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Journal Name

Predicting 1H NMR relaxation in Gd3+�aqua using

molecular dynamics simulations

Philip M. Singer,∗a Arjun Valiya Parambathu,a Thiago J. Pinheiro dos Santos,a Yunke Liu,a

Lawrence B. Alemany,b George J. Hirasaki,a Walter G. Chapman,a and Dilip Asthagiri,†a

Atomistic molecular dynamics simulations are used to predict 1H NMR T1 relaxation of water from

paramagnetic Gd3+ ions in solution at 25◦C. Simulations of the T1 relaxivity dispersion function r1

computed from the Gd3+�1H dipole�dipole autocorrelation function agree within ' 8% of measure-

ments in the range f0 ' 5 ↔ 500 MHz, without any adjustable parameters in the interpretation

of the simulations, and without any relaxation models. The simulation results are discussed in the

context of the Solomon-Bloembergen-Morgan inner-sphere relaxation model, and the Hwang-Freed

outer-sphere relaxation model. Below f0 . 5 MHz, the simulation overestimates r1 compared to

measurements, which is used to estimate the zero-�eld electron-spin relaxation time. The simula-

tions show potential for predicting r1 at high frequencies in chelated Gd3+ contrast-agents used for

clinical MRI.

1 Introduction

The traditional theory of enhanced 1H NMR (nuclear magnetic
resonance) relaxation of water due to paramagnetic transition-
metal ions and lanthanide ions in aqueous solutions origi-
nates from Solomon1, Bloembergen and Morgan2,3, a.k.a. the
Solomon-Bloembergen-Morgan (SBM) model. The extended SBM
model4 accounts for paramagnetic relaxation of inner-sphere wa-
ter in the paramagnetic-ion complex1–3, outer-sphere water5,6,
a.k.a. the Hwang-Freed (HF) model, the contact term2,3,7,8,
the Curie term9,10, and the electron-spin relaxation3,9–15. The
extended SBM model is most widely used in the interpretation
of paramagnetic enhanced 1H relaxation of water due to Gd3+-
based contrast agents16–38 used in clinical MRI (magnetic res-
onance imaging). The SBM model also forms the basis for the
interpretation of paramagnetic relaxation in water-saturated sed-
imentary rocks39–46.

The inner-sphere water constitutes the ligands of the Gd3+

complex. The SBM inner-sphere model assumes a rigid Gd3+–1H
dipole-dipole pair undergoing rotational diffusion, which accord-
ing to the Debye theory results in mono-exponential decay of the
autocorrelation function. The Debye theory was previously used
in the Bloembergen-Purcell-Pound (BPP) model47 for like spins
(e.g. 1H–1H pairs), and then adopted in the SBM model for un-
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b, Shared Equipment Authority and Department of Chemistry, Rice University, 6100
Main St., Houston, TX 77005, USA
∗, ps41@rice.edu
†, dna6@rice.edu

like spins (e.g. Gd3+–1H pairs). The SBM inner-sphere model also
takes the electron-spin relaxation time into account, resulting in
6 free parameters for the 1H NMR relaxivity r1. The inner-sphere
relaxation is generally considered the largest contribution to re-
laxivity.

The outer-sphere water are less tightly bound than the inner-
sphere water. The HF outer-sphere model assumes that the
Gd3+ ion and H2O are two force-free hard-spheres undergoing
translational diffusion, which results in multi-exponential (i.e.,
stretched) decay of the autocorrelation function5,6. The HF
outer-sphere model adds an additional 2 free parameters, bring-
ing the total to 8 free parameters for the extended SBM model.
Relaxation from the contact term is negligible for 1H NMR in
Gd3+–aqua23,31, and is therefore neglected. Likewise, the Curie
term is negligible in the present case9,10.

The application of the SBM and HF models to Gd3+–aqua there-
fore requires fitting 8 free parameters over a large frequency
range in measured r1 dispersion (NMRD). In chelated Gd3+ com-
plexes, an order parameter plus a shorter correlation time48,49

are added to the rotational motion of the complex35,36, or to the
electron-spin relaxation22,30,33, taking the total to 10 free param-
eters. This over-parameterized inversion problem often requires
guidance in setting a range of values for the free parameters. It
has also often speculated that the model for electron-spin relax-
ation is inadequate4.

Atomistic molecular dynamics (MD) simulations can help elu-
cidate some of these issues. MD simulation were previously used
for like-spins, e.g. 1H–1H dipole-dipole pairs, such as liquid-state
alkanes, aromatics, and water50–53, as well as methane over a
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large range of densities54. In all these cases, good agreement
was found between simulated and measured 1H NMR relaxation
and diffusion, without any adjustable parameters in the interpre-
tation of the simulations. With the simulations thus validated
against measurements, simulations can then be used to sepa-
rate the intramolecular (i.e. rotational) from intermolecular (i.e.
translational) contributions to relaxation, and to explore the cor-
responding 1H–1H dipole-dipole autocorrelation functions in de-
tail. For instance, MD simulations revealed for the first time ever
that water and alkanes do not conform to the BPP model of a
mono-exponential decay in the rotational autocorrelation func-
tion, except for highly symmetric molecules such as neopentane.
More complex systems such as viscous polymers55 and heptane
confined in a polymer matrix56 have also been simulated, which
again saw good agreement with measurements, and which lead
to insights into the distribution in dynamic molecular modes.

In this report, we extend these MD simulation techniques to
Gd3+–1H dipole-dipole pairs, i.e. unlike spins, in a Gd3+–aqua
complex. The simulations show good agreement with measure-
ments in the range f0 ' 5 ↔ 500 MHz, without any adjustable
parameters in the interpretation of the simulations, and without
any relaxation models. These findings show potential for predict-
ing r1 at high frequencies in chelated Gd3+ contrast agents used
for clinical MRI, where f0 ' 64 MHz (1.5 T) is the typical MRI op-
erating frequency. At the very least, the simulations could reduce
the number of free parameters in the SBM and HF models, and
help put constraints on its inherent assumptions for clinical MRI
applications.

The manuscript is organized in follows. Section 2 (Methodol-
ogy) comprises sections 2.1 to 2.7, wherein we cover the simula-
tion, bench-marking results that are essential to the methodology,
and measurements. Section 3 (Results and discussions) compris-
ing sections 3.1 to 3.4 is focused on the main aspect of this paper,
namely NMR relaxation. Section 4 (Conclusions) provides the
overall conclusions of this work.

2 Methodology

2.1 Molecular simulation

To model the Gd3+–aqua system, we use the AMOEBA polarizable
force field to describe solvent water57 and the ion58. The Gd3+

ion has an incomplete set of 4 f orbitals, but this incomplete shell
lies under the filled 5s and 5p orbitals. Thus ligand-field effects59

are not expected to play a part in hydration and a spherical model
of the ion ought to be adequate. However, polarization effects are
expected to be important given the large charge on the cation.

Experimental NMR studies on Gd3+–aqua use concentrations
of about 0.3 mM. This amounts to having one GdCl3 molecule in
a solvent bath in a cubic cell about 176 Å in size. Such large simu-
lations are computationally rather demanding with the AMOEBA
polarizable forcefield. Further, at such dilutions, the ions essen-
tially “see” only the water around them, and since understand-
ing the behavior of water around the ion is of first interest, here
we study a single Gd3+ ion in a bath of 512 water molecules.
(Note that within the Ewald formulation for electrostatic inter-
actions, there is an implicit neutralizing background. This back-

ground does not impact the forces between the ion and the water
molecules that are of interest here.) The partial molar volume of
Gd3+ in water at 298.15 K has been estimated by Marcus (1985)
to be −59.6 cc/mol. We use this to fix the length of the cubic
simulation cell to 24.805 Å. (From constant pressure simulations
in a 2006 water system we find a Gd3+ partial molar volume of
about -63 cc/mol, in good agreement with the value suggested by
Marcus. However, in this work, we will use the value suggested
by Marcus.)

All the simulations were performed using the OpenMM-7.5.1
package60. The van der Waals forces were switched to zero from
11 Å to 12 Å. The real space electrostatic interactions were cut-
off at 9 Å and the long-range electrostatic interactions were ac-
counted using the particle mesh Ewald method with a relative
error tolerance of 10−5 for the forces. In the polarization calcula-
tions the (mutually) induced dipoles were converged to 10−5 De-
byes.

The equations of motion were integrated using the “middle”
leapfrog propagation algorithm with a time step of 1 fs coupled;
this combination of method and time step provides excellent en-
ergy conservation in constant energy simulations. Exploratory
work shows that the NMR relaxation in the Gd3+-aqua system is
sensitive to the system temperature. So we additionally use with
a Nosé-Hoover chain61,62 with three thermostats63 to simulate
the system at 298.15 K. The collision frequency of the thermo-
stat was set to 100 fs to ensure canonical sampling. We carried
out extensive tests with and without thermostats to ensure that
the Nosé-Hoover thermostat does not affect dynamical proper-
ties. Our conclusions are consistent with an earlier study on good
practices for calculating transport properties in simulations64.

Initially, the system was equilibrated under NV T conditions at
298.15 K for over 200 ps. We then propagated the system under
the same NV T conditions for 8 ns, saving frames every 0.1 ps
for analysis. We used the last 6.5536 ns of simulation (equal to
65536(= 216) frames) for analysis. The mean temperature in the
production phase was 298.15 K with a standard error of the mean
being 0.03 K.

2.2 Structure and dynamics

Fig. 1 shows the ion-water radial distribution function. The lo-
cation and magnitude of the peak is in good agreement with ear-
lier studies founded on either ab initio31 or empirical force field-
based33 simulations. Consistent with those studies, we find that
the first sphere (i.e. inner sphere) contains between q= 8↔ 9 wa-
ter molecules, with a mean of q ' 8.5 determined from nGd-O(r)
at r ' 3.5 Å. These values of q are consistent with the published
range16,18,22,23,25,33,34.

2.3 Residence time analysis

To estimate the residence time of water molecules in the inner
sphere, we need to keep track of the water molecule as it moves
into/out of the inner sphere. To this end, we follow the residence
time of a defined water molecule w using an indicator function
χw that equals 1 if the water molecule is in the inner sphere and
zero otherwise. The inner sphere is defined as a sphere of radius
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Fig. 1 Radial distribution function of water oxygen (gGd-O(r)) and hy-

drogen (gGd-H(r)) around the Gd3+ ion; the dashed lines are the cor-

responding coordination numbers nGd-O(r) and nGd-H(r). Also shown is

the mode for gGd-H(r) corresponding to Gd-H distance rH for the inner-

sphere, and the mode for gGd-O(r) corresponding to Gd-O distance dO for

the outer-sphere.

r≤ 3.3 Å around the Gd3+ ion; this corresponds to the first hydra-
tion of the ion (Fig. 1). We perform this analysis for all the water
molecules that visit the inner sphere at least once during the sim-
ulation. (We emphasize that the time here is discrete because
configurations are saved only every 100 fs.)

Fig. 2 shows the trace of the indicator function for a particular
water molecule. Note that during the approximately 4 ns window
(from the≈ 8 ns trajectory), the water molecule makes several ex-
cursions out of the inner sphere before permanently leaving the
inner sphere around 4.5 ns. The length of time that the water
molecule spends continuously inside the inner sphere is denoted
by τi. As Fig. 2 shows, there can be several such islands of contin-
uous occupation.

To test if the transient excursion is a bona fide escape from the
inner sphere, we window average the data as follows: we con-
sider a transient escape as a bona fide escape only if it persists
for a defined number of consecutive time points. Fig. 2 shows the
trace (blue curve) for such a “windowing" for a window length of
200 fs, i.e. two consecutive frames in the trajectory of configura-
tions. As can be expected, windowing extends the length of time
that the molecule is defined to be inside the inner sphere.

For all the water molecules that visit the inner sphere, we accu-
mulate the set {τi} and then construct the histogram h(τ). Fig. 3
shows the h(τ) for the raw data and the data with window length
of 200 fs. The h(τ) curve shows that there are many cases where
water only transiently resides in the inner sphere. But we also
find several water molecules that spend upwards of 0.5 ns con-
tinuously within the inner sphere. Specifically, for the data that
has not been smoothed by “windowing", we find three instances
of water molecules continuously spending between 1 to 1.5 ns
inside the inner sphere (and these also happen to be three dis-
tinct water molecules [data not shown]); with windowing using

0

1

1 2 3 4 5
t (ns)

τi

Fig. 2 The trace of the indicator function χw for part of the simulation

trajectory (red curve). Note the several transient escapes of the water

molecule out of the inner sphere. The dashed (blue) curve is obtained by

�windowing" the raw data as noted in the text. τ is the length of time

the water molecule spends continuously inside the inner sphere (one such

domain, τi, is shown).

Fig. 3 Distribution of continuous occupancy times τ, h(τ), for raw data

and 200 fs window.

a 200 fs window, the upper limit is extended to just over 2 ns.
Thus residence time, τm, between 1↔ 2 ns are predicted for a
complete rejuvenation of the inner sphere population. This time-
scale is in accord with the range of published 17O NMR data that
suggest residence times τm ' 1.0↔ 1.5 ns17,21,28,65,66.

2.4 1H NMR relaxivity

The enhanced 1H NMR relaxation rate 1/T1 for water is given by
the average over the N = 1024 1H nuclei in the L = 24.805 Å box
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containing one paramagnetic Gd3+ ion:

1
T1

=
1
N

N

∑
i=1

1
T1i

, (1)

1
T2

=
1
N

N

∑
i=1

1
T2i

, (2)

where T1i is the T1 relaxation for the i’th 1H nucleus. The gadolin-
ium molar concentration is given by [Gd] = [H]/N, where [H] is
the molar concentration of 1H in the simulation box. Equivalently,
[H] = 2[W ] where [W ] = 55,705 mM is the molar concentration of
H2O at 25◦C. This leads to the following expression for the relax-
ivity in units of (mM−1s−1):

r1 =
1

[Gd]
1
T1

=
1
[H]

N

∑
i=1

1
T1i

, (3)

r2 =
1

[Gd]
1
T2

=
1
[H]

N

∑
i=1

1
T2i

. (4)

Note that r1,2 are independent of N (or box size L, equivalently).
The “fast-exchange" regime (T1,2 � τm) is assumed11, and the
chemical shift term in r2

10 is neglected for simplicity. Note also
that the 1H–1H dipole-dipole relaxation50 is not considered in
these simulations.

The computation of T1i,2i originates from the Gd3+–1H dipole-
dipole autocorrelation function G(t)5,47,67–70 shown in Fig. 4(a),
where t is the lag time. This autocorrelation is well suited for
computation using MD simulations71,72. Using the convention in
the text by McConnell68, Gi(t) in units of (s−2) is determined by:

Gi(t) =
1
4

(
µ0

4π

)2
}2

γ
2
I γ

2
S S(S+1)×

〈
(3cos2θi(t + t ′)−1)

r3
i (t + t ′)

(3cos2θi(t ′)−1)
r3

i (t
′)

〉
t ′
, (5)

for the i’th 1H nucleus. θi is the angle between the Gd3+–1H
vector ri and the applied magnetic field B0. µ0 is the vacuum per-
meability, } is the reduced Planck constant. γI/2π = 42.58 MHz/T
is the nuclear gyro-magnetic ratio for 1H with spin I = 1/2, and
γS = 658γI is the electron gyro-magnetic ratio for Gd3+ with spin
S = 7/2.

Note that in Eq. 5 we assume a spherically symmetric (i.e.
isotropic) system, and therefore Gm

i (t) = Gi(t) is independent of
the order m, which amounts to saying that the direction of the
applied magnetic field B0 = B0z is arbitrary. This assumption was
verified in Ref.33. For simplicity, we therefore use the m = 0 har-
monic Y 0

2 (θ ,φ) =
√

5/16π (3cos2 θ −1) for the MD simulations50.

The second-moment ∆ω2
i (i.e. strength) of the dipole-dipole

interaction is defined as such69:

Gi(0) =
1
3

∆ω
2
i . (6)

Assuming the angular term in Eq. 5 is uncorrelated with the dis-
tance term at t = 0, the relation

〈
(3cos2θi(τ)−1)2〉

τ
= 4/5 (which

Fig. 4 (a) MD simulations of the autocorrelation function G(t), where 1
in 10 data points are shown for clarity. Also shown is the modes expansion

(Eq. 16) to G(t), and SBM model (Eq. 25) with τR = 〈τ〉 = 30 ps. (b)

Spectral density functions J(ω) from FFT (fast Fourier transform) (Eq.

8), including the f = 0 data point represented as a horizontal line placed

at low frequency. Also shown is the modes expansion (Eq. 21), and the

SBM model which tends to f−2 at high-frequencies.

is independent of i) reduces the second moment to:

∆ω
2
i =

3
5

(
µ0

4π

)2
}2

γ
2
I γ

2
S S(S+1)

〈
1

r6
i (t
′)

〉
t ′
. (7)

The next step is to take the (two-sided even) fast Fourier trans-
form (FFT) of the Gi(t) to obtain the spectral density function:

Ji(ω) = 2
∫

∞

0
Gi(t)cos(ωt)dt. (8)
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The relaxation rates are then determined for unlike spins68:

1
T1i

= Ji(ω0)+
7
3

Ji(ωe), (9)

1
T2i

=
2
3

Ji(0)+
1
2

Ji(ω0)+
13
6

Ji(ωe), (10)

assuming ωe � ω0, where ω0 = γIB0 = 2π f0 is the 1H NMR res-
onance frequency, and ωe = 658ω0 is the electron resonance fre-
quency.

The expressions for T1i,2i are then summed in Eqs. 3 and 4
to compute r1 and r2, respectively. We also define the following
quantities summed over the N = 1024 1H nuclei:

G(t) =
N

∑
i=1

Gi(t), (11)

∆ω
2 =

N

∑
i=1

∆ω
2
i (12)

J(ω) =
N

∑
i=1

Ji(ω). (13)

Note that the summed quantities G(t), ∆ω2, and J(ω) are inde-
pendent of N (or box size L, equivalently). The G(t) simulation
data is plotted in Fig 4(a), while the J(ω) simulation data is plot-
ted in Fig 4(b).

We also define the average correlation time 〈τ〉 as the normal-
ized integral69:

〈τ〉= 1
G(0)

∫
∞

0
G(t)dt. (14)

The low frequency (i.e. extreme narrowing) limit r1(0) = r2(0) =
r1,2(0) can then be expressed as:

r1,2(0) =
1
[H]

20
9

∆ω
2〈τ〉 . (15)

Note how r1,2(0) (for unlike Gd3+–1H spin pairs) is a factor 2/3
less than the equivalent expression for like 1H–1H spin pairs50.

We assume the “fast-exchange" regime in the above formu-
lation, which is discussed in more detail in Section 3.2. The
fast-exchange regime can be inferred directly from measurements
since r1 increases with decreasing temperature16. Investigations
are underway to extend the simulations to the slow-exchange
regime.

The above analysis also assumes the electron spin is a point-
dipole centered at the Gd3+ ion4. Given that the simulation
agrees with measurements in the range f0 ' 5 ↔ 500 MHz, the
point-dipole approximation is considered valid in the present case
for 1H10.

2.5 Expansion of G(t) in terms of molecular modes

The FFT result for J(ω) in Fig. 4(b) is sparse. Besides the f =
0 data point, the lowest frequency FFT data point is given by the
resolution ∆ f = 1/2tmax = 103 MHz, where tmax = 500 ps is the
longest lag time in G(t).

As an alternative to zero-padding the FFT, we see to model G(t)
in terms of molecular modes. To this end, we expand G(t) as

G(t) =
∫

∞

0
P(τ)exp

(
− t

τ

)
dτ, (16)

where P(τ) is the underlying distribution in molecular correlation
times, τ. We solve this Fredholm integral equation of the first
kind to recover the P(τ) distribution. Since G(t) is available only
at discrete time intervals, the inversion is an ill-posed problem.
We address this by using Tikhonov regularization52,73, with the
vector P being one for which

P = argmin
P≥0

||G−K P||2 +α||P||2 (17)

is a minimum. Here G is the column vector representation of the
autocorrelation function G(t), P is the column vector represen-
tation of the distribution function P(τ), α is the regularization
parameter, and K is the kernel matrix:

K = Ki j = exp
(
− ti

τ j

)
. (18)

The results for P(τ) are shown in Fig. 5, from which the following
are determined:

〈τ〉= 1
G(0)

∫
∞

0
P(τ)τ dτ, (19)

G(0) =
∫

∞

0
P(τ)dτ =

1
3

∆ω
2. (20)

The spectral density J(ω) is then determined from the Fourier
transform (Eq. 8) of G(t) (Eq. 16):

J(ω) =
∫

∞

0

2τ

1+(ωτ)2 P(τ)dτ , (21)

from which T1,2 at any desired f0 can be determined (Eqs. 9
and 10). More in-depth discussions of the above procedure,
loosely termed as “inverse Laplace transform", can be found in
Refs.53–56,74,75 and the supplementary material in Refs.52,73. We
hasten to add that inverting Eq. 16 to recover P is formally not
a Laplace inversion76, but this terminology is common in the lit-
erature. Possible alternatives to the above formulation are also
discussed in Ref.53.

The P(τ) is binned from τmin = 0.05 ps to τmax = 500 ps us-
ing 200 logarithmically spaced bins. In the present case of low-
viscosity fluids (η ' 1 cP), the choice of τmax does not impact
J(ω), and is therefore not a free parameter in the analysis in terms
of molecular modes. The constant “div" in Fig. 5 is a “division"
on a log-scale. More specifically, div = log10(τi+1)− log10(τi) is
independent of the bin index i, and ensures unit area when P(τ)
is of unit height and a decade wide73.

As shown in Fig. 4(a), the residual between the G(t) data
and the fit using molecular modes is not dominated by Gaus-
sian noise. As such, the regularization parameter is fixed to
α = 10−1 in accordance with previous studies52–56. As shown
in Fig. 4(b), we find that α = 10−1 gives excellent agreement
with the parameter-free J(ω) from FFT, which validates the anal-

Journal Name, [year], [vol.],1�12 | 5

Page 5 of 12 Physical Chemistry Chemical Physics Page 6 of 12Physical Chemistry Chemical Physics



Fig. 5 Probability density function P(τ) obtained from the expansion

of molecular modes (Eq. 16) of G(t). The average correlation time 〈τ〉
(Table 1) and predicted translational correlation time τT (Table 3) are

shown.

ysis in terms of molecular modes. The results in Fig. 4(b) further
emphasize the following advantages: (1) the expansion (Eq. 16)
filters out the noise while still honoring the FFT data (including
the f = 0 data point), (2) Eq. 21 provides J(ω) for any desired f
value, and (3) the expansion in terms of molecular modes leads to
physical insight into the distribution P(τ) of molecular correlation
times τ.

2.6 Diffusion

An independent computation of translational diffusion DT was
performed from MD simulations. We calculate the mean square
displacement

〈
∆r2〉 of the water oxygen and Gd3+ ion as a func-

tion of the diffusion evolution time t (< 10 ps). For bulk water
(i.e., without Gd3+), the data is taken from Ref. 50, where we
average over a sample of 50 molecules to ensure adequate statis-
tical convergence. For water in Gd3+-aqua, we sampled all the
water molecules to capture adequately the effects of exchanging
with the inner shell.

As shown in Fig. 6, at long-times (t) the slope of the linear
diffusive regime gives the translational self-diffusion coefficient
Dsim according to Einstein’s relation:

Dsim =
1
6

δ
〈
∆r2〉
δ t

(22)

where Dsim is the diffusion coefficient obtained in the simulation
using periodic boundary conditions in a cubic cell of length L.
In the linear regression procedure, the early ballistic regime and
part of the linear regime is excluded to obtain a robust estimate
of Dsim.

Following Yeh and Hummer77 (see also Dünweg and Kre-
mer78), we obtain the diffusion coefficient for an infinite system

Fig. 6 MD simulations of mean-square displacement
〈
∆r2〉 versus time

t for bulk water (i.e., without Gd3+), water in Gd3+�aqua, and Gd3+ in

Gd3+�aqua. Solid lines show �tting region used to obtain translational

di�usion coe�cient Dsim from Eq. 22 for t > 2 ps, and dashed lines show

early time regime not used in the �t. Legend indicates DT values which

include the correction term (Eq. 23).

DT from Dsim using

DT = Dsim +
kBT
6πη

ξ

L
(23)

where η is the shear viscosity and ξ = 2.83729777 is the same
quantity that arises in the calculation of the Madelung constant
in electrostatics. (In the electrostatic analog of the hydrodynamic
problem, ξ/L is the potential at the charge site in a Wigner lat-
tice.) For the system sizes considered in this study, L ' 25 Å, the
correction factor constituted ' 13% of D0, and ' 16% of DW . The
correction factor was not applied to DGd .

2.7 Measurements

We prepared a Gd3+–aqua solution in de-ionized water at [Gd] =
0.3 mM and measured T1,meas at a controlled temperature of 25◦C,
using static fields at f0 = 2.3 MHz with an Oxford Instruments
GeoSpec2, at f0 = 20 MHz with a Bruker Minispec, and at f0 =

500 MHz with a Bruker 500 MHz Spectrometer. The measured
relaxivity r1 was determined as such:

r1 =
1

[Gd]

(
1

T1,meas
− 1

T1,bulk

)
. (24)

where T1,bulk = 3.13 s was found for bulk water (not de-
oxygenated79) at 2.3 MHz and 500 MHz. Field cycling r1 data
at [Gd] = 1 mM and 25◦C were taken from Luchinat et al.34 (sup-
plementary material) using a Stelar SpinMaster 1T. The field cy-
cling results agreed with our measurements at f0 = 2.3 MHz and
20 MHz (within ' 5%), while our f0 = 500 MHz significantly ex-
tends the frequency range of the measurements.
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3 Results and discussions

In this section we compare the simulated relaxivity r1 with mea-
surements. The simulated relaxivity is then discussed in the
context of the Solomon-Bloembergen-Morgan (SBM) model, and
Hwang-Freed (HF) model. The zero-field electron-spin relaxation
time is then determined from r1 at low frequencies.

3.1 Comparison with measurements
The results of simulated relaxivity r1 (Eq. 3) are shown in Fig.
7, alongside corresponding measurements of Gd3+–aqua solution
at 25◦C using field cycling by Luchinat et al.34 (supplementary
material), and static fields from this work. A cross-plot of simu-
lated versus measured r1 results are also shown in Fig. 8. The
simulation is within ' 8% of measurements in the range f0 '
5 ↔ 500 MHz. Given that there are no adjustable parameters in
the interpretation of the simulations, this agreement validates our
simulations at high frequencies. We note that a similar degree of
agreement (within ' 7%) was found in previous studies of liquid
alkanes and water50.

For convenience, Table 1 lists the coordination number q (Fig.
1), the residence time τm (Fig. 3), average correlation time
〈τ〉 (Eq. 19), and the square-root of the second moment (i.e.
strength) ∆ω (Eq. 20). Note that these quantities are model inde-
pendent. Also listed is the the zero-field electron-spin relaxation
time Te0 (Eq. 32), which only assumes that the correlation times
P(τ) are uncorrelated with Te0.

q τm 〈τ〉 ∆ω/2π Te0

(ns) (ps) (MHz) (ps)

8.5 1↔ 2 30 38.4 180

Table 1 Analysis of the simulation results including; coordination number

q (Fig. 1), residence time τm (Fig. 3), mean correlation time 〈τ〉 (Eq.
19), and square-root of second moment ∆ω (Eq. 20), all of which are

model independent. Right: zero-�eld electron-spin relaxation time Te0
(Eq. 32).

3.2 SBM inner-sphere model
The SBM inner-sphere model assumes a rigid Gd3+–1H pair un-
dergoing rotational diffusion, leading to the following mono-
exponential decay in the autocorrelation function:

GSBM(t) = GSBM(0)exp
(
− t

τR

)
. (25)

This functional form is identical to the BPP model47 which is
based on the Debye theory, where the rotational-diffusion corre-
lation time τR is defined as the average time it takes the rigid pair
to rotate by 1 radian. GSBM(t) is plotted in Fig. 4(a) assuming
τR = 〈τ〉 = 30 ps.

As shown in Fig. 4(a), the mono-exponential decay in GSBM(t)
is not consistent with the multi-exponential (i.e., stretched) decay
in G(t). Equivalently, J(ω) in Fig. 4(b) does not follow the f−2

power-law behavior at large f . This is expected since the simu-
lations implicitly include both inner-sphere and outer-sphere (see

Fig. 7 Simulated 1H NMR relaxivity r1 of Gd3+�aqua solution at 25◦C,
compared with static-�eld measurements (this work) and �eld-cycling

measurements (Luchinat et al.34, supplementary material). Also shown

is the average of the low-frequency ( f0 < 0.5 MHz) measurements.

Fig. 8 Cross-plot of measured r1 (including static-�eld and �eld-cycling

measurements) versus simulations taken from Fig. 7, all at 25◦C. Dashed
line is the 1-1 unity line.

below) contributions. Currently the simulations do not separate
inner-sphere from outer-sphere contributions, therefore the sim-
ulations do not clarify the origin of the multi-exponential decay
in G(t).

It is also possible that the inner-sphere G(t) itself has a multi-
exponential decay. The functional form of GSBM(t) is based on
the Debye theory, which was previously shown to be inaccurate
when used in the BPP model for liquid alkanes and water50. It
would therefore not be surprising if the inner-sphere G(t) was also
multi-exponential given the more complex rotational dynamics of
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τR rin ∆ωin/2π T1in(0) rH

(ps) (Å) (MHz) (µs) (Å)

30 2.97 9.3 4.4 3.06

Table 2 Approximate inner-sphere quantities (assuming inner-sphere re-

laxation dominates) including rotation correlation time τR(= 〈τ〉, Table
1), Gd3+�1H distance rin (Eq. 26), square-root of second moment ∆ωin
(Eq. 27), and relaxation time T1in(0) at f0 = 0 (Eq. 28); (right) Gd-H

distance rH for the inner-sphere taken from gGd-H(r) in Fig. 1.

Gd3+–aqua compared to bulk water. Previous reports have shown
that the inner-sphere G(t) for Gd3+–aqua is consistent with a
mono-exponential decay33, however those simulations were not
validated against measurements.

Assuming that inner-sphere relaxation dominates, and there-
fore that the multi-exponential decay in G(t) is due to inner-
sphere dynamics alone, the correlation time 〈τ〉 ' 30 ps is con-
sistent with published values from the SBM inner-sphere model,
where a range of τR ' 23↔ 45 ps is reported16,18,22,23,25,33,34.
Note that 〈τ〉 ' 30 ps is a factor ' 10 larger than that of bulk
water (τR ' 2.7 ps50), which is expected given the hindered rota-
tional motion of the Gd3+–aqua complex.

Continuing with the assumption that inner-sphere relaxation
dominates, one can approximate the following inner-sphere
quantities:

1
r6
in
' 1

2q

N

∑
i=1

〈
1

r6
i (t
′)

〉
t ′

(26)

∆ω
2
in '

1
2q

N

∑
i=1

∆ω
2
i (27)

1
T1in
' 1

2q

N

∑
i=1

1
T1i

. (28)

The expressions are averaged over the 2q 1H nuclei in the inner
sphere, where q = 8.5 (Table 1). Note again that these equations
neglect the outer-sphere contribution, implying that ∆ω2

in is an
upper bound, while rin and T1in(0) are lower bounds.

According to Table 2, the resulting rin ' 2.97 Å is ' 3% lower
than rH ' 3.06 Å from gGd-H(r) in Fig. 1; this is expected given
that rin is a lower bound. Both rin and rH are consistent with pub-
lished values from the inner-sphere SBM model, where a range of
r ' 3.0↔ 3.2 Å is reported16,18,22,23,25,33,34.

The product ∆ωinτR ' 0.002 indicates that the Redfield-Bloch-
Wagness condition (∆ω 〈τ〉 � 1) is satisfied67–69, which justifies
the relaxivity analysis used here. The fast-exchange regime11 can
also be verified by noting that T1in(0) ' 4.4 µs at f0 = 0 is three
orders of magnitude larger than τm ' 1 ns, i.e. (T1in + τm) ' T1in

can be assumed.

3.3 HF outer-sphere model

We now discuss the outer-sphere contribution to relaxivity, al-
though it is generally believed (though not proven) to be smaller
than inner-sphere relaxivity16,19,24. The outer-sphere contribu-

tion is expected to follow the Hwang-Freed (HF) model for the
relative translational diffusion between Gd3+ and H2O assuming
two force-free hard-spheres6:

GHF (t) = GHF (0)
54
π

∞∫
0

x2

81+9x2−2x4 + x6×

exp
(
−x2 t

τD

)
dx. (29)

The translational-diffusion correlation time τD is defined as the
average time it takes the molecule to diffuse by one hard-core di-
ameter dO. GHF (t) is a multi-exponential decay by nature, and
therefore one expects the total G(t) to also be multi-exponential,
the extent of which depends on the relative contributions of
outer-sphere to inner-sphere.

The correlation time τD can be predicted as such:

τD =
d2

O
DW +DGd

=
9
4

τT , (30)

where the simulated diffusion coefficients of H2O (DW ) and Gd3+

(DGd) in Gd3+–aqua are taken from Fig. 6, the results of which
are listed in Table 3. The hard-core diameter dO is taken from
the local maximum at r ' 4.6 Å in the pair-correlation function
gGd-O(r) in Fig. 1 (which is attributed to outer-sphere water).
Note that the resulting τD ' 99 ps is a factor ' 10 larger than that
of bulk water (τD ' 9.0 ps50), which is expected given the larger
hard-core distance dO ' 4.6 Å than bulk water (dO ' 2.0 Å50).

DW DGd dO τD τT

(Å2/ps) (Å2/ps) (Å) (ps) (ps)

0.19 0.03 4.6 99 44

Table 3 Di�usion coe�cients of H2O (DW ) and Gd3+ (DGd) in Gd3+�

aqua, distance of closest approach (dO) between Gd3+ and outer-sphere

H2O according to gGd-O(r) (Fig. 1), and, resulting translational-di�usion

correlation time τD (= 9/4τT ) from Eq. 30.

The value τD ' 99 ps is compared to the distribution of molec-
ular modes P(τ) in Fig. 5. More specifically, the translational
correlation time τT ' 44 ps is plotted in Fig. 5, where the relation
τD = 9/4τT and the origin of the factor 9/4 is explained in52,69.
τT lies within the largest mode in P(τ) (with a peak at τ ' 36 ps),
indicating that the outer-sphere may contribute to relaxivity. Fur-
ther investigations are underway to separate inner-sphere from
outer-sphere contributions in the simulations, without assuming
any models.

The largest mode in P(τ) is, however, most likely associated
with the rotational motion of the Gd3+–H2O vector. P(τ) has
other modes too, including a smaller mode at short τ ' 10−1 ps,
which is a result of the sharp drop in G(t) over the initial t ' 0.2 ps
(Fig. 4(a)). This molecular mode is also present for intramolec-
ular relaxation in liquid alkanes and water, while it is absent for
intermolecular relaxation. In the case of alkanes, the ubiquitous
intramolecular mode at τ ' 10−1 ps is attributed to the fast spin-
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ning methyl end-groups52,80. Investigations are underway to bet-
ter understand the origin of this mode in Gd3+–aqua, which can
perhaps be explained using a two rotational-diffusion model such
as found in bulk water81. The origin of other modes in P(τ) at
τ ' 100 ps and ' 101 ps are also being investigated.

Finally, we note that the r1 dispersion in Fig. 7 results in a mild
increase in the ratio T1/T2 = r2/r1 ' 7/6 above f0 & 10 MHz, until
f0 & 6 GHz where T1/T2 increases further. Combining Eqs. 9 and
10 with J(ωe) = 0 (i.e., slow-motion regime) and J(ω0) = J(0)
(i.e., fast-motion regime) accounts for the factor T1/T2 = 7/6
within the frequency range f0 ' 10 MHz ↔ 6 GHz. The ra-
tio T1/T2 = 7/6 was also used to explain water-saturated sand-
stones40.

3.4 Electron-spin relaxation

At low-frequencies ( f0 . 0.5 MHz), the difference between r1

measurements (r1(0) ' 29.7 mM−1s−1) and simulation (r1(0) '
34.6 mM−1s−1) can be used to predict the zero-field electron-spin
relaxation time Te0 = T1e(0) = T2e(0) into account. Assuming that
the correlation times P(τ) are uncorrelated with the electron-spin
relaxation times, the following expression results3:

r′1,2(0) =
1
[H]

20
9

∆ω
2〈

τ
′〉 , (31)

1
〈τ ′〉

=
1
〈τ〉

+
1

Te0
. (32)

This is equivalent to introducing an exponential decay term
exp(−t/Te0) inside the FFT integral of Eq. 8. The fitted value
of Te0 ' 180 ps is determined by matching r′1(0) to the average
low-frequency ( f0 . 0.5 MHz) measurement (Fig. 7). The result-
ing Te0 ' 180 ps (Table 1) is consistent with the published range
of Te0 ' 96↔ 160 ps16,18,22,23,25,33,34. This technique presents
a novel way to predict Te0, without assuming any relaxation
models. Investigations are underway to incorporate T1e(ωe) and
T2e(ωe) dispersion4,25,28,33 for predicting r1 at low frequencies.

4 Conclusions

Atomistic MD simulations of 1H NMR relaxivity r1 for water in
Gd3+–aqua complex at 25◦C show good agreement (within '
8%) with measurements in the range f0 ' 5 ↔ 500 MHz, with-
out any adjustable parameters in the interpretation of the simu-
lations, and without any relaxation models. This level of agree-
ment validates the simulation techniques and analysis of Gd3+–
1H dipole-dipole relaxation for unlike spins.

The distribution of continuous occupancy times of the inner
sphere suggests residence times between τm ' 1↔ 2 ns for a com-
plete rejuvenation of the inner-sphere waters of Gd3+. Further,
the average coordination number is q ' 8.5. These observations
from simulation are consistent with previously reported interpre-
tation of experiments using the SBM model.

The simulated autocorrelation function G(t) shows a multi-
exponential decay, with an average correlation time of 〈τ〉 ' 30
ps. The multi-exponential nature of G(t) is expected given that
the simulation implicitly includes both inner-sphere and outer-
sphere contributions. The results are analyzed assuming that the

inner-sphere relaxation dominates, yielding approximations for
the average Gd3+–1H separation rin ' 2.97 Å and rotational corre-
lation time τR = 〈τ〉' 30 ps, both of which are consistent with pre-
viously published values which use the Solomon-Bloembergen-
Morgan (SBM) model. The local maximum in gGd-H(r) for inner-
sphere water predicts rH ' 3.06 Å for the average Gd3+–1H sepa-
ration, which is also consistent with previously published values.

A distance of closest approach (i.e. hard-core diameter) for
Gd3+–H2O of dO ' 4.64 Å is determined from the local maximum
in gGd-O(r) (attribute to outer-sphere water), which together with
the simulated diffusion coefficients of Gd3+ and H2O are used to
estimate the translational-diffusion correlation time τD = 9/4τT '
99 ps in the Hwang-Freed (HF) outer-sphere model. Comparing
τT to the distribution in molecular modes P(τ) (determined from
the modes expansion of G(t)) indicates that the outer-sphere may
contribute to relaxivity.

Below f0 . 5 MHz the simulation overestimates r1 compared to
measurements, which is used to estimate the zero-field electron-
spin relaxation time Te0. The resulting fitted value Te0 ' 180 ps
is consistent with the published range of values. This technique
presents a novel way to predict Te0, without assuming any relax-
ation models.

The excellent agreement of r1 at high frequencies ( f0 & 5 MHz)
for Gd3+–aqua complexes provides a pathway to explore Gd3+

chelates with cyclic, acyclic, and protein-bound metals ligands.
Understanding the roles of relaxation induced by these param-
agnetic chelated complexes is crucial given their use as clinical
MRI contrast agents, where f0 ' 64 MHz (1.5 T) is the typi-
cal MRI operating frequency. Thus, for future work, we plan to
study Gd3+–1H NMR relaxation of clinical contrast agents such as
[Gd(DOTA)(H2O)]− and [Gd(DTPA)(H2O)]2− in aqua.

Other possibilities for future work include (1) simulations in
the slow-exchange regime (as opposed to fast-exchange regime),
(2) separation of inner-sphere from outer-sphere contributions,
(3) interpretation of the individual molecular-modes in P(τ),
(4) predicting electron-spin relaxation dispersion (i.e., not just
the zero-field value Te0), and (5) simulating dipole-dipole cross-
correlation (as opposed to autocorrelation), which for anisotropic
rotation can result in multi-exponential T1 and T2 relaxation.
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