𝐿𝑎𝑐.
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(1 ― 𝐿) ― 𝜆 𝐿𝑎𝑐.

𝑤𝑎𝑠ℎ𝑜𝑢𝑡(𝟏𝑣𝑒𝑠𝑠𝑒𝑙) ―  𝜆 𝐿𝑎𝑐.
𝑢𝑝𝑡𝑎𝑘𝑒𝐿

where  is lactate diffusivity,  is local lactate concentration,  is production rate, 𝐷𝐿𝑎𝑐. 𝐿  𝜆 𝐿𝑎𝑐.
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

 is washout rate, and  is cellular uptake rate. The lactate production rate is 𝜆 𝐿𝑎𝑐.
𝑤𝑎𝑠ℎ𝑜𝑢𝑡 𝜆 𝐿𝑎𝑐.

𝑢𝑝𝑡𝑎𝑘𝑒

dependent on the lactate concentration in the microenvironment, since cancer cells can adjust 

their metabolic activity by altering the production to maintain a range of pH in their 

microenvironment (36). The model assumes that lactate production  increases as the 𝜆 𝐿𝑎𝑐.
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

level of oxygen σ decreases in regions of lower vascularization (34)

(5)𝜆𝐿𝑎𝑐
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = {1 ― 𝜎                 𝑖𝑛 Ω𝑃

2𝜎                       𝑖𝑛 Ω𝐻
0                         𝑖𝑛 Ω𝑁

Since the high diffusivity of lactate (with values measured as ~3x10-6 cm2/s in agarose gel (37) 

and ~1x10-6 cm2/s in muscle (38)) is close to that of oxygen (3.6x10-5 cm2/s in tissue (39)), the 

diffusion constant  is for simplicity assumed to be similar to that of oxygen. Lactate is, 𝐷𝐿𝑎𝑐.

therefore, assumed to diffuse through the tissue relatively uninhibited by the extracellular matrix 

(ECM), consistent with observations that lactate does not typically accumulate in tissue (34). 

Similarly, the lower bound rate of lactate uptake is assumed to be on the same order of 

magnitude as that of oxygen. 

Calibration of Drug Injection Amounts

The recommended DOX hydrocholoride injection of 60 mg/m2 body surface area for adjuvant 

breast cancer was used to calculate the amount of DOX administered in the simulations (40). 

Assuming an average female body surface area of 1.84 m2 based on average height and weight 
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of females age 60 or older (41), a standard dose is 110.4 mg, which is equivalent to 44.26 μM 

once diluted in the average female plasma volume of 4.3 L (42). Accordingly, the amount of 

systemic DOX entering the computational domain from the vasculature was fixed to represent 

this (non-dimensionalized) concentration for the HIGH heterogeneity case and decreased 

proportionally to the amount of vasculature present in the MEDIUM and LOW heterogeneity 

cases. 

Simulation of Nanoparticle and Drug Transport

SPNCD were injected intra-tumorally as a means for controlled nanotherapy assessment, and 

the effects were compared to the current standard of care (systemic bolus DOX) and a non-NP 

mediated control administration (intra-tumoral DOX). Both the amount of intra-tumorally injected 

DOX entering the simulated domain and the amount of encapsulated DOX for the intra-

tumorally injected SPNCD were set to represent the non-dimensionalized values of these 

amounts regardless of tumor heterogeneity, equivalent to the standard dose of 110.4 mg for 

systemic therapy.

SPNCD transport through the tumor and host tissues was simulated from the point of injection 

at the tumor center and diffused through the tumor and surrounding host tissues with diffusivity 

. 𝐷𝑠

(6)
∂𝑠
∂𝑡 = ∇ ⋅ (𝐷𝑠 ∇𝑠) + 𝑆𝑆(𝟏𝑛𝑒𝑒𝑑𝑙𝑒) ― 𝜆𝑠

𝑤𝑎𝑠ℎ𝑜𝑢𝑡(𝟏𝑣𝑒𝑠𝑠𝑒𝑙)

SPNCD concentration s was initially  at the site of injection .  Diffusivity  was set to 10 𝑆𝑆 𝟏𝑛𝑒𝑒𝑑𝑙𝑒 𝐷𝑠

times (of normal diffusion) within 0.125 of the tumor area (~160 μm radius) from the injection site to 

achieve intra-tumoral distribution comparable to that observed in vivo (Supplementary Figure 

1). SPNCD were assumed to washout through the vasculature . The washout 𝜆𝑠
𝑤𝑎𝑠ℎ𝑜𝑢𝑡(𝟏𝑣𝑒𝑠𝑠𝑒𝑙)

was fit to SPNCD measurements in blood circulation of mice (Supplementary Figure 2). 
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Drug G was released from SPNCD in a time- and pH- dependent manner with rate , 𝜆𝐺
𝑟𝑒𝑙𝑒𝑎𝑠𝑒

diffused through tissue with diffusivity  and decayed with rate  assuming a 24 h half-life: 𝐷𝐺 𝜆𝐺
𝑑𝑒𝑐𝑎𝑦

(7)
∂𝐺
∂𝑡 = ∇ ⋅ (𝐷𝐺 ∇𝐺) + 𝜆𝐺

𝑟𝑒𝑙𝑒𝑎𝑠𝑒(𝑡,𝑇𝐴) ― 𝜆𝐺
𝑑𝑒𝑐𝑎𝑦  

where  represents non-dimensionalized tumor acidity by rescaling the value of lactate from 0 𝑇𝐴

to 1. The amount of drug released over time was calibrated to the experimental data via a best 

fit equation (Equation 11 below). 

During systemic bolus administration, drug extravasates from the vasculature with rate  𝜆𝐺,𝑒𝑣

obeying the equation:

(8)0 = ∇ ⋅ (𝐷𝐺 ∇𝐺) + 𝜆𝐺,𝑒𝑣(𝐱, 𝑡, 𝟏𝑣𝑒𝑠𝑠𝑒𝑙, 𝑝𝑖,𝐺) ― 𝜆𝐺
𝑑𝑒𝑐𝑎𝑦

where  is interstitial fluid pressure. The drug extravasation  depends on the transfer rate 𝑝𝑖 𝜆𝐺,𝑒𝑣

 from the vasculature (assumed constant over time): 𝜆𝐺,𝑇𝑅

(9)𝜆𝐺,𝑒𝑣 =  𝜆𝐺,𝑇𝑅(𝟏𝑣𝑒𝑠𝑠𝑒𝑙)(𝐱,𝑡)(1 ―
𝑘𝑝,𝑖𝑝𝑖

𝑝𝑒 )
where  represents the weight of the convective transport component of drug molecules and 𝑘𝑝,𝑖

 is effective pressure (28).  𝑝𝑒

For comparison to SPNCD injection, drug was injected into the center of the tumor (acting as a 

source  of drug at the needle location ): 𝐺𝐺 𝟏𝑛𝑒𝑒𝑑𝑙𝑒

(10)
∂𝐺
∂𝑡 = ∇ ⋅ (𝐷𝐺 ∇𝐺) + 𝐺𝐺(𝟏𝑛𝑒𝑒𝑑𝑙𝑒) ― 𝜆𝐺

𝑑𝑒𝑐𝑎𝑦

As with the injected SPNCD, diffusivity  of drug molecules at the site of injection was set to 10 𝐷𝐺

times the normal value within 0.125 of the tumor area (~160 μm radius) from the injection site to 

achieve intra-tumoral distribution comparable to that observed in real tumors subjected to intra-

tumoral injection (43, 44).
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Simulation of pH-Dependent Drug Release

As in (26), the pH-dependent drug release profiles from SPNCD were determined by fitting the 

experimental data of DOX released from SPNCD (Supplementary Table 1) to the equation:

 (11)𝑁 = [𝑛1 ― (𝑛2 ― 𝑇𝐴(𝑛2 ― 𝑛3))]𝑒 ― (𝛼 + 𝛽𝑇𝐴)𝑡 + (𝑛2 ― 𝑇𝐴(𝑛2 ― 𝑛3)) ―𝛾𝑡(1 + (1 ― 𝑇𝐴))𝜀

where  represents the cumulative fraction of drug remaining and t is time. The parameter 𝑁

values used to fit the equation at each pH level are reported in Supplementary Table 2. The 

drug release is then found at each location in the domain as the rate of change of the 

cumulative fraction of drug remaining: 

(12)𝜆𝐺
𝑟𝑒𝑙𝑒𝑎𝑠𝑒 =

∂𝑁
∂𝑡

Computationally, the release is determined by defining levels of pH (7.4, 7.1, 6.8, 6.5, 6.0, 5.5) 

as a function of the dynamic lactate production by the tumor tissue and calculating the drug 

release at that value over time. The discretization of pH is tracked over the entire spatial domain 

where a  value of 0 represents minimum acidity (pH=7.4) and  value of 1 represents 𝑇𝐴 𝑇𝐴

maximum acidity (here, defined as pH=5.5). To perform a sensitivity analysis of the release 

rate’s impact on tumor inhibition, a total of five SPNCD DOX release rate profiles were 

investigated. These included the experimental baseline, designated as “Rate 3”, and 4 

additional theoretical cases of slower, slowest, faster, and fastest release, designated as “Rate 

1”, “Rate 2”, “Rate 4”, and “Rate 5”, respectively. 

Calibration of Simulated Drug Effect

The drug-induced cell death   of doxorubicin (DOX) was calibrated by finding the rate that 𝜆𝑒𝑓𝑓𝑒𝑐𝑡

corresponded to the half-maximal inhibitory concentration (IC50) using data from 3D culture of 

human breast cancer cells (MDA-MB-231) (45) employed in the experiments in (12) . The IC50 
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was defined to represent 50% viable (proliferating and hypoxic) tissue reduction. The median 

(non-dimensionalized) value of DOX found across the computational domain during the 48 h 

therapy period was set to a concentration value of 77.35 μM based on the IC50 observed with 

MDA-MB-231 cells (45). The values of DOX reported are scaled to this concentration.

Simulation of Tumor Response

It is assumed that only proliferating cells are sensitive to drugs (such as DOX) that induce death 

in a cell-cycle dependent manner. Therefore, the drug effect is included into the proliferation 

term  (29):𝜆𝑝

                       (13)𝜆𝑝 = { 0
𝜆𝑀𝜎(1 ― 𝜆𝑒𝑓𝑓𝑒𝑐𝑡𝐺) ― 𝜆𝐴

 outside tumor
in proliferating tissue

 0
― 𝐺𝑁

in hypoxic tissue
in necrotic tissue

where  is the rate of drug-induced cell death,  is the mitosis rate, is the apoptosis 𝜆𝑒𝑓𝑓𝑒𝑐𝑡 𝜆𝑀 𝜆𝐴 

rate, and is the non-dimensionalized rate of volume loss in necrotic regions assuming that 𝐺𝑁 

cellular debris is constantly degraded and the resulting fluid is removed (29). For simplicity, the 

model assumes that proliferation and apoptosis rates are comparable prior to and after therapy, 

and that cell death is an instantaneous process. 

Numerical Methods

Briefly, the model equations are solved iteratively at each time step (28). In all equations that 

involve a diffusion term, a fully nonlinear diffusion solver solves the equation u(t) = ∆(D(u, x, y) · 

∆(u) + source(u, x, y) in space using centered finite difference approximations and the backward 

Euler time-stepping algorithm (28, 30). The discretized equations are solved numerically using a 

nonlinear adaptive Gauss-Seidel iterative method (46, 47). Further details of the numerical 

solution are in (30) and references therein.

Page 15 of 38 Nanoscale



Statistical Analysis   

Statistical differences were determined by one-way ANOVA. Results were expressed as 

mean±SE. P-value < 0.05 was considered to indicate statistical significance. Statistical analyses 

were performed using GraphPad Prism 7 (GraphPad Inc.).  
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RESULTS

Characterization of SPNCD

SPNCD containing an Fe3O4 core and PLGA shell were prepared via co-precipitation method as 

described previously (12). SEM, TEM, and dynamic light scattering (DLS) characterization of 

synthesized SPNCD showed that the nanocomposites had a nearly spherical morphology with 

average diameter of ~120 nm (Figure 1A and 1B).

SPNCD pH Dependent Degradation and Drug Release 

To assess pH-dependent SPNCD degradation and drug release, SPNCD were suspended in 

PBS at different pH values. The results (Figure 1C) show SPNCD degradation of 17% in 48 h at 

pH 7.1, whereas degradation was 68% within the same time frame at pH 5.5 (p < 0.001). Drug 

release rates were measured under six pH conditions (Figure 1D and Supplementary Table 

1). The release  was fast at initial timepoints (up to ~5 h), followed by slower release (from ~5 to 

48 h).. As expected, SPNCD exhibited pH-dependent drug release profiles, with a significant 

difference (p < 0.001) in release rate between acidic and neutral pH (Figure 1D).

Distribution and Degradation of SPNCD within Tumors

To experimentally evaluate the distribution of SPNCD within tumor tissue after intra-tumoral 

injection, Prussian blue staining was used to detect iron in the tissue 24 h after the 5th dose. 

Thus, the stain represented the spatial localization of SPNCD across the tumor post-injection. 

(Supplementary Figure 1A). It was also observed that SPNCD completely degraded to release 

iron oxide NPs by day 15 post-injection based on TEM of tumor slices (Supplementary Figure 

1B), which indicates that the observed MPI signal increase of SPNCD was due to increased 

Brownian relaxation rates upon release of iron oxide nanoparticles from the polymeric 

nanocomposite. 
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Model Calibration of Drug Effect

To calibrate the drug effect parameter (  in the computational model, an avascular 𝜆𝑒𝑓𝑓𝑒𝑐𝑡)

spheroid exposed to DOX in solution was simulated to represent 3D cell culture conditions 

(Supplementary Figure 3). The simulated DOX and oxygen are shown at therapy start and 

after 48 h. DOX concentration is highest near the spheroid periphery due to its limited diffusive 

transport into the spheroid. The drug effect (Table 1) resulted in a 50% reduction in tumor cells 

over 48 h, where the corresponding non-dimensionalized value of DOX was equivalent to a 

concentration of 77.35 μM based on previous experiments with MDA-MB-231 breast cancer 

cells (45). 

Model-Based Evaluation of Intra-Tumoral SPNCD and Drug Distribution

To evaluate how differences in vascularity might impact the intra-tumoral distribution of SPNCD 

and drug, tumor nodules were simulated growing in time with different levels of vasculature-

induced tissue heterogeneity (Supplementary Figure 4). Immediately before therapy 

administration, the proliferating tissue fraction is significantly higher for LOW vascular 

heterogeneity compared to MEDIUM or HIGH (Supplementary Figure 5A), while tumor vessel 

surface area (SA) is significantly higher for HIGH vascular heterogeneity compared to MEDIUM 

or LOW (Supplementary Figure 5B). Images of simulated tumors, tumor acidity, and intra-

tumoral DOX 0, 24, and 48 h following systemic injection, intra-tumoral DOX injection, and intra-

tumoral SPNCD injection are shown in Figure 2, where tumors of HIGH vascular heterogeneity 

were chosen as representative images. Spatial domain images show differences in DOX 

distribution between the 3 administration types. Systemic DOX administration (Figure 2A) leads 

to drug released into the tissue in proportion to the vascular density. The drug is highest in 

proliferating tissue, followed by gradual washout over the next 48 h. Intra-tumoral DOX injection 

into the tumor center results in the highest drug concentration immediately post-injection 

followed by washout (Figure 2B). In contrast, after intra-tumoral SPNCD injection, DOX 
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concentration in the tumor steadily increases (Figure 2C), showing a higher concentration by 24 

h post-injection near the tumor center where acidity is highest.  Washout of SPNCD through the 

vasculature leads to lower concentrations at locations where vessels intersect with tumor or 

host tissue. 

Model-Based Evaluation of Intra-Tumoral Drug Concentration

Analyses of tumor radius and tumor drug density for each administration type over 14 d from the 

start of therapy for each level of vascular heterogeneity show that SPNCD pH-dependent drug 

release resulted in higher intra-tumoral drug concentrations over time (as measured by area-

under-the-curve (AUC) values) (Figure 3) compared to drug-only administration. Intra-tumoral 

SPNCD injection delayed tumor regrowth more than systemic or intra-tumoral DOX injections 

across all levels of vascular heterogeneity. In comparison, intra-tumoral DOX injection resulted 

in the highest peak concentration of DOX within the tumor occurring at initial time for all levels of 

heterogeneity, while yielding the lowest effect on tumor growth. Conversely, SPNCD therapy 

resulted in a delayed rise to the maximum DOX concentration at 1 d post-injection, followed by 

a slow decline over the following 5 d (Figure 3). 

Model-Based Evaluation of Tumor Inhibition due to SPNCD

Drug release and tumor inhibition as a function of treatment type and tumor vascular 

heterogeneity highlight the value of pH-dependent drug release in the least-vascularized tumor 

tissue (Figure 4). For all cases of vascular heterogeneity, intra-tumoral SPNCD injection yielded 

higher amounts of drug density within tumor tissue over 14 d post-treatment than either 

systemically or intra-tumorally injected drug (Figure 4A). Yet, as the tumor vascular 

heterogeneity decreased from HIGH to LOW, the drug density correspondingly increased for 

SPNCD therapy (from ~64 to ~98 (μM / mm2)*days) but decreased for systemic DOX (~20 to 

~10 (μM / mm2)*days) and intra-tumoral DOX (~50 to ~44 (μM / mm2)*days) administrations.
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The overall effect on tumor inhibition as a function of time was measured as the tumor radius 

AUC over the 14-day post-treatment growth period to provide a measure of response to therapy 

over this timespan. Corresponding to the higher drug densities with SPNCD (Figure 4A), the 

tumor radius AUC trended lower as the vascular heterogeneity decreased (Figure 4B). 

Furthermore, intra-tumoral SPNCD injection significantly decreased the tumor radius AUC for all 

levels of vascular heterogeneity (8%, 12%, and 25% lower than systemic DOX and 11%, 19%, 

and 27% lower than intra-tumoral DOX for HIGH, MEDIUM, and LOW vascular heterogeneity, 

respectively (Figure 4B). 

The effect of each treatment was also measured by the minimum tumor radius achieved as a 

fraction of the initial radius, chosen to represent the lowest value attained post-treatment. Intra-

tumoral SPNCD yielded 20%, 10%, and 14% lower radius than intra-tumoral DOX for HIGH, 

MEDIUM, and LOW vascular heterogeneity, respectively; and 13% and 33% lower radius than 

systemic DOX for MEDIUM and LOW heterogeneity, respectively (Figure 4C).  Overall, SPNCD 

therapy achieved an average minimum tumor radius of 30%, 26%, and 24% for HIGH, 

MEDIUM, and LOW vascular heterogeneity, respectively, compared to the radius at the start of 

treatment (Figure 4C). These inhibitions are comparable to those observed previously (~20%) 

with SPNCD treatment in vivo (12), which showed that SPNCD significantly inhibit the growth of 

orthotopic breast tumors without decreasing the body weight of mice over 15 days post 

injection. The similarity between the experimental and computational data suggests that the 

model captures sufficient tumor-related parameters to provide realism and insight into tumor 

inhibition by pH-responsive nanomaterials.

Effect of Tuning SPNCD Drug Release Rate
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One of the main advantages of nanotechnology-based drug delivery is its tunability. However, it 

can be challenging to run all the experiments necessary to cover a wide range of tunable 

factors, such as rate of drug release that can be controlled via chemistry. Instead, if model 

predictions could yield key insights, experiments could focus on the most interesting sets of 

tunable factors. Given the match between computational and experimental data, we performed 

a sensitivity analysis to the SPNCD pH-dependent drug release rate (which depends on the 

nanomaterial properties) via the computational model to determine in silico how engineering the 

release rate could impact the tumor response to therapy. Taking the experimentally measured 

release rate (Figure 1D) as a baseline, two slower and two faster rates in silico were evaluated 

(Supplementary Figure 6) to gauge the effect of this release variation on the simulated tumor 

response for SPNCD intra-tumoral injection. The tumor drug density and radius over the 14-day 

growth period after treatment highlight the range of responses for each case of vascular 

heterogeneity (Figure 5). Although the average tumor drug density AUC was variable for each 

level of vascular heterogeneity (Figure 6A), the corresponding average tumor radius AUC 

(Figure 6B) and fraction of initial tumor radius (Figure 6C) remained comparable across the 

different selected SPNCD drug release rates. Slower release rates proved significantly more 

efficacious than faster rates in terms of tumor radius AUC across all levels of vascular 

heterogeneity (Figure 6B), with LOW heterogeneity having the best response. These findings 

highlight the consistency of the SPNCD treatment to variation in the pH-dependent drug release 

rate and suggest that at least with the described set of tumor parameters, the response would 

be maximized in poorly vascularized tissue. 
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DISCUSSION

This study evaluated a novel technology based on pH-sensitive nanomaterial (SPNCD) with 

computational modeling to predict therapy response under various tumor conditions, and to 

compare the results to current standard of care (systemic bolus DOX) and a non-NP mediated 

control administration (intra-tumoral DOX). Using a 2D tumor model to simulate vascularized 

breast tumor lesions, the response was evaluated as a function of heterogeneous tissue 

vascularization and the associated pH. The model was calibrated to previous and current 

experimental data to ensure biological relevance, and sensitivity analyses were performed on 

the drug release rate, which depends on the nanomaterial properties.  The results show that 

across a range of vascular heterogeneity from HIGH to LOW, pH-dependent drug release from 

intra-tumorally injected SPNCD yielded higher drug levels within tumor tissue over 14 d post-

treatment than either systemically or intra-tumorally injected drug (Figure 4A), with the highest 

density achieved in the least-vascularized (most deleterious) tumor tissue. Lower vascular 

heterogeneity would also provide a more homogeneous drug exposure to the tumor tissue. 

Furthermore, SPNCD treatment yielded the lowest tumor radius AUC over 14 d (Figure 4B), 

with a minimum radius (Figure 4C) comparable to that previously observed with mice in vivo 

(12). 

Sensitivity analyses of the pH-dependent drug release rate indicate that slower release rates 

may be more efficacious than faster rates across all levels of vascular heterogeneity (Figure 6) 

since slower rates would extend the timeframe for which tumor cells are exposed to drug. This 

result suggests that prolonging sustained release may be necessary for maximum benefit from 

pH-sensitive nanotherapy. This result is consistent with previous computational modeling 

findings evaluating the performance of pH-sensitive polymer nano-assemblies targeting 

colorectal cancer, for which slower release was most effective (26). Collectively, the data in this 

study indicate that prolonged sustained release should also be explored in breast cancer 
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applications. Future work will need to further evaluate the proposed approach to optimize the 

antitumor effect of SPNCD by experimentally evaluating modifications to the nanoparticle 

design, such as adjusting the molecular weight or lactic and glycolic acid ratio of PLGA 

polymers, which would prolong the drug release. This study provides a first step toward a fully 

integrated computational and experimental approach that can optimize the antitumor effect of 

pH-sensitive nanocomposites. 

This study evaluated intra-tumoral injection of SPNCD as a means for controlled nanotherapy 

assessment and which may not translate to clinical practice. Although treatment of cancers by 

directly injecting tumors with a therapeutic was pioneered by Coley over a century ago,(48) the 

methodology has not seen wide clinical implementation.  A major reason is that this 

methodology needs to be customized to the particular tumor conditions, which include size, 

heterogeneous vascularization, and access to the tumor within the body.  More recently, intra-

tumoral injection of immunostimulatory agents has been explored with mixed results (49). The 

tolerogenic tumor microenvironment, limited accessibility to the tumor location, and the need to 

wait on the tumor response before proceeding with resection continue to present challenges 

(49). Ideally, the response could be forecast a priori to treatment based on the specific tumor 

conditions with the goal to design therapy that could maximize this response.

Overall, this study demonstrates how pH-sensitive nanocomposites behave in a 

heterogeneously vascularized tumor microenvironment, including their drug release rate, 

sensitivity to pH, and administration route (intra-tumoral vs intravenous injection) with respect to 

their cytotoxic effect. Interestingly, while intra-tumoral drug-alone was highest for HIGH vascular 

heterogeneity and lowest for LOW vascular heterogeneity for systemic and intra-tumoral DOX 

injections, this trend was reversed for SPNCD intra-tumoral injection (Figure 4A). These data 

highlight the suitability of pH-dependent drug release from SPNCD to increase exposure of 
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poorly vascularized tumor tissue to SPNCD-delivered drug, and may explain why tumor 

regrowth is best restrained by the SPNCD therapy.

CONCLUSIONS

Although prior work has explored pH-responsive nanoparticles for disease treatment including 

cancer (50), this is the first time to our knowledge that this response has been evaluated in silico 

with respect to the key parameters of tumor vascular heterogeneity and NP drug release rate. 

This study is limited in that the model calibration considered one particular IC50 (for MDA-MB-

231 cells). Future work will need to evaluate a range of IC50 values representative of breast 

cancer tumor drug sensitivity. Furthermore, the response only to DOX was evaluated; 

conceivably, other chemotherapeutics could be released as payload from SPNC, alone or in 

combination. Although intra-tumoral injection has merit for controlled nanotherapy assessment 

and may also be of potential clinical utility, in the future the response to SPNCD will need to be 

experimentally evaluated via intravenous injection, which is clinically more common.  One 

assumption in this study is that SPNCD are stable at neutral pH when not overlapping with the 

vasculature. This allows SPNCD to remain indefinitely within the computational model domain, 

which guarantees more drug will be released as the tumor regrows and pH decreases in areas 

where encapsulated drug is still present. This means that if the post-treatment growth period 

were extended beyond 14 d, we anticipate that there would be a larger difference in simulated 

tumor radius AUC between SPNCD and DOX treatments. We envision that the detection and 

quantification of pH-dependent drug release in vivo, e.g., via MPI, will in the future enable 

further validation of the modeling results. Longer term, these results could support the ability to 

customize pH-sensitive nanotherapy to patient-specific tumor conditions.
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TABLES

Table 1. Tumor model main parameters and associated values. All other parameters are as in 

(29). 

Parameter Value Reference

Tumor proliferation rate 1 day−1 Measured 
(23)

Oxygen diffusivity 1 (*) (29)

Oxygen transfer rate from vasculature 5 (*) (29)

Oxygen uptake rate by proliferating tumor cells 1.5 (*) (29)

Oxygen uptake rate by hypoxic tumor cells 1.3 (*) (29)

Oxygen uptake rate by tumor microenvironment 0.12 (*) (29)

Oxygen decay rate 0.35 (*) (29)

Lactate diffusivity 0.005 (*) Estimated 

Lactate production constant (proliferating tissue) 0.5 (*) (20)

Lactate production constant (hypoxic tissue) 1 (*) (20)

Lactate production constant (necrotic tissue) 0 (*) (20)

Lactate washout by vasculature 0.1 (*) Estimated

Lactate uptake rate 0.12 (*) Estimated

SPNCD diffusivity
0.3 (within 0.125 of tumor area from 

injection site),
0.03 (elsewhere) (*)

Measured 
(Supplementary 

Figure 1)

SPNCD washout ~23 min half-life
Measured 

(Supplementary 
Figure 2)

DOX diffusivity 
2.0 (within 0.125 of tumor area from 

injection site),
0.2 (elsewhere) (*)

Estimated

DOX decay rate 24 h half-life Measured (51)

DOX in vitro IC50 (48h) for MDA-MB-231 cells 
(spheroid culture) 77.35 µM Measured (45)

DOX release profile from SPNCD pH-dependent Measured 
(Figure 1D) 

DOX drug effect 5.3 Calibrated to IC50  

(*) Value is rescaled by the square of the simulation system characteristic length (1 cm) and 
divided by the system characteristic time (1 sec) multiplied by the oxygen diffusivity (1 × 10−5 
cm2 s-1) (52). DOX: doxorubicin. 
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Table 2. Levels of tumor tissue heterogeneity based on the thresholds for inducing hypoxia and 

necrosis. Values for HIGH are based on previously calibrated tumors simulated in (29). Tumor 

tissue characteristics resulting from these values include viable (proliferating + hypoxic) tumor 

tissue fraction, necrotic (dead) tissue fraction, and vessel fraction (vascular surface area divided 

by tumor area). 

Tissue 
Heterogeneity

Hypoxic 
Threshold

Necrotic 
Threshold

Viable 
Fraction

Hypoxic 
Fraction

Necrotic 
Fraction

Vessel 
Fraction

LOW 0.405 0.4 0.73 0.09 0.18 0.018

MEDIUM 0.485 0.48 0.76 0.07 0.17 0.021

HIGH 0.575 0.57 0.96 0.02 0.02 0.027
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FIGURES

Figure 1. Experimental SPNCD characterization, and degradation and drug release. (A) 

SPNCD scanning electron microscopy (SEM) (top) and transmission electron microscopy (TEM) 

(bottom). (B) Dynamic light scattering (DLS) of SPNCD. (C) SPNCD degradation over 48 h by 

measuring size changes through DLS. (D) DOX release from SPNCD over 48 h across various 

neutral and acidic pH conditions (data shown in Supplementary Figure 1). For both panels, n=3 

per group; each group was statistically compared with the pH 7.4 group; **p < 0.01 and ***p < 

0.001. As the PLGA shell degrades in acidic pH, DOX release and disassembly of clustered 

Fe3O4 nanoparticles in the core occur simultaneously. Mechanistically, disassembly of the 

clustered core results in increased Fe3O4 nanoparticle mobility, which is reflected by enhanced 

Page 28 of 38Nanoscale



Brownian relaxation (12). This effect contributes to increased MPI signal and the linear 

correlation between MPI signal and drug released (12). Color figure online. 
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Figure 2. Distribution of SPNCD and drug after administration of therapy. Representative 

images of simulated tumor tissue after (A) systemic DOX administration, (B) intra-tumoral DOX 

injection, and (C) intra-tumoral SPNCD injection at 0, 24 and 48 h post-therapy. “DOX 

(SPNCD)” refers to the drug encapsulated within SPNC. Tumors of HIGH vascular 

heterogeneity were chosen as representative images. In the tumor panels, red denotes 
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proliferating tissue, blue indicates hypoxic tissue, and brown indicates necrotic tissue. Pre-

existing capillary grid is shown as rectangular lines along with sprouts growing due to 

angiogenesis. Color figure online.
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Figure 3. Computational simulations indicate that intra-tumoral SPNCD injection yields 

higher drug concentration within tumor tissue and delays tumor growth more than 

systemic or intra-tumorally injected DOX across three levels of vascular heterogeneity. 

Concentration of free DOX within the tumor (top row) varies significantly between administration 

types as well as tumor radius over time (bottom row) as a function of tumor vascular 

heterogeneity (ranging from HIGH to LOW). Error bars represent SD. Color figure online.  ±
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Figure 4.  Computational simulations of intra-tumoral SPNCD injection indicate stronger 

tumor inhibition than systemic or intra-tumorally injected DOX across three levels of 

vascular heterogeneity. (A) Drug within tumor AUC, (B) tumor radius AUC, and (C) smallest 

fraction of initial tumor radius between administration types and vascular heterogeneities reveal 

differences in therapy efficacy between the administration types. Error bars represent SD ±

(n=5). *P < 0.05;  **P < 0.001; ***P < 0.0001; ‡ all groups P < 0.001. AUC is calculated over 14 

d.

Page 33 of 38 Nanoscale



Figure 5. Computational sensitivity analyses indicate that slower DOX release from intra-

tumorally injected SPNCD delays tumor growth more than faster release across three 

levels of vascular heterogeneity. Tumor drug density (top row) varies significantly between 

DOX release rates as well as tumor radius over time (bottom row) as a function of tumor 

vascular heterogeneity (ranging from HIGH to LOW). Rate 1 is slowest, Rate 2 is slower, Rate 3 

is the experimental baseline (Figure 1D), Rate 4 is faster and Rate 5 has the fastest DOX 

release, as defined by the release curves in Supplementary Figure 6. Error bars represent ±

SD (n=5). Color figure online.
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Figure 6. Computational sensitivity analyses for the vascularity-dependent impact of 

DOX release rate from intra-tumorally injected SPNCD on tumor inhibition indicate that 

slower release can improve therapeutic efficacy. Displayed are (A) tumor drug density, (B) 

tumor radius AUC, and (C) smallest fraction of initial tumor radius for a range of SPNCD DOX 

release rates across varying vascular heterogeneity (HIGH to LOW). Rate 1 is slowest, Rate 2 

is slower, Rate 3 is the experimental baseline (Figure 1D), Rate 4 is faster, and Rate 5 has the 

fastest DOX release, as defined by the release curves in Supplementary Figure 6. Error bars 

represent SD (n=5). *P < 0.05;  **P < 0.001; ***P < 0.0001.  AUC is calculated over 14 d. ±

Color figure online.
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