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Cancer cells with enhanced motility and invasiveness migrate away from primary tumor site and initiate
metastatic process. Identifying key aspects for cell migration is crucial for understanding and ultimately
overcoming metastasis. Considerable efforts have focused on discovering markers for epithelial-to-mesenchymal
transition (EMT), in which epithelial cells acquire migratory and invasive phenotypes to promote metastasis, yet
marker-based approaches are limited by inconsistences among patients, cancer types, and partial EMT states. The
recent developments of computer vision and deep learning provide a potent alternative to define cell properties
based on morphology. In this work, we present a comprehensive morphological analysis using deep learning
methods to establish the correlation between cellular morphology and migration behavior.
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Metastasis is the cause of death in most patients of breast cancer and other solid malignancies. Identification of cancer

cells with highly migratory capability to metastasize relies on markers for epithelial-to-mesenchymal transition (EMT), a

process elevating cell migration and metastasis. Marker-based approaches are limited by inconsistences among patients,

types of cancer, and partial EMT states. Alternatively, we analyzed cancer cell migration behavior using computer vision.

Using microfluidic single-cell migration chip and high-content imaging, we extracted morphological features and recorded

migratory direction and speed of breast cancer cells. By applying Random Decision Forest (RDF) and Artificial Neural

Network (ANN), we achieved over 99% accuracy for cell movement direction prediction and 91% for speed prediction.

Unprecedentedly, we identified highly motile cells and non-motile cells based on microscope images and machine learning

model, and pinpointed and validated morphological features determining cell migration, including not only known

features related to cell polarization but also novel ones that can drive future mechanistic studies. Predicting cell

movement by computer vision and machine learning establishes a ground-breaking approach to analyze cell migration and

metastasis.

Introduction

Metastasis is the leading cause of mortality in patients with
breast cancer, being responsible for over 40,000 deaths per
year in the US. Despite advances in early detection and
treatment, once metastases develop, breast cancer is
incurable® 2. with enhanced motility and
invasiveness migrate away from the primary tumor site and
initiate the metastatic processl. Therefore, identifying key
aspects for cell migration is crucial for understanding and
ultimately overcoming metastasis. Currently, considerable
efforts have focused on elucidating mechanisms that govern
epithelial-to-mesenchymal-transition (EMT), a developmental
program in which epithelial cells acquire migratory and
invasive phenotypes to promote metastasis. In recent decades,

Cancer cells
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various EMT biomarkers including membrane proteins (e.g. E-
CAD, N-CAD), cytoskeletal markers (e.g. Vimentin,
Cytokeratins), transcriptional factors (e.g. Snail, Slug, ZEB1,
ZEB2, Twist) were developed3-5. However, these and other
markers for defining EMT underscore problems of marker-
based approaches across multiple cancers: 1) cancer cells
undergo differing extents of partial EMT; 2) multiple sets of
markers have been used to define EMT even within a single
type of cancer; 3) markers are inconsistent across different
malignancies3. Inconsistencies of existing EMT markers
highlight the need for new approaches to identify highly
migratory cells®>.

Not only does the recent development of Artificial
Intelligence (Al) and computer vision provide a potent
alternative to define cell properties based on morphology, but
also use of fluorescent probes and reporters to label proteins,
protein activity, and organelles has advanced our ability to
study mitochondria. Mitochondrial morphology correlates with
metabolic state, drug response, and cell viability, providing
potential insights into overall status and function of cells®®,
Advances in computer technology now allow high-content
images of mitochondria to be processed by the computer
vision programg’lo. After training on data sets, the computer
vision software can autonomously interpret meanings of
images and classify cells based on imaging features. Various
algorithms such as Random Decision Forests' (RDFs construct
decision trees in training and make decisions based on voting
of trees) and Artificial Neural Networks (ANNs build a group of
nodes interconnected with weighted linkage in training and
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classify things ac.:t:ordingly)12 were developed. However, people
so far have only analysed single imaging features using small
numbers of cells to investigate correlations between the
distribution of mitochondria and cell movement®. Cutting-
edge computer vision techniques were not used to fully
explore the potency of morphological features in determining
cell migration direction and speed.

In addition to imaging analysis capability, an effective cell
monitoring scheme is also critical to the success of
comprehensive cell morphological analysis. Microfluidic
technology has emerged as a state-of-the-art approach for cell
biology because of precise manipulation of single cells and
high potential in scaling”’le, As compared to tracking cells
randomly seeded in a dish, cells in a microfluidic chip are
precisely positioned and easily tracked in a high-throughput
manner. Thus, the migration distance of individual cells can be
accurately measured to correlate with its morphology. More
importantly, chemoattractant gradients can be generated on-
chip to model chemotaxis in cancer metastasis. Hence, we
applied the high-throughput cell migration chip we have
previously developed for this study”.

In this work, we present a comprehensive morphological
analysis using cutting-edge computer vision methods including
random decision forests and artificial neural networks to
morphological
features and cell movement direction and speed. We first
collected 1,358 cellular and mitochondrial images and then
trained and optimized the machine learning model. Using the
built model, we successfully predicted the migration direction
for more than 99% of cells and picked out highly-motile cells
(top 10% fast-moving cells) and non-motile cells (top 10%
slow-moving cells) with 91% accuracy. Based on the prediction,
we identified critical morphological markers determining cell
movement direction and speed. To validate the importance of
markers we found, we impaired cell movement using
commonly used chemotherapeutics as well as sorted highly
migratory cells from the bulk population for comparison. Both
experiments validated the importance of identified
morphological features in determining cell movement. The
presented work represents a new method to predict and
understand the cell migration process, which will advance
studies of mechanisms driving cell migration.

establish the correlation between cellular

Materials and methods

Microfluidic Migration Chip Design and Fabrication

The migration devices were fabricated from a single layer of
PDMS (Polydimethlysiloxane, Sylgard 184, Dow Corning),
which was fabricated on a silicon substrate by standard soft
lithography, and a glass slide. Two masks were used to
fabricate the multiple heights for main channel (40 um height)
and the migration channel (5 um height). One device contains
900 migration channels (450 channels in one side), and the
migration channel is 30 um in width, 5 um height, and 1 mm in
length. The PDMS layer was bonded to the glass slide after
activated by oxygen plasma treatment (80 Watts, 60 seconds)

2| J. Name., 2012, 00, 1-3

to form a complete fluidic channel (Fig. S1(a)). The microfluidic
chips were sanitized by UV radiation prior to use to ensure
aseptic conditions. Before cell loading, a collagen (Collagen
Type 1, 354236, BD Biosciences) solution (1.45 mL Collagen,
0.1 mL acetic acid in 50 mL DI water) was flowed

Experiment
High- Deblurring&
Content Thresholding RDF i
Imaging L Quality ]
Morphological Control
Markers —
Discovery l

Significance

Cell Behavioral Validatior
—
Analysis

Alteration

Validation Machine Learning

Fig. 1. Workflow of critical morphological features discovery in cell
migration, which includes microfluidic migration chip experiments,
high-content imaging, image processing, machine learning modelling,
and control experiment validation.

through the device for ten hours to coat collagen on the
substrate to enhance cell adhesion. Devices were then rinsed
with PBS (Gibco 10082) for five minutes to remove the residual
collagen solution. Culture media was used to rinse devices
before cell loading.

Cell Culture

SUM159 cells were authenticated by short tandem repeat
profiling performed by the University of Michigan DNA
Sequencing Resource. The cells were cultured in the F-12
based media (Ham’s F12, Gibco 11765) supplemented with 1%
penicillin/streptomycin (Gibco 15070), 5 pug/mL (2.5 mg/500
mL) insulin (Sigma 16634), 1 pg/ mL (0.5 mg/500 mL)
hydrocortisone (Sigma H4001), and 5% FBS (Gibco 10082). We
maintained all cells in a humidified incubator with 5% CO2.

Transduction of Stable Cell Line

We transduced cells with a lentiviral vector expressing
cytochrome C oxidase 8 (COX8) fused to GFP to visualize
mitochondria (plasmid from Addgene)zs. To generate a
lentiviral vector for constitutive expression of mCherry, we
amplified mCherry from pmCherry-N1 (Takara) with PCR
primers 5 -ATGCTCTAGAGCAGAGCTGGTTTAG-3 and 5-
ATGTGGTATGGCTGATTATGATC-3’. We cloned the PCR product
into pLVX puro (Takara) cut with Xbal (New England Biolabs)
and then confirmed the final construct by DNA sequencing. We
prepared lentiviruses in 293T cells as described previouslyzg.

Cell Migration Assay

Cells were harvested from culture plates with 0.05%
Trypsin/EDTA (Gibco 25200) and centrifuged at 1000 rpm for 5
minutes. Then, the cells were re-suspended in culture media to
a concentration of 3 x 10° cells/mL. One hundred microliters
(100 pL) of this cell suspension was pipetted into the lower

This journal is © The Royal Society of Chemistry 20xx
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inlets. After 3 minutes, cell solution in the left and right inlets
was replaced with 50 pL of serum culture media, and 40 pL
serum culture media was applied to the central inlet for both
high and low sides. After 30 minutes, media in all inlets were
emptied out and replaced by 200 pL serum-free culture media
(for the high-left and high-right inlets), and 200 pL serum
culture media (for the high-central inlet) to induce chemotactic
migration. Then, the entire chip was put into a cell culture
incubator for 5 hours to prepare for image acquisition.

Image Acquisition

The microfluidic chips were imaged using an inverted
microscope (Nikon). The fluorescent images were taken with a
40X objectives (NA = 0.75, WD = 0.66 mm, resolution = 0.17
um) and a charge-coupled device (CCD) camera (Coolsnap
HQ2, Photometrics). A FITC (for GFP mitochondria)/TRITC (for
mCherry cell) filter set was used for the fluorescent imaging of
mitochondria of SUM159 cells. The fluorescent imaging was
performed using an exposure time of 200 ms, minimizing the
phototoxic effect on cells. The microfluidic cell chamber was
scanned with a motorized stage (ProScan Il, Prior Scientific).
Before each scanning, the stage was levelled to ensure the
image remained in the focus throughout the whole imaging
area.

Image Processing Program

A customized MATLAB program was used to process raw
images under FITC channel collected from the microscope.
Each pixel had a value ranged from O to 255 indicating its
brightness. Auto-fluorescence of PDMS and signal caused by
camera dark current were removed from raw images by
setting one brightness value (from 0 to 255) which had the
greatest number of pixels as threshold. Then, a 10-pixel-large
spike noise filter was used to remove tiny dazzling dots from
pre-processed images. After that, erosion followed by a
dilation were applied to these images which was fulfilled by
“imopen” in MATLAB. Before converting these images to black-
white images, a 5-pixels by 5-pixel Wiener filter was used for
image deblurring. Also, a 15-pixel-large area filter was
implemented to dots caused by
deblurring. Processed images often contained more than one

remove small image

cell. Our customized MATLAB program aimed to cut a
bounding box which contained the leftmost cell only. For each
processed image, nucleus center was labelled manually with
the help of MATLAB (refer to Nucleus Center Validation). With
this nucleus, the corresponding single cell under TRITC channel
could be retrieved by choosing the connected domain which
contained the point of nucleus.

Definition of Cell Speed

Images for cells at the same location were taken with a roughly
10-minute period. Movement for a single cell was defined as
the movement of center of mass of images under FITC
channel. In order to allow the cell speed to be more accurate,
imaging time was With this

recorded for each image.

This journal is © The Royal Society of Chemistry 20xx

information, cell speed could be calculated by dividing

movement of a single cell by difference of imaging time.

Image Quality Control and Image Selections

Image selection took three issues into account: image quality,
chemo-attraction correctness, and two cells in the same
channel. Imaging out-of-focus or very thick cells could lead to
the problem of low image quality. These low-quality images
could not provide us with enough information about
mitochondria. To ensure image quality, image quality control
was introduced and fulfilled by mitochondrial classification. In
our experiment, mitochondria were classified into three
different classes based on their shape: fiber, intermediate, and
dot. The out-of-focus images (fiber ratio lower than 11%) were
discarded to guarantee good image quality for following
analysis (Fig. S2). Chemo-attraction correctness was defined as
cells moving towards the central channel due to chemo-
attraction. Chemo-attraction correctness prevailed in all
SUM159 cells. Around 10% of cells might move in the opposite
direction. In our experiment, we only took normal chemotactic
cells into consideration. Images with two cells in the same
channel were also discarded because the interaction between

two cells could affect their individual movement significantly.

Feature Extraction and Data Pre-processing

With the information of processed images from FITC/TRITC
channel, we extracted 61 features for all 1358 single cells in
our database. Definitions for these features were included in
the Supplementary Information and feature extraction was
done with the help of MATLAB R2017a.
prediction, these 61 features were taken with their original
value. For speed prediction, features with name starting like
“TopDownxxx”, CenterShift, FiberUpDownRatio, MaxWidth,
MaxWidthSum, TotalAreaRatio,
TotalPerimeterHalfRatio,
HeadAverageWidthRatio, RedShift,
and TotalAreaHalfRatio were

For direction

TotalPerimeterRatio,

HeadAverageWidth,
RedFoot, RedGreenDist,
reconsidered to make cell
moving direction no longer important (e.g. CenterShift values -
1 (for up-moving cells) and 1 (for down-moving cells) were
different for direction prediction but the same for speed
prediction. Therefore both values should be taken as 1) in
speed prediction.

After data normalization, whitening transformation was
applied for feature decorrelation, which makes the covariance
matrix of feature space to an identity matrix. By deploying
Zero-phase Component (ZCA) whitening method with a ZCA
constant of 0.0001, the correlation coefficient between most
of the features are reduced to below 0.1 (Fig. S3). Wrapper
method feature reduction was implemented to minimize the
These 61
features were first normalized (zero mean and unit variance),
and then took turns to be all zeros for one feature. For each

influence of unrelated or redundant features.

arrangement, an average error rate was calculated from 50
predictions using our Artificial Neural Network (ANN). In all 61

J. Name., 2013, 00, 1-3 | 3
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error rates, the feature with the lowest error rate was deleted.
Features were deleted one by one until a new deletion would
visibly increase the prediction error rate.

Parameters for Random Decision Forest and Artificial Neural
Network

Bootstrapped-aggregated decision trees were constructed
based on subsets of the training data set and this could reduce
the variance significantly. We took the mode of all outputs
from trees for classification and took the average for
regressionl. In MATLAB, we used the function “TreeBagger” to
simulate the growth of random decision forest. For cell
direction prediction and cell speed prediction, 500 trees were
grown to let the error rate become stable. Artificial neural
network was also chosen for cell direction and speed
predictions because of its nonlinear characteristic. Every single
feature in our raw data were set to zero average and unit
variance before being inputted into our model. We chose a
two-hidden-layer pattern net as our model and by going
through all possible combinations of hidden node numbers for
two hidden layers, the best result was achieved when the first
hidden layer had 21 nodes and the second had 7 nodes. In our
model, 70% of our data were used for training, 20% for
validation and 10% for test. With the aim of distinguishing
highly-motile cells against non-motile cells, we randomly pick
out 134 cells (10% of the total dataset) from top 10% fast-
moving cells and top 10% slow-moving cells as test set, while
the rest of the cells were split to training set and validation set.
Hyperbolic tangent sigmoid transfer function (“tansig” in
MATLAB) was used as the activation function for two hidden
layers and linear transfer function (“purelin” in MATLAB) was
used as the activation function for the output layer. Scaled
conjugate gradient backpropagation (“trainscg” in MATLAB)
was used as our training function with the intention to reduce
the mean square error.

Drug Treatment Experiment

Doxorubicin hydrochloride (CAS 25316-40-9) was obtained
from Cayman Chemical (Cat. No. 15007), and was dissolved in
SUM159 cell culture media to a final concentration of 0.5 uM
(sub-IC50 concentration). To allow cancer cells some time to
respond to the drug, we performed an on-chip drug pre-
treatment before introducing the chemotactic gradient.
Following the cell loading protocol described previously, 200
uL of the doxorubicin solution with no serum was loaded to
the migration device 30 minutes after cell loading. After 6
hours of pre-treatment, all inlets and outlets were emptied
out. Chemoattraction was introduced by filling the high-left
and high-right inlets with 200 pL doxorubicin solution in
serum-free culture media, while filling the central inlets with
200 pL doxorubicin solution in serum culture media. Then, the
entire chip was put into a cell culture incubator for 5 hours to
prepare for image acquisition.

4| J. Name., 2012, 00, 1-3

Isolation of Highly-Migratory Cells

For recovery of highly-migratory cells from our microfluidics
device, 24 hours after cell loading onto migration chip, we
pipetted 200 puL of PBS to the inlets to wash the microfluidic
channels for 5 minutes. After removing PBS (Gibco 10010) in
the inlets, we pipetted 200 puL of trypsin (Gibco 25200) to the
inlets to trypsinize cells and place the device in incubator for 5
minutes. We then collected trypsinized cells in the center
outlet. The collected cells were cultured in dish for 2 weeks.
After validation cell migration speed to confirm elevated
migration using microfluidic migration the
population was used for this study as highly migratory cells.

assay, cell

Nucleus Center Validation

To quantify the error in manual nucleus center labelling, which
helps in dividing each single cell into two halves, we compared
our manual labelling location with the result given by an
automatic nucleus center locating MATLAB program (Fig. S4).
This nucleus center locating program calculated the center of
mass based on a fluorescent image of cell nucleus. To visualize
nucleus, SUM159 cells were treated with 4',6-
diamidino-2-phenylindole, dihydrochloride (DAPI) (Invitrogen,
D-21490) in a 1:1000 dilution in PBS for 15 minutes, followed
by PBS washing for 3 times. Microscope images were acquired

the cell

immediately after washing. As a result of randomly picked 48
cells, the mean distance error between manual labelling and
computing labelling was around 6 pixels (0.95 pum).

Results

Morphological Prediction of Cell Migration Pipeline

In order to discover and validate morphological features that
contribute to migration, we developed a workflow including 4
steps: experiment, image processing, machine learning, and
validation (Fig. 1). Firstly, the microfluidic migration chip
provided single-cell resolution for cellular morphological
analysis. After 6 hours of incubation time, fluorescence
microscopy was used to obtain 40X high-content images of
both the mitochondria and cell profile. After implementing
image pre-processing procedures Based on pre-processed
images, we implemented single-cell segmentation and a
Random Decision Forest (RDF) classifier for mitochondrial
classification, in which all the pieces of mitochondria in each
single categories: fiber,

intermediate, and dots6, with important morphology features

cell were sorted into three

including major axis, area, and aspect ratio. The distribution of
mitochondrial types was then applied as one of the 61
features

extracted cellular morphological

Using these features

(Supplementary
from both
morphology and mitochondria profiles as inputs, we trained
two machine learning models to predict cell migration

information). cellular

direction and cell migration speed. The Random Decision
Forest (RDF) and Artificial Neural Network (ANN) achieved
99.6% and 91.0% accuracy, respectively. More importantly, we

This journal is © The Royal Society of Chemistry 20xx
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were also able to pinpoint significant morphological features
based on the predictor
By performing

critical to migration behavior
importance analysis from the RDF classifier.
control experiments, we validated that our discovered
morphological markers are highly correlated with cancer cell

migration.

Imaging Processing and Mitochondrial Classification
As the “powerhouse” of eukaryotic ceIIsls, mitochondria are
important in energy demanding behaviors. This includes cell
migration, which requires cellular polarization, reorganization
of actin filaments, and recruitment of structural and signaling
components19 Studies have shown that perturbations to
mitochondria dynamics (i.e. fragmentation and fusion) may
affect cell development, cell cycle or cell signalingzo. However,
those studies were mostly carried out by means of subjective
observation or qualitative explanation, instead of objective,
quantitative analysis. To investigate mitochondria in migration
more in-depth, we segmented each mitochondrion after a
including background
noise deblurring,

histogram-based auto-thresholding (Fig. 2(a-f)). We trained a

series of image pre-processing steps,

removal, contrast enhancement, and
RDF classifier to automatically categorize each mitochondrion
types: dots, which

mitochondria; fiber, which includes interconnected networks

into three represent fragmented
and elongated mitochondrial fibers; or intermediate, which
defines mitochondria whose length is in between dots and
fibers. By using 1000 manually labelled mitochondria as

training

(a) Original Cell (b) Background Subtraction (c) Spike Noise Removal

(d) Deblurring (e) Area Filter (f) Classification

Intermediate

(h) Classification Result
Confusion Matrix

(g) Classification Error Rate
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Fig. 2. Image processing flow for the original microscope image (a-f)

and mitochondrial classification (g, h). (a) The original image of a
SUM159 cell was taken with a 40x objective lens. (b) Background of

This journal is © The Royal Society of Chemistry 20xx

the original image was removed to have a clear view of the cell. (c)
Spike noise was removed from the image. (d) A 5-pixel by 5-pixel
Wiener filter was applied for deblurring purposes. (e) A 15-pixel large
area filter was applied for sharpening and thresholding. (f) All
mitochondria of a cell were classified into three classes: fiber,
intermediate and dot based on a Random Decision Forest (RDF)
classifier. (scale bar: 10 um). (g-h) Results of mitochondrial
classification. (g) Out-of-bag classification error decreased with the
increased number of grown trees using the RDF model. (h)
Classification results shown by confusion matrix stated that the
correction rate was above 97%, with no misclassification between
fiber and dot class.

sets and 200 as test sets, we achieved 97.5% overall accuracy
in mitochondrial classification (Fig. 2(g, h)). As an average of
the result, 61.1% of the total
classified as fiber, 20.5% as intermediate, while 18.4% as dots.
This mitochondrial class distribution is skewed to 71.1% for
fiber, 13.2% intermediate, and 15.7% for dot,
exposed to a chemotherapeutic drug, and to 49.1% for fiber,

area of mitochondria are

for when
28.3% for intermediate, and 22.6% for dot when cells are
classified as highly migratory from our microfluidic device.

Cell Migration Direction Prediction

In order to accurately quantify the moving speed of individual
cancer cells, we loaded the cell suspension into a microfluidic
migration chip, which consisted of 2 x 450 individual narrow
migration channels divided into an upper half and lower half. A
total of three inlets and three outlets are deployed on the chip
as the loading interface (Fig. S1). Cancer cells were loaded to
the inlets on both upper and lower sides and allowed to
migrate the with the
chemoattractant. The migration channels were designed to be
1000 pm x 30 um x 5 pum (L x W x H). The dimension of the
cross-section is small enough that only single cells could be
positioned in each channel, while the migrating direction was
also confined to the orientation of the migration channels. The

towards center serum as

study of migration direction, which involves the process of
cellular reaction to mechanical/chemical cue, cytoskeleton
polarization, and signalling dynamics, provides important clues
to our understanding of underlying mechanisms of

. 21,22
metastasis

. Therefore, we developed a machine learning
model to predict and explain cell migration merely based on
the morphological features of cancer cells.

Random Decision Forest (RDF) is a commonly used
classifier, as well as a regression tool,

binary decision tree by asking a sequence of simple questions

which constructs a
to inputs and assign a label to each condition®®. To overcome
an overfitting issue that is caused by using an over-
complicated tree structure, a bootstrap-aggregated decision
tree technique is often adopted for better model performance
because it decreases the number of variables of the model and
. We first
implemented RDF for cell migration direction classification.
Due to confinement of the migration channels, all the cancer

. . . e 24
combines the results of multiple decision trees

cells were only allowed to move bidirectionally and were

J. Name., 2013, 00,1-3 | 5
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labeled according to the movement of the center of mass
measurement by computer program. With the randomly
scrambled cell image inputs, we achieved more than 99%
accuracy in prediction of cell migration direction (Fig. 3(a)). We
also performed a feature importance analysis by summing the
estimates of all weak learners in the bagged decision trees.
Based on the importance analysis, we validated that features
reflecting cellular polarization are essential in deciding the
migration direction (Fig, 3(b) and Fig. 4). These features
include: TotalAreaRatio, which defines the ratio of the areas
CenterShift,

which defines of the deviation of the center of mass
(a) RDF Error Rate (c) ANN Correction Rate

between the upper and lower half of the cell,

= Test
204
il w2l 102 1 | 99.0%
Sos 53| 50.2% | 0.5% | 1.0%
g0 s
= ]
= 25| 1 99 | 99.0%
0.2 = 0,
s 38| 05% | 48.8% | 1.0%
o
[=2
So4 X: 500 99.0% | 99.0% [9910%
.c'_, L Y: 0.01325 1.0% | 1.0% | 1.0%
S o
o 0 100 200 300 400 500 }[-Ja’: et 2[‘;‘:’5“
Number of Grown Trees Correct: %Nron : Total:
484 1
51.4% | 0.1%

(b) Feature Importance
Top 10 Important Features for Direction Prediction

TotalAreaHalfRatio
CenterShift
TotalPerimeterHalfRatio
TotalAreaRatio :
TopDownTotallntensityRatio
MaxWidth
TopDownEquivdiameterRatio
TopDownMinorAxisLengthRatio O
TopDownConvexAreaRatio
TopDownPerimeterAreaRatio O

0 0.5 1
Predictor importance estimates
Fig. 3. Results and important features for cell migration direction
prediction. (a) Out-of-bag error rate for cell migration direction

Predictors

Extremely Important
Features (>0.75)
Very Important
Features (>0.50)

prediction using RDF. With the increase in number of grown trees, the
error rate reduces to less than 1%. (b) Confusion matrices for testing
datasets. Accuracy for cell migration direction prediction is above 99%.
(c) Top 10 important features for cell migration direction prediction.

from the graphic center, as well as TotalPerimeterRatio, which
defines the ratio of the perimeters between upper and lower
half of the cell. Although most of the critical morphological
features are about cell polarization, each feature conveys its
own unique information. For example, CenterShift indicates
that the nucleus is more likely to appear in the rear portion of
the protrusion stretched to the front;
TotalPerimeterRatio represents not only the effect from

cell, with a

nucleus center shift, but also the border length of the cell

frontier (i.e. cells with filopodia-like protrusions tend to have
larger perimeters).
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Although RDF s handle and
advantageous in interpreting feature importance, it sometimes

will only give suboptimal solutions due to the nature of greedy

straightforward to

growing algorithm, as well as unstable to even slight
perturbations of the training data. Artificial Neural Network
(ANN) is a

approximation. With enough data sets, ANN is more likely to

nonlinear model for universal function

provide better prediction power. Therefore, we further
explored ANN for predicting cell migration direction. Based on
a database of 1,358 single-cell images collected using the
presented method, we trained a four-layer-ANN model which
achieves an overall accuracy of 99.6% combining training,
validation, and test data (Fig. 3(c)).

Cell Motility (Migration Speed) Prediction

In addition to direction, we further explored the capability of
our machine learning model in predicting motility or migration
speed. This will provide insights for the discovery of critical
markers determining cancer metastasis. Using the same
workflow as described previously, we first applied RDF to
pinpoint the important features affecting cell migration speed

(Fig. 5(a, b)), and further enhanced the prediction power using

(a) Centershift
1.215

(b) MaxWidth
Values 2126 -0.161  -1.783

(Direction

Prediction)
Nucleus
center
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" width
Lower
width

(d) RedGreenDist
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(Direction
Prediction)
ok Nucleus
center
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% 22
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Fig. 4. Selected important features for cell migration direction/speed
prediction. (a) For direction prediction, up-moving cells tend to have
positive CenterShift values and down-moving ones tend to have
negative CenterShift values. For speed prediction, large CenterShift
values typically indicated fast-moving cells. (b) For direction prediction,
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up-moving cells often had positive MaxWidth values and down-moving
ones often had negative MaxWidth values. For speed prediction, large
MaxWidth values typically indicated fast-moving cells. (c) For speed
prediction, large HeadAverageWidth values typically indicated fast-
moving cells. (d) For speed prediction, large RedGreenDist values
typically indicated fast-moving cells. (e) For direction prediction, up-
moving cells often had positive TotalAreaHalfRatio values and down-

ARTICLE

moving ones often had negative TotalAreaHalfRatio values. For speed
prediction, large TotalAreaHalfRatio values typically indicated fast-
moving cells. (f) For direction prediction, up-moving cells often had
positive TotalPerimeterHalfRatio values and down-moving ones often
had negative TotalPerimeterHalfRatio values. For speed prediction,
large TotalPerimeterHalfRatio values typically indicated fast-moving
cells. (scale bar: 10 um).
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Fig. 5. Cell migration speed prediction. (a) Out-of-bag error rate for cell migration speed prediction using RDF. With the increase in number of
grown trees, the error rate reduces to 33%. (b) Top 10 important features for cell migration speed prediction. (c) The error rate (average of 50

individual runs) can be further reduced to about 18% by eliminating 15 less relevant features and then the error rate remains stable until having
24 residual features. After that, the error rate goes up rapidly with the reduction of features. The features reduced at the last stage are critical

features. (d) Correction rate for cell migration speed prediction before feature reduction was 86.6%. (e) Speed regression from our neural

network model is correlated with cell actual speed. (pixels/s)

ANN. Previous studies suggest that cell migration is correlated
with mitochondria distribution within a cell®. With the help of
our machine learning model, we discovered that many other
morphological features can also predict cell migration. Similar
to cell migration direction, we found that cellular polarization-
related features are still critical in determining speed.
Unexpectedly, our model also found that other features also
provide interesting insights into cell migration. For example,
RedGreenDist, which is defined as the distance from the front
of a cell to the first mitochondrion, normalized with the total
length of the cell, is positively correlated with migration speed.
This
necessarily have to be located at the leading edge of a cell to
affect cell migration. Furthermore, CenterThickness, which is

reveals that the mitochondria network does not

measured by taking the ratio of the average intensity over a
small area of the nucleus region to the median intensity of the

This journal is © The Royal Society of Chemistry 20xx

whole cell, suggests that the larger the difference is between
the center area and cell edge, the more likely a cell moves
suggests that a fiber-like or fused
mitochondrial network structure is favorable for supplying
energy for cell migration, whereas dotted mitochondria, or

faster. Evidence

mitochondrial fission, has been reported as an indicator of
extracellular stress or cell apoptosis. However, in our study, we
did not find
morphology with migration behaviors.

strong correlation between mitochondria

In the next step, we also implemented a neural network for
migration speed prediction including classification of fast/slow
moving cells and regression of moving speed. Targeting on
selecting the high-migratory cells, which has been reported
with significantly greater tumor formation and metastasis
capabilities in mouse models, we set top 10% migration speed
as a labelling threshold for fast-moving cells. Similarly, bottom

J. Name., 2013, 00, 1-3 | 7
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10% migration speed was used to label slow-moving cells, so
that balanced inputs for both classes was obtained. Based on
the extracted 61 morphology features, our 4-layer neural
network classifier achieves 86.6% prediction accuracy at the
best case (77.1% as average). To improve computational
efficiency as well as avoid overfitting, we performed the
wrapper method feature selection using the neural network as
a performance evaluation model. We took an average of 50
leave-one-out subset of

individual runs on each of the

features, and picked the subsets that achieve the best
accuracy on test data. As shown in Fig. 5(c), the NN classifier
obtained an increase in accuracy when the number of features
was reduced from 61 to around 33 with the best case reaching
91.0% accuracy (85.3% as average) (Fig. 5(d)). The further
reduction of features will lead to a dramatic increase in error
rate due to the loss of significant information. This also
suggests that the longer one feature remains in the feature
reduction process, the more it contributes to speed prediction.
The remaining last 5 features were TotalAreaHalfRatio,
TotalAreaRatio, CenterShift,
MaxWidth, which matches well with the feature importance

TotalPerimeterHalfRatio, and

analysis in the random forest model. In addition, we also
applied a neural network for regression to predict cell
movement in a quantitative manner. This optimized model
yields 0.0004 pixels/s (0.00006 pm/s) in normalized mean

square error of migration speed (Fig. 5(e)).

Validation of Morphological Features by Altering Cell Migration
Behaviors

Following our workflow, several morphological features were
identified as critical markers of cellular migration. Due to the
statistical nature of machine learning models, and its strong
dependence on data inputs, our computational results could
lead to a trivial or irreproducible discovery. Therefore, to
validate the robustness and biological relevance of our model,
we further designed control experiments with altered cell
migration behavior and examined whether the critical
morphological markers we found changed as the migration
speed changed (Fig. 6). As a negative control, we inhibited the
migration of SUM159 cells with doxorubicin, which has been
widely used as treatment of metastatic breast cancer”
Doxorubicin treatment reduced the average migration speed
by 25.3% as compared to cells treated with vehicle (control).
As expected, we also observed a decrease in the average of
some morphological markers, such as CenterShift, MaxWidth,
and TotalAreaHalfRatio, positive
correlation with migration speed in our RDF prediction model.

which demonstrates a
We also performed a positive control experiment by
harvesting fast-moving cells (top 1% of the bulk SUM159
population), re-loading these selected cells to another of our
migration devices, and observing their migratory behavior. We
observed that highly-motile cells maintained their highly-
migratory properties, and moved on average 34.0% faster than
wild-type SUM159 cells.

As a result, we also observed

8 | J. Name., 2012, 00, 1-3

significantly higher values in those positively correlated
morphological markers. A

combination of the two experiments with “slow runners” and
“fast runners” confirmed that the important features we
pinpointed can be reliably used as morphological markers for
cancer cell migration.
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(b) Drug (c) Motile

(d) Speed
. . - | - -
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Fig. 6. Typical images for normal/drug-pretreated/motile cells and
medium value differences of selected important features for cell
migration direction/speed prediction. (a-c) Typical images for
normal/drug-pretreated/motile cells. (a) Normal cells was not too fat
and CenterShift was not so obvious. (b) Drug-pretreated cells were fat,
flat and their mitochondria were more filamentous. (c) CenterShift
values for motile cells were often quite large and their mitochondria
were more fragmented. (scale bar: 10 pum). (d) Median speed for
motile cells is faster than normal ones while median speed for drug-
pretreated cells is slower than normal ones. (e-g) Medium value
differences of selected important features for cell migration
direction/speed prediction. The unit is pixel per second. (e) Medium
CenterShift value for drug cells was below the one for normal cells
while medium CenterShift value for motile cells was above the one for
normal cells. (f) Medium MaxWidth value for drug cells was below the
one for normal cells while medium MaxWidth value for motile cells
the (8)

TotalPerimeterHalfRatio value for drug cells was below the one for

was above one for normal cells. Medium
normal cells while medium TotalAreaHalfRatio value for motile cells
was above the one for normal cells. “***” means significance level is

smaller than 0.001.

Conclusions

Due to limitations of conventional marker-based approaches
to identify motile cells, we aimed to establish a direct link
migration. We
focused on mitochondrial morphology because studies have

between morphological features and cell

shown that mitochondria influence cell migration. Although
mitochondrial fragmentation reported to be
associated with migratory behavior in different breast cancer
cell Iineszs,

has been

we found it has a weak correlation with the fast-

moving and slow-moving SUM159 triple negative breast
cancer cells. Furthermore, another study suggests a link

This journal is © The Royal Society of Chemistry 20xx
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between mitochondria distribution and cell migration, yet the
prediction power (53.4% accuracy) is too low to be reliable®>.
To improve upon this, our method extracted 61 morphological
features of both mitochondria and the whole cell and
correlated these features with migration at an accuracy of
72.0% max, 51.6% min, 54.7% mean, and 53.9% median.
Although the accuracy is improved, this result suggests that
the mechanisms underlying cell migration are complex and
highlights limitations of conventional hypothesis-driven studies
using only one parameter.

To address limitations of using single features, we applied
cutting-edge Random Decision Forest (RDF) and Artificial
Neural Network (ANN) models for prediction. To generate a
large database for training models, we used our single-cell
microfluidic migration chip17 to track hundreds of cells on a
chip. Using a database of 1,358 SUM159 cancer cells, we
determined that the comprehensive computer vision method
is significantly better than the conventional single feature-
based prediction. To optimize the RDF model, we swept the
number of trees and found that 500 trees are enough for
prediction. Optimization of ANN was more complicated, as we
had to remove redundant and irrelevant features as well as
determine the numbers of layers and hidden nodes. We found
that removing around 28 features and building a geometry
using a 4-layer neural network (2 layers with hidden nodes, 21
hidden nodes in the first layer and 7 hidden nodes in the
second layer) achieves the highest prediction power. Using the
ANN model, we achieved over 99% correct prediction for
movement direction and 91% for speed, while the RDF model
is slightly less accurate (67% for speed).

In addition to prediction, we used the RDF model and
reduced the features in the ANN model to pinpoint top-ranked
key features important for cell migration. Some of these key
features are known to relate to cell polarization (such as
CenterShift), but we also identified novel features (such as
RedGreenDist and CenterThickness) that correlated with cell
migration. The identification of novel features highlights the
limitations of current methods, and potentially advances our
understanding about mechanisms involved in cell migration.
To validate that the identified features are indeed critical for
cell migration, we performed migration experiments using
pharmaceutically pre-treated cells (expected to have lower
speed), and highly migratory cells from our microfluidic device
(expected to have higher speed)27. When comparing these
experimental cell populations with wild-type cancer cells, we
found the same associations between morphological features
(CenterShift, MaxWidth, and TotalAreaHalfRatio) and cell
speed, further supporting the importance of our discovered
features in cell movement.

In this study, we established a method to predict cell
movement by morphological features using computer vision
and machine learning, achieving unprecedented prediction
power for cell movement. This unbiased method discovers
both known and novel features critical for the cell migration
process. The features identified here can aid in our
understanding of cancer cell migration, and lead to new
approaches for identifying metastatic cancer cells. Although

This journal is © The Royal Society of Chemistry 20xx

the current study focuses on one breast cancer cell line on a
2D substrate, the strong prediction power of the
morphological markers suggests broader applications for this
method. In the future, this method can be used to explore
other cancer types, cell movement in a 3D environment, and
other cell behaviors, such as metabolism and cell-cell
interaction.
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a) Textual highlights:

Cell migratory direction and speed are predicted based on morphological features using computer
vision and machine learning algorithms.

b) Graphic highlights:
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