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proteochemometrics to molecular docking 
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Proteochemometric (PCM) methods, which use descriptors of both the interacting species, i.e. drug and the target, are 

being successfully employed for the prediction of drug-target interactions (DTI). However, unavailability of non-interacting 

dataset and determining the applicability domain (AD) of model are main concern in PCM modeling. In the present study, 

traditional PCM modeling was improved by devising novel methodologies for reliable negative dataset generation and 

fingerprint based AD analysis. In addition, various types of descriptors and classifiers were evaluated for their 

performance. The Random Forest and Support Vector Machine models outperformed the other classifiers (accuracies 

>98% and >89% for 10-fold cross validation and external validation, respectively). The type of protein descriptors was 

having negligible effect on the developed models, encouraging the use of sequence-based descriptors over the structure-

based descriptors. To establish the practical utility of built models, targets were predicted for approved anticancer drugs 

of natural origin. The molecular recognition interactions between the predicted drug-target pair were quantified with the 

help of reverse molecular docking approach. Majority of predicted targets are known for the anticancer therapy. These 

results thus correlate well with anticancer potential of the selected drugs. Interestingly, out of the predicted DTIs, thirty 

were found to be reported in ChEMBL database, further validating the adopted methodology. The outcomes of this study 

suggest that proposed approach, involving use of the improved PCM methodology and molecular docking, can be 

successfully employed to elucidate the intricate mode of action for drug molecules as well as repositioning them for new 

therapeutic applications. 

Introduction 

Polypharmacology is the phenomenon exhibited by drugs in 

which it binds to several macromolecular targets in complex 

biological system to exhibit the phenotypic effect.1 Thus, 

identification of these interactions can help unfolding actual 

mechanism behind proposed therapeutic activity and side 

effects. It can also pave the way for drug repurposing. 

Therefore, determining complete interaction profile of 

pharmaceutical candidate against molecular targets is of prime 

importance for an efficient drug discovery. 

Experimental ways to profile small molecules interactions 

with multiple targets are costly, time-consuming and 

practically impossible on such large scale. Hence, in silico drug-

target interaction (DTI) prediction becomes a potential 

complement that provides useful information in an efficient 

way. The most straightforward approach is molecular docking 

which considers chemical interaction affinity to predict DTI. 

Though limited by speed, large-scale docking studies have 

been used to profile compounds against multiple targets.2-4 

Also, ligand-based approaches like Quantitative Structure–

Activity Relationship (QSAR) have been widely used to predict 

activities of small molecules.5 However, QSAR considers the 

interaction of single target with a group of compounds. 

Extension of QSAR for predicting activities of large group of 

compounds on large group of targets leads to the concept of 

proteochemometrics (PCMs). PCM modeling takes into 

account both drug and target information.6 It can also take full 

advantage of multiple interaction data available and therefore 

can predict possible multiple interactions of a compound. PCM 

models can handle large amount of data, as they can be 

implemented on variety of machine-learning techniques.  

PCM models have evidently been shown to outclass ligand-

based models.7, 8 PCM models were first reported for set of 

melanocortin receptors 9 and adrenergic G protein-coupled 

receptors.10 Jamel Meslamani and Didier Rognan introduced 

three-dimensional (3D) binding site kernel along with standard 

chemical similarity kernel in support vector machine (SVM) 

classifier for better prediction of DTI.11 The Random Forest (RF) 

and SVM based models were developed by integrating the 

chemical, genomic, and pharmacological information.12 

Current advancements and applications of PCM modeling has 

been extensively reviewed elsewhere.13, 14 

Key limitation in PCM modeling is unavailability of large-

scale negative dataset. Previous studies have used unlabeled 

Page 1 of 9 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Molecular BioSystems 

2 | N. Shaikh., 2015, 00, 1-3 This journal is © The Royal Society of Chemistry 2015 

 

 

interactions as negative instances for model development. A 

rational methodology is needed for generation of negative 

instances to develop reliable predictive model. In addition, 

establishment of applicability domain (AD) of PCM models has 

not been considered in previous studies. AD analysis will be 

helpful in providing the confidence of prediction for the query 

molecule. 

In this work, PCM models were developed for predicting 

DTI. Effect of machine-learning algorithms (classifiers) and 

descriptors on DTI prediction was also analyzed. A rational 

methodology for generation for reliable negative instance has 

been proposed. These models were extensively validated using 

external dataset extracted from various other bioactivity 

databases. Furthermore, a novel fingerprint based approach 

was devised to establish the AD for developed models. To 

prove the competence of models, protein targets for nature-

derived anticancer drugs were predicted. Predicted 

interactions were further refined by molecular docking studies. 

Thus, in this work, a systematic approach for identifying drug-

target interactions is formulated. 

Material and methods 

The structural database was selected to study the effect of 

sequence-based and structure-based descriptors on the model 

development and prediction. Co-crystallized structures were 

considered as interacting pairs where proteins were regarded 

as target and ligands as an interacting drug.  

Training set 

Interaction data was retrieved from the sc-PDB (v2011).11 The 

sc-PDB is an annotated database of druggable binding sites 

gathered from the Protein Data Bank (PDB) containing 9877 

entries (ligand-target interactions) of 3034 distinct proteins 

and 5339 different ligands. Ligands were inspected and 

prepared in Discovery Studio (v2.5.5).15 Binding sites were 

annotated to UniProt accession number and complete protein 

sequences were retrieved from UniProtKB.16 Pairwise distance 

matrix was prepared for these sc-PDB entries by using 

Euclidean distances, calculated on FuzCav binding site 

fingerprints (See Descriptor calculation). AffinityPropagation 

method of scikit-learn 0.15 17 was used to cluster sc-PDB 

entries based on this pairwise distance matrix with 0.9 

dumping factor. Clusters containing more than 10 entries (207 

clusters) were retained. 

Final dataset for training was composed of 3063 sc-PDB 

complexes comprising 1473 different targets and 2040 

different ligands (See training_set.txt). Majority of training 

targets belong to Homo sapiens. Fig. 1 shows diversity across 

the clustered interactions used as training data for model 

development with respect to organism, enzyme class and 

resolution of crystalized structure. 

External Validation set 

External dataset for validation was collected from ChEMBL 

17,18 DrugBank 4.0,19 IUPHAR 20 and Therapeutic Target 

Database (TTD).21 All interactions for training targets were 

extracted from these databases. For retrieving data from 

ChEMBL, compounds with reported activities in terms of IC50, 

pIC50, Ki, pKi, Kd, pKd, EC50 and pEC50 were considered. 

Compounds with activity value equal or better than 1 μM 

against training protein targets with a confidence score of 8 or 

9 were extracted. These rules were applied to ensure the 

selection of reliable bioactivity with high confidence target 

annotations. External dataset ligands were selected with 

molecular weight in-between of 140-800 Da. Tanimoto 

similarity with respective training ligands was kept less than 

0.8. Finally, 91,566 non-redundant interaction covering 593 

training targets and 72,504 new ligands were retrieved from 

these databases (Fig. S1). 

 

 
Fig. 1 Diversity analysis of the training set with respect to organism (A, B), enzyme classes (C) and resolution of crystal structure (D) 
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Negative sets 

Target-ligand complexes from sc-PDB were considered as 

positive instances. Negative instances are also required to 

train supervised machine-learning model. Due to the 

unavailability of large-scale non-interacting pairs, a 

rationalized methodology was devised to generate reliable 

negative instances. Clean drug-like molecules at reference pH 

7 were retrieved from ZINC database 22 for decoy set 

preparation. For each cluster of training targets, decoy ligands 

were selected to generate reliable negative instances as 

follows (Fig. 2): 

1. All active ligands for each member of cluster target were 

retrieved from training and external test set. 

2. Decoy ligands were selected from ZINC dataset if they 

are: 

a. Structurally dissimilar to any of the active ligands 

(Tanimoto similarity less than 0.2) 

b. Similar to active ligands with respect to five 

physicochemical descriptors viz. molecular weight, 

number of rotational bonds, total hydrogen bond 

donors, total hydrogen bond acceptors and the 

octanol–water partition coefficient (Euclidean 

distance less than 0.2) to remove artificial 

enrichment. 

c. Structurally dissimilar to other selected decoys 

(Tanimoto similarity less than 0.7) to ensure diversity 

in selection. 

3. These decoys were then randomly paired with cluster 

targets to generate unlabeled instance for training and 

external test set. 

4. For further refinement of training negative instances, 

weighted SVM classifier was trained with true pairs as 

positive instances (more weight) and unlabeled as 

negative instances. 

5. Then this classifier was used to classify unlabeled 

instances. 

6. Unlabeled instances, which were classified as positive i.e. 

false positives, were discarded. 

7. New SVM model was then trained with positive and 

remaining unlabeled as negative instances. 

8. Step (5), (6) and (7) were repeated until none of the 

unlabeled instance was predicted as positive. 

Circular fingerprint (Morgan) was used to calculate 

structural similarity which was found to perform better in 

decoy generation methodology.23 Physicochemically similar 

decoys were selected to make the dataset challenging and to 

remove artificial enrichment caused by strict topological 

dissimilarity cutoff. Decoy selection methodologies based on 

structural fingerprint and physiochemical properties have been 

used in previous studies.23-25 The main problem associated 

with computationally generated negative set is the false 

decoys i.e. unknown positive/active instances in decoys. 

Activity of false decoy molecules can be attributed to the 

presence of active scaffolds or ligand binding warheads.23 

Simply selecting topologically different molecules as 

negative instance might not be sufficient to remove false 

decoys, therefore a machine learning based approach has 

been used to further refine decoy set.26 False decoys were 

iteratively removed by applying series of weighted SVM 

classifier (step 4-8). Higher weight (10:1) was applied on 

positive instances so that any decoy close to ligand can be 

removed. SVM models was trained with Morgan circular 

fingerprint as a descriptors, hence any decoys containing 

molecular fragment signature similar to that of active ligand 

will be predicted as active and removed from the decoy list. By 

virtue of this methodology, false decoys were identified and 

removed from decoy set to make reliable negative dataset. As 

a result, 11,796 and 182,505 reliable negative instances were 

generated for training set and external validation set, 

respectively (Fig. S1). 

Morgan fingerprints (See Descriptor calculation), Tanimoto 

chemical similarity and physicochemical descriptors were 

calculated for each active and decoy ligands using RDKit 

2015.03.1, a python toolkit (http://www.rdkit.org/). Euclidean 

distances between physicochemical descriptors of active and 

decoys were calculated in scikit-learn. SVM models were also 

developed in scikit-learn with RBF kernel, with two set of 

descriptors. 

 

Fig. 2 Methodology for negative instance generation 
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Descriptor calculation 

Selection of descriptors was based on literature review. Mainly 

two set of protein descriptors were selected for study viz. 

sequence-based and structure-based descriptors to analyze 

their effect on the predictive ability. Total 1080 protein 

sequence descriptors were calculated using PROFEAT 

webserver.27 Whereas, 3D structural descriptor of the binding 

site as implemented in FuzCav were used.28 For each binding 

site, counts of all possible Pharmacophoric triplets within 

definite distance ranges between Cα carbon atoms were 

represented in the form of 4834 bit fingerprint. Only Morgan 

fingerprints were used as ligand descriptors as they were 

consistently found suitable in previous studies. These circular 

topological fingerprints are chemically interpretable and 

capture a large amount of information.29 These are 

constructed by recording substructures around each non-

hydrogen atom. The substructures are limited by a radius 

defined by a certain number of covalent bonds. Fingerprints 

were calculated in RDKit (http://www.rdkit.org/) with radius 2 

and hashed to a 1024-bit string. All descriptors were scaled 

between zero and one with the help of MinMaxScaler method 

in scikit-learn 0.15.17 Descriptors were selected based on 

feature_importances method as implemented in RF Classifier 

(Table S1). 

Model development 

Various types of classifier were tested against two set 

descriptors (discussed earlier) used in this study. SVM,30 RF,31 

Naive Bayes 32 and k-Nearest Neighbor classifiers were used 

for model development as implemented in scikit-learn 0.15 for 

development of model.17 Table 1 enlists types of models 

developed by their combinations of descriptors and classifiers 

and their abbreviation, which will be followed in this paper. 

For SVM classifier values of C and gamma were optimized by 

grid search as 10 and 0.001 respectively. Radial basis function 

was used as kernel for SVM classifier. The number of trees was 

kept 100 for RF classifier. Remaining parameters were kept as 

default. Number of neighbors were set to 1, 3 and 5 for k-

Nearest Neighbors classifiers. Distance based weight was used 

so that closer neighbors of a query point will have a greater 

influence. 

Table 1 List of models developed and their abbreviations 

Classifier Target Descriptors 

Structure based Sequence based 

RF 3d-rf 2d-rf 

SVM 3d-svm 2d-svm 

Naive Bayes 3d-nb 2d-nb 

k-Nearest Neighbors (k=1) 3d-knn1 2d-knn1 

k-Nearest Neighbors (k=3) 3d-knn3 2d-knn3 

k-Nearest Neighbors (k=5) 3d-knn5 2d-knn5 

 

 

 

Model validation 

Models were extensively validated by 10-fold cross validation 

and independent external validation. Following parameters 

were used for assessment of the prediction quality of models. 
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Where TP, FP, TN and FN represents true positive, false 

positive, true negative and false negative respectively. MCC 

denotes Matthews Correlation Coefficient. Recall and 

sensitivity are used to evaluate correct identification of 

positive and negative instances respectively. F1-score, the 

harmonic mean of recall and precision (positive predictive 

value) was used to measure the prediction accuracy. MCC 

measures the balanced prediction of binary classification 

models.33, 34 Beside these parameters, Receiver Operating 

Characteristic Area Under the Curve (ROC_auc) score was also 

used as implemented in scikit-learn to illustrate the prediction 

performance.17 

Molecular docking 

To confirm and quantify the interaction of drug molecules to 

predicted target with respect to chemical interaction affinity, 

large-scale molecular docking studies were performed in 

Autodock Vina.35 All 3063 binding sites and their respective 

ligands were prepared in pdbqt format. In contrast to 

conventional grid preparation method, the surface of ligand 

was considered instead of center of ligand. Grid was prepared 

by forming a 3D box around native ligand whose surfaces were 

6.5 Å apart from edge of ligand in each direction. These ligands 

were redocked in respective binding sites for the purpose of 

comparison. Root Mean Square Deviation (RMSD) for co-

crystal and redocked poses was calculated with python script. 

Average RMSD for best redock pose was found to be 1.48 Å, 

which validates the docking protocol. These results are 

comparatively better than previously reported high 

throughput docking studies.36, 37 Furthermore redock RMSD for 

individual enzyme families and non-enzymes were also 

investigated (Table S2, Table S3). Average RMSD for each class 

was well within 1.7 Å. In addition, scores for co-crystal poses 

were also calculated by Autodock Vina for comparison. Python 

scripts were written to automate the large-scale docking and 

analysis of result. 

Results and discussion 
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Model development and validation 

Twelve models were developed by the combination of 

types of descriptors and classifiers. External validation set, 

comprises of 91,566 positive and 182,505 negative instances 

was employed for robust validation of models. All developed 

models were showing good accuracy i.e. more than 91% for 

10-fold cross validation and more than 87% for external 

validation (Table 2). Best and nearly similar results were 

obtained by RF and SVM models with respect to ROC_auc 

score, accuracy and MCC (Fig. 3A1 and 3B1) irrespective of 

type of descriptors. However, Fig. 3A2 and 3B2 is suggesting 

that RF models are having slight advantage due to more 

balanced ratio of recall and specificity. Next best results were 

obtained by Naïve Bayes classifiers. Increasing the number of 

neighbor for k-Nearest Neighbor resulted in decrease in recall.  

SVM and RF models were further analyzed for analogue 

biasness i.e. influence of prevalence of certain chemotypes in 

collected dataset.38 New external dataset was developed by 

clustering initial external dataset on the basis of Murcko 

Scaffold.39 Only one randomly selected representative of each 

cluster was used in new dataset. The new external dataset was 

composed of 41,161 positive and 108,858 negative instances. 

Interestingly, it was found that predictive performance for new 

external dataset was only insignificantly reduced as compared 

to initial external dataset prediction (Table S4). These results 

suggest that developed models are devoid of analogue 

biasness. 

 

Fig. 3 Statistical parameters for 10-fold cross validation (A1, A2) and external validation (B1, B2) 

Table 2 Statistical parameters for 10-fold cross validation and external validation 

Dataset Models ROC_auc Recall Specificity Precision Accuracy f1_score MCC 

10-fold Cross Validation 3d-svm 0.96 0.92 1.00 0.99 0.98 0.96 0.95 

2d-svm 0.94 0.89 1.00 0.99 0.98 0.94 0.92 

3d-rf 0.96 0.93 1.00 0.99 0.98 0.96 0.95 

2d-rf 0.97 0.94 1.00 0.98 0.98 0.96 0.95 

3d-nb 0.92 0.90 0.94 0.79 0.93 0.84 0.80 

2d-nb 0.90 0.87 0.92 0.74 0.91 0.80 0.75 

3d-knn5 0.94 0.88 1.00 0.99 0.97 0.93 0.92 

2d-knn5 0.93 0.86 1.00 0.99 0.97 0.92 0.91 

3d-knn3 0.95 0.90 1.00 0.99 0.98 0.94 0.93 

2d-knn3 0.94 0.87 1.00 0.99 0.97 0.93 0.91 

3d-knn1 0.96 0.92 1.00 0.98 0.98 0.95 0.94 

2d-knn1 0.94 0.89 0.99 0.98 0.97 0.93 0.92 

External Validation 3d-svm 0.91 0.91 0.91 0.83 0.91 0.87 0.80 

2d-svm 0.91 0.87 0.94 0.88 0.92 0.88 0.82 

3d-rf 0.91 0.91 0.91 0.83 0.91 0.87 0.80 

2d-rf 0.90 0.93 0.88 0.79 0.89 0.85 0.78 

3d-nb 0.89 0.89 0.88 0.79 0.88 0.84 0.75 

2d-nb 0.87 0.86 0.88 0.78 0.88 0.82 0.73 

3d-knn5 0.82 0.66 0.98 0.93 0.87 0.77 0.71 

2d-knn5 0.82 0.65 0.98 0.95 0.87 0.77 0.71 

3d-knn3 0.83 0.69 0.97 0.93 0.88 0.79 0.72 

2d-knn3 0.83 0.68 0.98 0.94 0.88 0.79 0.73 

3d-knn1 0.85 0.74 0.96 0.90 0.89 0.81 0.74 

2d-knn1 0.84 0.71 0.97 0.92 0.88 0.80 0.74 
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Applicability domain analysis 

Ideally, in order to have practical application, a prediction 

model should be accompanied with analysis of AD. As the 

methodology for AD analysis of fingerprint-based model is not 

well defined, a novel approach has been devised for 

determining applicability domain for the developed model. AD 

analysis was performed for better performing RF models. RF is 

an ensemble of decision trees, which uses the presence or 

absence of structural features in the training set compounds to 

predict the category of a test compound. Therefore, it can be 

inferred that RF model predicts the activity based on bit 

combinations present in the training set compounds. The 

absence of such bit combinations in the query molecule will 

not lead to reliable prediction by the developed model. Thus, it 

can be hypothesized that presence of training set bit-pairs in 

the query molecule can be used as a measure of AD analysis. 

To test this hypothesis, external set was evaluated for the 

shared bit combinations. For this purpose, bit-pairs pool were 

generated by combinatorial pairing of important bit features 

for each training compound (important bit features were 

previously identified by RF; See Descriptor calculation). For 

each external set molecule, combinatorial bit-pairs were 

generated and number of shared bit pairs with the generated 

pool was identified. External set was then categorized with 

respect of number of common bit pairs (bin size = 25). Each 

category was subjected to predictions using the developed RF 

model and then recall was calculated. The Fig. 4 and Table S5 

shows count of external set molecule and recall against 

number of common bit pairs. It can be clearly concluded that 

the molecules with lower number of common bit pairs are 

poorly predicted thus validating hypothesis. 

The AD analysis indicates that number of common bit pairs 

can be efficiently used to estimate the confidence of 

prediction by the model. PCM models cover wide variety of 

chemical space, thus bound to have large applicability domain 

as can be seen in Fig. 4. However, a query molecule should 

contain at least a few of the bit-pairs used in training the 

models. The number of common pair is proportional to the 

recall. For a reliable prediction (>70% recall), at least 75 

common bit-pairs are needed. 

Target prediction for nature-derived anticancer drugs 

To demonstrate the applicability of the models, 137 anticancer 

drugs derived from natural resources 40 were subjected to 

target prediction by the RF models. The reason behind 

selecting this dataset was the observation that the mode of 

action of both natural product based drugs and anticancer 

drugs is poorly understood and therefore have scope for 

identification of novel therapeutic targets. Drugs having more 

than 800 Da molecular weight were discarded, as it was the 

maximum limit for training set molecules. Drugs with less than 

75 common bit-pairs were also removed to make the dataset 

within the AD of model prediction. Cutoff of prediction 

probability was set to be 0.65 for each RF model. Limit for 

average prediction probability (APP) was set to be 0.70. Top 25 

predictions for each drug by each model were retrieved and 

redundancy was removed. These predicted targets were 

further filtered for therapeutic applications. Only those 

targets, which have been reported in TTD of OMIM database 

(http://www.omim.org/), were considered for further studies. 

These predictions were additionally validated by molecular 

docking studies in Autodock Vina (Fig. 5). These drugs were 

docked into the binding cavities of predicted targets. Native 

ligands of these targets were also docked into respective 

cavities for comparison. Only those predictions were 

considered which were having comparable docking score with 

the native ligand (i.e. docking score of predicted docking less 

than -8.0 kcal/mol or difference with native ligand docking 

score not more than 2 unit). 

Final set of prediction was composed of 264 complexes for 

54 drug molecules (See Case_Study_results.txt). Following 

cases were used to exemplify the usefulness of proposed 

methodology for target prediction. Details of docking poses 

can be found in supplementary information. (Fig. S2-S3) 
Predicting known targets. ChEMBL database was searched for 

targets with smiles query for drug molecules. Total 35 predicted 

interactions were already reported in ChEMBL, out of which 30 

were unseen by the model (See ChEMBL_match.txt). These results 

further validate the PCM models and target prediction 

methodology. For example, out of 11 predicted targets for 

Sorafenib, seven targets were found in ChEMBL to have binding 

affinity with Sorafenib. Remarkably, three of newly predicted 

targets were known to have anticancer activity (Fig. 6). 

                     Fig. 4 Recall and count for external dataset based on number of common bit-pairs                                     Fig. 5 Methodology of target prediction for case study
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Predictions supporting anticancer activity. Nearly half of the 

predicted interactions relate drugs to targets, which are 

involved in cancers. These newly predicted targets may help in 

understanding the intricate mechanism of action of anticancer 

drug molecules. For example, Table 3 shows the predicted 

targets for Nadrolone phenylpropionate. 

All predicted targets for Nadrolone phenylpropionate 

belongs to Homo sapiens and have been reported to play an 

important role in cancer pathogenesis and therapeutics.41-43 X-

ray crystal structure of QR2 with resveratrol and inhibitory 

activity of steroidal pyrazolines against it  advises the activity 

of compounds with steroidal scaffold against QR2.44 All these 

findings suggest that these predicted targets may be involved 

in anticancer activity of Nadrolone phenylpropionate. Docking 

poses for these interactions can be found in supplement 

information (Fig. S2). 

Predictions supporting other activities. Many of the 

predicted targets were involved in diseases other than cancer. 

These predictions provide opportunity to repurpose drug 

molecules for other therapeutic activity. For example, Table 4 

shows predicted targets for Colchicine and Demecolcine. 

PDE4D, Cruzipain, Dipeptidyl peptidase-4 were predicted for 

both Colchicine and its derivative. PDE4B and PDE4D are 

involved in psoriasis and other skin related conditions. This 

prediction could be linked to anti-psoriatic activity of 

Colchicine. Fig. 7 represents docking poses for Demecolcine in 

PDE32 and PDE43. Aromatic ring with alkoxy groups of 

Demecolcine are greatly overlapping with that of native 

ligands in respective esterases. π-π stacking interaction with 

phenylalanine and hydrogen bonding with glutamine residue 

are also present in docked poses. In addition, Demecolcine is 

forming salt bridge with adjacent aspartate residue that was 

not present in case of native ligand. 

Colchicine and Demecolcine were also predicted to act 

against malarial targets. Previously, Colchicine has been found 

to be active against Plasmodium falciparum, though not 

preferred as an anti-malarial therapy due to its cytotoxicity.45 

These predictions suggest that antimalarial activity of 

Colchicine and their derivatives can also be attributed to 

targets other than tubulin, which include Cruzipain and Enoyl 

reductase. Therefore, designing Colchicine derivatives 

selective for Cruzipain and Enoyl reductase could be beneficial 

for non-toxic antimalarial activity. Interaction with 

Glucosylceramidase can explain the activity of Colchicine 

against metabolic disorder. Similarly, interaction with Beta-

secretase 1 and Dipeptidyl peptidase are pointing out towards 

its probable application for Alzheimer’s disease and diabetes 

mellitus.46 

As an interesting observation, all anthracyclines have been 

predicted with good APP and docking score against Aldose 

Reductase 1B1 (Table 5, Fig. S3). AKR1B1 is the mediator of 

inflammatory signals induced by growth factors, cytokines, 

chemokines, carcinogens etc.47 These interactions might be 

playing a crucial role in anticancer activity of anthracyclines. It 

also suggests other therapeutic application for anthracyclines 

associated with aldose reductase such as rheumatoid arthritis, 

diabetic nephropathy etc 

 

Fig. 6 Predicted anticancer targets for Sorafenib 

Table 3 Predicted targets for Nadrolone phenylpropionate 

Predicted target APP Dock Score 

Hepatocyte growth factor receptor 0.92 -9.3 

Kinesin-like protein KIF11 0.92 -9.0 

Focal adhesion kinase 1 0.89 -8.6 

Quinone reductase 2 0.89 -11.4 

Abelson tyrosine-protein kinase 2 0.87 -9.5 

Dock score in kcal/mol 
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Table 4 Predicted targets for Colchicine and Demecolcine 

Generic Name APP Dock score Protein names Organism 

Colchicine 0.83 -7.0 cAMP-specific 3',5'-cyclic phosphodiesterase 4D (PDE43) Homo sapiens  

0.77 -5.2 Cruzipain Trypanosoma cruzi 

0.79 -6.4 Dipeptidyl peptidase 4 Homo sapiens  

0.78 -7.9 Glucosylceramidase Homo sapiens  

Demecolcine 0.79 -7.4 Beta-secretase 1 Homo sapiens  

0.76 -7.8 cAMP-specific 3',5'-cyclic phosphodiesterase 4B (PDE32) Homo sapiens  

0.79 -8.0 cAMP-specific 3',5'-cyclic phosphodiesterase 4D (PDE43) Homo sapiens  

0.74 -5.1 Cruzipain Trypanosoma cruzi 

0.78 -6.3 Dipeptidyl peptidase 4 Homo sapiens  

0.76 -6.8 Enoyl-ACP reductase  Plasmodium falciparum 

0.72 -6.1 Quinone reductase 2 Homo sapiens  

Dock score in kcal/mol 

 
Fig. 7 Docking poses for Demecolcine (A1) and native ligands (A2) in PDE43; 

Demecolcine (B1) and native ligands (B2) in PDE32 

Table 5 Anthracyclines against with aldose reductase 1B1 

Generic Name APP Drug score 

Amrubicin 0.92 -9.3 

Daunorubicin 0.83 -9.6 

Doxorubicin 0.83 -8.5 

Epirubicin 0.83 -9.9 

Idarubicin 0.85 -9.8 

Dock score in kcal/mol 

Conclusions 

In this work, an improved PCM based approach is reported in 

order to predict the interaction profile of given chemical 

moiety against various therapeutic targets. A foremost 

problem in PCM modeling is the unavailability of non-

interacting dataset, which is required as negative instance for 

training machine-learning model. Previous studies have 

employed unknown interactions as negative instances, which 

is not a correct representation of non-interacting dataset. 

Therefore, to develop reliable model, a novel approach has 

been devised in this work for selecting non-interacting pairs. 

Another significant development of this work is the 

establishment of AD based on Morgan fingerprints, which are 

6known to capture large amount of chemical information. The 

presence of at least 75 common fingerprint bit pairs in the 

query molecule and training set increases the confidence on 

the model predictions. The RF-based models marginally 

outperformed the SVM-based models with respect to 

performance and speed. The use of structure-based 

descriptors was not having any significant advantage over 

sequence-based descriptors. These results encourage the use 

of sequence-based descriptors for model development, as it 

will lead to increase the coverage of dataset. Developed 

models deliver predictions for over 1473 protein targets. 

Though it does not cover the entire human proteome, this is a 

large number of protein targets.  

To unveil the practical application of the built models, 

target prediction was carried out for a dataset of approved 

anticancer drugs derived from natural resources. Large-scale 

molecular docking studies were performed to further quantify 

and delineate the actual molecular recognition interaction 

between drugs and predicted targets. From the case studies, it 

can be concluded that many predicted targets were relevant to 

the known anticancer and other activity of drug molecules. 

These predicted targets can provide means to explore actual 

mechanism of anticancer activity of drug molecules. Many of 

the known DTI that were unseen by the models were also 

correctly identified, further validating the prediction capability 

of developed models. Novel identified targets can be explored 

to extend the activity profile of drug molecules to new 
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therapeutic classes, thus enabling repurposing. In the wider 

perspective, this methodology indeed provides a useful way to 

identify plausible targets for small molecules. Addressing such 

polypharmacological profile of pharmaceutical candidate will 

influence the drug discovery pipeline positively. 
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