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nation with polymer molecules.12,13 In general, the coating of

colloidal particles with polymers is a technique frequently used

to stabilise and/or functionalise their surfaces. Such polymeric

coatings can also be used to permanently crosslink the individual

colloids that form a self-assembled cluster, stabilising the overall

structure and preventing their disaggregation even when the sys-

tem is no longer under the proper self-assembly conditions. In the

case of magnetic colloids, their self-assembled head-to-tail chains

have been made permanent by polymer crosslinking since more

than a decade.14 The result of this crosslinking is a semiflexible

chain with a polymer-like supracolloidal structure, with the mag-

netic colloids playing the role of polymer monomers. The control

of the properties of these systems, known as magnetic filaments,

has experienced a great progress in recent years thanks to the

enhancement of crosslinking techniques.15–18

Recently, we proposed the use of magnetic filaments in order to

create a magnetoresponsive thin film surface.19 The basic idea of

our approach is to replace, with magnetic filaments, the densely

end-grafted polymer chains that form a polymer brush.20,21 In

general, polymer brushes are widely used for the creation of

stimuli-responsive surfaces3,22 but, except for few compounds at

very extreme conditions, polymer molecules are unable to pro-

vide significant responses to external magnetic fields. The con-

trol of the properties of a surface by means of magnetic fields

is particularly interesting in soft matter systems, where other

parameters—like pH or electric fields—have strong and complex

interactions with most substances of interest, making the con-

trol of their effects more difficult. For these reasons, efforts have

been recently made to create magnetoresponsive polymer brush

structures by embedding magnetic colloids within the polymer

array.23,24 On the other hand, magnetic filaments with one end

grafted to a surface, either individually or in sparse arrays, have

been largely studied as micro- and nanofluidic actuators, pumpers

or propellers.25–30 In our case, we analyse the result of increas-

ing the grafting density of tethered magnetic filaments to form

a polymer brush-like structure at a supracolloidal scale. In a

preliminary study,19 we showed that this system shows a signif-

icantly more pronounced structural equilibrium response to an

external field than former systems of polyelectrolyte brushes with

extended electric dipoles,31 or than the aforementioned polymer

brushes with embedded magnetic colloids.23,24 Our preliminary

results also indicated that the origin of such strong structural re-

sponse should be attributed to the particular self-assembly prop-

erties of the crosslinked colloids placed in the highly constrained

environment of the brush structure.

Here, we aim to pinpoint the intrinsic mechanisms responsi-

ble for overall equilibrium structural properties of magnetic fila-

ment brushes. This understanding will provide the opportunity

to control the thickness and the local density of the brush—the

two most important features of a coating—with external stimuli.

In contrast to our previous work, in the present study we focus

on the influence of temperature and external field on the self-

assembly of magnetic beads from neighbouring filaments. Self-

assembly proves to be the key to manipulate the responses of the

filament brushes, because these are the topology and the sizes of

the formed clusters who define the local magnetic properties and

reflect the balance between the entropy and the dipolar correla-

tions.

2 Model and Methods

2.1 Magnetic Filament Brush Model

In our polymer brush-like system of supracolloidal magnetic fil-

aments, we consider the latter to be formed by spherical single-

domain ferromagnetic colloids that keep the orientation of their

magnetic moments—described as simple point dipoles—fixed in

one of the directions of the magnetic easy axis of the parti-

cle. These particles are considered to have high enough in-

ternal anisotropy and large enough volume to be be above the

superparamagnetic regime. The polymer crosslinkers that keep

the chain-like structure of these filaments are assumed to be at-

tached to the surface of the colloids at the projection points of

such easy axes. This combination corresponds to experimental

magnetic filaments created by crosslinking single-domain colloids

of strong ferromagnetic materials after their self-assembly into

straight chains, with a head-to-tail arrangement of their magnetic

moments. Therefore, the equilibrium structures of these filaments

will tend to keep a nearly head-to-tail orientation of the dipoles

between close neighbours along the chain. In order to model

this type of magnetic filaments, we recently introduced a coarse-

grained, bead-spring model that takes into account the coupling

between the orientation of the magnetic dipoles and the chain

backbone, led by the crosslinkers.32,33 In this model, the mag-

netic colloids are represented as soft spherical beads, with a char-

acteristic diameter d. The soft-core steric repulsion between such

spheres is given by a WCA potential34

UWCA(r) =

{

ULJ(r)−ULJ(rcut), r < rcut

0, r ≥ rcut

, (1)

where r is the centre-to-centre distance between the spheres,

ULJ(r) is the conventional Lennard-Jones potential,

ULJ(r) = 4εs[(d/r)12 − (d/r)6], (2)

and rcut = 2
1/6d is a shift that makes the potential purely repul-

sive. In addition, each soft sphere carries a point magnetic dipole

at its centre, ~µ, which leads to a conventional magnetic dipole-

dipole interaction between the beads:

Udd(i, j) =
~µi ·~µ j

r3
− 3(~µi ·~r)

(

~µ j ·~r
)

r5
, (3)
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(a)

(b)

Fig. 1 (a) Sketch of the magnetic filament model. Magnetic beads are

represented as two-colour spheres, indicating the orientation of the

dipoles. Crosslinkers are represented as springs. (b) Example of a

magnetic filament brush used as an initial configuration in our computer

simulations, corresponding to a grafting density of σ = 0.111 of filaments

formed by N = 10 beads.

where ~r =~ri −~r j is the centre-to-centre displacement vector be-

tween the beads i and j, which have dipolar moments ~µi and ~µ j

respectively. If a uniform external magnetic field, ~H, is applied

to the system, each magnetic dipole ~µi will experience an inter-

action that tends to align it with the field. The energy of such

dipole-field interaction has the form:

UH(i) =−~µi · ~H. (4)

In order to mimic the coupling between the orientation of the

dipoles and the chain backbone introduced by the crosslinkers,

we use the following attractive potential between any pair of

crosslinked neighbours, which depends on both the centre-to-

centre displacement vector between them, ~r, and on the relative

orientation of their dipoles:

US(i, j) =
1

2
KS

(

~r− (µ̂i + µ̂ j)
d

2

)2

, (5)

where µ̂i =~µi/ |~µi| and µ̂ j =~µ j/
∣

∣~µ j

∣

∣ are the unitary vectors paral-

lel to each associated dipole moment. Expression (5) corresponds

essentially to a harmonic spring potential that connects the sur-

faces of a pair of bonded particles at the projection points of the

dipole head of one of them and the dipole tail of the other. The

strength of the attraction is defined by the prefactor KS. The com-

bination of potentials (1) and (5) provides the actual bonding in-

teraction between the neighbouring beads in the filament. Figure

1a shows a sketch of the described magnetic filament model.

Finally, in order to create a polymer brush-like structure, we

arrange a relatively dense array of magnetic filaments—formed

by N identical beads—tethered by one of their ends to a flat steri-

cally repulsive surface in the XY plane. In particular, the grafting

of each filament is achieved by fixing the position of its tethered

end bead next to the surface, with the corresponding dipole per-

manently pointing perpendicular to the latter. The grafting posi-

tions are distributed in a square lattice arrangement with a sepa-

ration constant a. This gives a number grafting density—i.e., the

number of grafting points per unit of surface area—of σ=a−2. In

the initial configuration of the system, the filaments are placed

as completely straight chains perpendicular to the grafting sur-

face. Figure 1b shows an example of the initial configurations of

magnetic filament brushes used in this study. The steric repulsion

produced by the grafting surface on the filament beads is given

by a truncated shifted 9-3 Lennard-Jones potential,35 which is

obtained by applying expression (1) to

U9−3

LJ
(r) =

3
√

3

2

[

(

d

2r

)9

−
(

d

2r

)3
]

, (6)

where r is the distance between the centre of the bead and the

surface. This potential is the result of integrating a conventional

12-6 Lennard-Jones potential over an infinite plane.

2.2 Simulation and Analysis Approaches

Our characterisation of the equilibrium properties of supracol-

loidal magnetic filament brushes is based on two main meth-

ods: first, we performed extensive computer simulations with

the phenomenological model described above; second, we anal-

ysed the simulation results by means of a combination of conven-

tional parameters—in the context of studies on polymer brush

systems—and a detailed characterisation of the brush internal

structure obtained by means of graph-theory techniques.

The simulation method we used is molecular dynamics in the

canonical ensemble. In particular, we used a Langevin thermostat

in order to treat implicitly the effects of the thermal fluctuations of

the background fluid on the filament beads.36 A pseudo-infinite

brush system was mimicked by imposing lateral periodic bound-

aries. Efficient calculation of the long-range magnetic interac-

tions under these conditions is rather difficult. To address this

issue, we used the approximate dipolar-P3M method,37 in com-

bination with the dipolar Layer Correction method,38 that takes

into account the slab geometry of the system. All the simula-

tions were carried out with the ESPResSo 3.2.0 simulation pack-

age.39,40 Further details of the simulation method can be found

in our introductory work on this system.19

The analysis of simulation results for the equilibrium configu-

rations of the filament brushes was done in two different ways.

First, we calculated two traditional parameters used to charac-

terise the overall structure of polymer brush-like systems: the ver-
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tical density profile, φ(z∗), and the average height, 〈z∗〉. φ(z∗) is

simply defined as the number density distribution of the centres

of the filament beads as a function of the reduced distance to the

grafting surface, z∗ = z/d(N − 1), where d(N − 1) is the contour

length of the filaments measured in units of the bead characteris-

tic diameter. The average height is obtained as the first moment

of the density profile:

〈z∗〉= 1

d(N −1)

∫ ∞
0

φ(z) z dz
∫ ∞

0
φ(z) dz

. (7)

The second analysis approach is based on the fact that the pecu-

liar behaviour that we observed in the aforementioned collective

parameters for different values of both temperature and external

magnetic field, can be only explained by the existence of charac-

teristic arrangements of the dipolar beads within the brush. In

other words, the overall response of the filament brush to the

external control parameters is determined by the self-assembly

properties of the individual magnetic colloids under the geomet-

rical constrains imposed by three factors: their belonging to a

permanent chain; the presence of the neighbouring chains; the

grafting surface. In order to characterise such self-assembly prop-

erties, we used an analysis approach based on graph theory.41 In

this approach, which we introduced in our preliminary work on

magnetic filament brushes,19 we study the arrangements of the

beads by introducing the concept of generic connections between

them. In particular, we consider two beads to be connected if

their centre-to-centre distance does not exceed a certain thresh-

old. Once all the connections in the system have been determined

according to such simple criterium, the brush structure can be

represented as a graph in which the dipolar beads are the vertices

and the connections between them are the edges. A statistical

analysis of the brush structure can be then performed by means

of different graph parameters and their distributions for different

conditions. The parameters analysed here are the distribution of

edges, the vertex degree, the cluster size and the betweenness

centrality. The vertex degree, δ , is the number of edges of a given

vertex. To define the cluster size and the centrality, it is required

to introduce the concepts of path, cluster and shortest path. A

path between two given vertices, u and w, is any trajectory along

the edges of the graph, puw, that connects such vertices, either

directly or by crossing any number of other vertices. A cluster is

a maximal set of vertices for which there exists at least one path

that connects any pair of them, and its size is the number of ver-

tices it has. Finally, a shortest path between vertices u and w,

ps
uw, is any path puw that crosses the minimum possible number

of intermediate vertices. According to these definitions, the be-

tweenness centrality of a given vertex v that belongs to a cluster

V is defined as

CB(v) = ∑
u,w∈V

ps
uw(v)

ps
uw

, (8)

where ps
uw is the total number of shortest paths between each pair

of vertices u and w that belong to the cluster V , and ps
uw(v) is the

number of those paths that pass through v. Therefore, CB(v) is a

measure of the importance in terms of optimal path construction

of the vertex v in the cluster.

3 Results and Discussion

For simplicity, here we measure all the physical parameters in re-

duced units, taking as reference the characteristic diameter of the

colloids, d = 1, their mass m = 1, and the prefactor of the soft-core

steric potential (1) and (2), εs = 1. The prefactor of the potential

(5) is set to Ks = 30, a value that, according to our previous stud-

ies with this model of magnetic filaments,19,32,33 provides an av-

erage distance between bonded beads—or average bond length,

〈b〉—close to the reference bead soft core diameter, 〈b〉 ∼ d = 1.

However, it is important to note that the bond length is not fixed:

since the attractive part of the bonding interaction (5) is an un-

bounded harmonic potential, the bond length experiences ther-

mal fluctuations by effect of the temperature. Therefore, its aver-

age value tends to grow as the temperature is increased.33 For the

parameters used in this study, the maximum distance between the

surfaces of two bonded beads was approximately d/2. Finally, we

have taken µ2 = (~µ ·~µ) = 5 for the squared dipole moment of the

beads. We explored the equilibrium structures of the magnetic

filament brushes for two sets of values of the control parameters.

In one case, we analysed the effects of variations in temperature

at zero field by taking a range of reduced temperatures within

T = 0.35 and T = 5. In the other case, the effect of an external

magnetic field perpendicular to the grafting surface at a reference

reduced temperature T = 1 has been studied by varying its modu-

lus from H = 0.5 to H = 4. In both cases, a single filament length

of N = 10 and two grafting densities, σ = 0.040 and σ = 0.111,

were chosen.

The set of parameters we described above can be associated

with various experimental systems. Let T = 1 correspond to 300

K. As an example, we can choose magnetite with a bulk saturation

magnetisation at this temperature equal to 450 kA/m. To reach

the value µ2 = 5 at close contact, the diameter of the nanoparticle

magnetic core should be approximately 30 nm.7 With this mag-

netic core size, the thickness of the nonmagnetic layer on the par-

ticle surface can be estimated to be on the order of 3 nm. To keep

the distance between the centres of the crosslinked nanoparticles

at approximately 50 nm, one needs the crosslinking polymers to

be at least 7 nm in length, which corresponds to approximately

20 DNA base pairs.42,43 Varying the temperature in experiment

is not directly equivalent to that in simulations, as the absolute

value of the saturation magnetisation in real ferromagnetic mate-

rials is temperature-dependent. In other words, the range of di-

mensionless temperatures chosen in our simulations is supposed

to reflect the variation of the ratio between the magnetic and ther-

4 | 1–13

Page 4 of 13Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



mal energies. Besides that, if the temperature becomes too low in

experiment, the system might undergo undesirable phase trans-

formations such as carrier liquid freezing or irreversible coagula-

tion due to the loss of colloidal stability. However, it is experimen-

tally possible to keep the suspension of magnetite nanoparticles

stable down to 150 K,44,45 which in our simulations corresponds

to a value between T = 0.35 and T = 0.75.

3.1 Effects of Temperature

It is known that the self-assembled structures of free magnetic

colloids in suspension experience diverse structural transitions

on cooling.10,11 Computer simulations have also provided indica-

tions of structural changes in isolated magnetic filaments as the

importance of the thermal fluctuations decreases in front of the

dipole-dipole interactions.32,46 In magnetic filament brushes, the

effects of the added geometrical restrictions and the crowded en-

vironment make the structural changes, which these systems may

experience as a function of the temperature, hard to anticipate.

We begin the analysis of the effects of temperature on the equi-

librium structure of the magnetic filament brush at zero field by

examining the evolution of the density profiles, φ(z∗), and the av-

erage brush height, 〈z∗〉. Figure 2 shows the results obtained for

these parameters. The density profiles (Figure 2a) evidence the

highly compact overall structure of the magnetic brush, showing

a rather abrupt decay of the density in the upper regions, as was

discussed in our previous work for the case T = 1.19 Here, we can

see that this behaviour persists for both grafting densities within

the whole range of explored temperatures, and becomes notably

more pronounced as T decreases. At low temperatures, practi-

cally all the beads remain close to the grafting surface—within a

region below 1/2 of the contour length of the filaments—whereas

the decay of the profile above such region is extremely abrupt. In-

terestingly, at low temperatures the profiles for both grafting den-

sities are very similar. As the temperature increases, the profiles

become wider and their decay gets smoother. At even higher tem-

peratures, where the dipole-dipole interactions are suppressed by

thermal fluctuations, the filament brush is expected to have a

parabolic density profile, as predicted for a non magnetic poly-

mer brush.47,48 The average brush height, shown in Figure 2b,

reveals a non trivial dependence of the filament brush thickness

on the temperature and the grafting density. At high temperature,

the plateau of the equilibrium height is determined by the graft-

ing density and, if the temperature starts decreasing, we can see

that 〈z∗〉 slowly decreases from its saturation value. At approxi-

mately T ∼ 1.5, the decrease of 〈z∗〉 with T changes significantly

for both grafting densities, making it rather steep on further cool-

ing. Importantly, as it was observed for the density profiles, in

the region T ∼ [0.5,1.5], 〈z∗〉 assumes basically the same values

for both grafting densities.

In order to understand the origin of the non trivial dependence
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Fig. 2 Density profiles (a) and average brush heights (b) for different

temperatures, grafting densities and zero external field.

of the equilibrium overall brush structure on the temperature and

the grafting density, we applied the connectivity graph analysis

described above to these simulation results. The distance cri-

terion used here to define the generic connections between the

magnetic colloids in the brush—and, with them, the connectivity

graphs that represent the brush detailed structure—takes into ac-

count two different origins of pair formation. Besides the connec-

tivity imposed by the filaments’ permanent links, in general we

can expect magnetic beads to self-assemble, forming close con-

tact pairs whose relative orientations correspond to low energies

of their dipole-dipole interaction. Due to its strongly directional

nature, the part of the two dipoles’ orientation phase space, corre-

sponding to the attractive dipole-dipole pair interaction, is rather

restricted. On the other hand, strong enough thermal fluctua-

tions may force a pair of beads to come into close contact or to
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separate regardless their relative dipole orientations. All magnet-

ically and entropically driven non permanent connections, in ad-

dition to the permanent connections led by the crosslinkers along

the filaments, can be taken into account by imposing a threshold

centre-to-centre distance between connected beads equal to the

maximum of the values max(rcut, bmax), where rcut is the cutoff dis-

tance defined for the soft core repulsion potential (1), rcut = 2
1/6d,

and bmax is the maximum bond length observed for any pair of

linked beads in the system at a given temperature. It should be

noted that at high T one finds that bmax > rcut, whereas at low T

this relationship is reversed. With this criterium, the first step in

the connectivity analysis approach is to define the graphs that rep-

resent the connections and, from them, the clusters of filaments

connected through their beads.

Figures 3 and 4 show a selection of snapshots of the brush equi-

librium configurations obtained for different temperatures and

the two sampled grafting densities. Next to each snapshot, the

corresponding connectivity graph is also shown. In both snap-

shots and graphs, different clusters are identified by distinctive

colours. For the lowest temperature, T = 0.35, and grafting den-

sity, σ = 0.040, one can see that the magnetic filament brush has

a particular structure in which the permanent chains arch, con-

necting their free ends with the grafted or nearby end beads in

neighbouring filaments. The topology of the corresponding con-

nectivity graph also seems rather clear: all the beads are grouped

into few clusters, in which the length of linear segments—i.e. seg-

ments without beads that have a degree higher than 2—is large.

In most cases, such linear segments form closed paths. Due to the

high correlation between the orientation of the dipoles and the

chain backbone of the magnetic filaments we use—particularly

strong at low T—the closed paths in the connectivity graphs in-

dicate the existence of structures that tend to minimise their net

magnetic moment, forming a nearly closed trajectory for the mag-

netic flux of their dipoles. For the higher σ , these general traits

are even more pronounced: the whole brush is connected into a

single cluster with a topology of multiple closed loops. Therefore,

the structure of the brush at this temperature is clearly deter-

mined by the self-assembly of the filaments driven by the dipole-

dipole interactions. At T = 0.75 the dipolar interaction is still very

strong, but the entropic contribution starts ushering itself with

the appearance of free chain ends, even though ring-like struc-

tures are still visible for low σ . In this T -region, one can also

observe the formation of branched structures, which is more pro-

nounced if the grafting density is high. At this point, it is useful

to distinguish between two types of cluster topologies: the linear

chains, that are formed by beads with a degree no higher than

two, and the branched structures, in which there is at least one

particle with a degree higher than two and/or the total amount

of edges is equal or larger than the total amount of beads in the

cluster. It is worth mentioning that, at T ∼ 1, the branched struc-

Fig. 3 Equilibrium configuration snapshots (left column, top view) and

connectivity graphs (right column) at different temperatures for

σ = 0.040, H = 0. Similar colours identify the same cluster in both, the

snapshot and the corresponding graph. Grey colour indicates filaments

without any non permanent connection. (a) T = 0.35. (b) T = 0.75. (c)

T = 1.5. (d) T = 2.5. (e) T = 3.75.

tures contain mainly linear segments and do not have vertices

with high degree, not even at σ = 0.111. To illustrate this, we

calculated the distribution of values of vertex degrees averaged

6 | 1–13

Page 6 of 13Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t



Fig. 4 Equilibrium configuration snapshots (left column, top view) and

connectivity graphs (right column) at different temperatures for

σ = 0.111, H = 0. Similar colours identify the same cluster in both, the

snapshot and the corresponding graph. Grey colour indicates filaments

without any non permanent connection. (a) T = 0.35. (b) T = 0.75. (c)

T = 1.5. (d) T = 2.5. (e) T = 3.75.

over all sampled configurations. Figures 5a and 5b show 3D plots

of such distributions for the two sampled grafting densities. One

can see that up to T4 = 1, the distributions are very narrow and

have a clear maximum at δ = 2. This corresponds to both the per-

manent connections between neighbours in the filaments and the

connections between free and grafted ends in linear chain struc-

tures driven by the dipole-dipole interactions. The figures also ev-

idence that, at higher temperatures, it becomes more probable to

find branched structures for both values of grafting density, as the

most frequent vertex degree tends to δ = 4, for low grafting den-

sities, and δ = 6, if the brush is denser. As mentioned above, the

directional character of the dipole-dipole interaction makes such

types of multiple junctions unlikely. Consequently, one can con-

clude that, for temperatures above T > 1, the internal structure

of the brush is mainly determined by thermal fluctuations. The

structural changeover, driven by the change of T , is also clearly

quantified by Figure 5c, where the fraction of particles in open

chains and other structures as a function of the temperature is

plotted. In this case, other structures include both branched ones

and closed unbranched loops. For both systems, there is a clear

minimum for the fraction of particles in these latter structures

around T ∼ 1. Below this temperature, the brush tends to be

formed by closed loop structures with long linear segments. The

fraction of particles in open chains is maximised at the tempera-

ture where the entropic gain of the chains’ free ends is not any-

more compensated for by the energetically favourable creation of

an additional bond between them. If T increases further, the frac-

tion of particles in branched structures begins to increase again

due to the connections induced by the random thermal fluctu-

ations. Finally, looking at the evolution with temperature of the

sizes of the different cluster types, shown in Figure 5d, it becomes

clear that, once the entropy loss associated with forming large

zero-magnetic flux clusters is no longer feasible for the system,

the cluster size reaches its minimum and then grows fast again

due to simple entanglement caused by thermal motion. This also

explains why the high temperature cluster size increase is much

more pronounced for the brush with higher density.

The graph theory analysis used here allows us to not only char-

acterise the overall structures of the clusters, but also to pinpoint

how the bead position in a filament affects its part in the self-

assembly. Here, in particular, we analyse the average between-

ness of each particle in the brush at a given position along the

filament for different temperatures, as shown in Figure 6. In

this representation, the vertical axis corresponds to the positions

along the filament, from the grafted end (in the bottom) to the

free end (in the top), whereas the values of the betweenness for

the two sampled grafting densities are shown in horizontal axes.

The different values of the temperature are represented by the

colours of the curves. As shown in our previous work,19 for an

individual chain, the average betweenness has a parabolic shape

with maximum corresponding to the chain middle point. The

higher the value of the average betweenness for a certain bead
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(a) σ = 0.040. (b) σ = 0.111.
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Fig. 5 Distributions of diverse cluster analysis parameters as a function

of the temperature, obtained for different grafting densities and zero

external field. (a), (b) Distributions of vertex degrees, δ . (c) Fraction of

beads, Pc, belonging to chain-like or to any other type of clusters. (d)

Distributions of average normalised cluster sizes, Cs, corresponding to

branched, chain-like and any type of cluster structures.

Fig. 6 Average betweenness in arbitrary units for the two sampled

grafting densities (left and right horizontal scales), obtained for the

different positions of the beads along the filaments (vertical scale). The

grafted end corresponds to the lowest position, the free end to the upper

one. The colours indicate the temperature corresponding to each curve.

position, the more active its participation in the path formation.

In this way, Figure 6 completes our understanding of the struc-

tural changeover induced by the temperature. First, at low T , the

active participation of the grafted ends in self-assembly is con-

firmed: as we can see, their betweenness is only slightly lower

than that of free ends and middle particles for both values of σ .

In general, a flat betweenness profile along the chain is the signa-

ture of loop formation. In this case, almost flat profiles are found

for σ = 0.111 and T ≤ 0.75. With growing temperature, the partic-

ipation of grafted ends drops drastically. However, for σ = 0.040

the decrease of the grafted ends’ betweenness is monotonous with

T , whereas for the denser brush a reversal is observed at T ∼ 1.5.

This reversal for σ = 0.111 is also accompanied by the shift of the

maximum betweenness to the beads closer to the grafted surface

on heating. This tendency is much less pronounced for the brush

with σ = 0.040, due to lower combinatoric probability of entan-

glement at high T . For both σ , the value of the betweenness of

the free ends is rather high. For σ = 0.111, the betweenness of

the free ends follows the reversal analogous to that of the grafted

ends. Interestingly, this reversal, albeit on smaller scale, is also

observed for free ends for the brush with σ = 0.040. The mini-

mum of the betweenness of the free ends for the latter coincides

with the maximum of particle fraction in chains, as seen in Figure

5c.

As a final conclusion, we underline that the interplay between

entropy and energy in the constrained environment of a mag-

netic filament brush not only leads to a much broader range

of temperature-induced self-assembly scenarios than that in non

crosslinked dipolar particles, but also opens one possibility to effi-

ciently tune the height and the local structure of such a brush. In
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the next Section, we explore the use of external magnetic fields

to also finely manipulate the brushes of magnetic filaments.

3.2 Effects of Normal External Magnetic Fields

Following the strategy used above, we first calculate the density

profiles and average brush heights for both grafting densities at

various values of an applied magnetic field, H, perpendicular to

the grafting surface. Figure 7 shows the results for these pa-

rameters, obtained at T = 1. The most evident conclusion from

the density profiles (Figure 7a) is that the grafting density has a

strong influence on the response of the system to the field. For

σ = 0.040, even a low field can perturb the brush and straighten

the chains, hindering the formation of non permanent connec-

tions between the beads. This results in a flat rectangular density

profile. For a denser brush, instead, the complex internal struc-

ture found at zero field at this temperature, discussed above, re-

sults to be less sensitive to the presence of the external field: only

starting from H = 3, the density profile approaches a rectangular

shape. To the same conclusion leads Figure 7b, where we plot the

average height of the magnetic filament brush as a function of H.

Here, for σ = 0.111, 〈z∗〉 grows significantly slower with an exter-

nal field than that for σ = 0.040. At high fields, neither entropy

nor dipolar interactions can compete with the field-dipole interac-

tion, which leads to the alignement of the filaments with the field

and, as a result, makes the brush average height reach its natural

saturation for both values of σ . In order to start the characteri-

sation of the brush structure at the scale of individual beads, we

present in Figures 8 and 9 two sets of simulation snapshots and

connectivity graphs analogous to the ones discussed in the Sec-

tion above. In this case, the configurations correspond to selected

values of the external field. A direct comparison of these plots

with Figures 3 and 4 evidence a drastic difference with respect

to the evolution with temperature. For low σ , the self-assembly

between chains is almost completely hindered even by such a low

field value as is H = 0.5. One can observe only few clusters, with

a lot of linear segments, open ends and branching points with

rather low degree. Importantly, this topology does not demand

for a significant misalignment of the dipoles with respect to the

field direction. If the field increases, the clusters gradually dis-

appear, preserving in any case such characteristic topology. For

higher σ and H = 0.5, instead, the clusters are rather big, with

a relatively large amount of long linear segments. The junctions

are rather versatile and free chain ends are present in a signifi-

cant amount. The topology of the clusters in Figure 9a is very

similar to the ones observed in Figures 4b and 4c. In other words,

the influence of this low external magnetic field is negligible in

this range of parameters. Besides that, the chains keep forming

junctions even at high fields. The topology of these branched

structures is not versatile and clearly coincides with the branched

structures for σ = 0.040 and lower fields: multiple junctions are-
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Fig. 7 Density profiles (a) and average brush heights (b) for different

intensities of the external magnetic field and grafting densities, obtained

at T = 1.

basically absent, whereas the amount of linear segments rapidly

grows. A direct inspection of these configurations suggests that

there are two typical branched structures compatible with an ex-

ternal magnetic field perpendicular to the grafting surface: X-type

junctions, in which two nearly parallel filaments establish a single

branching connection between beads located in their middle re-

gions (see, for example, light blue clusters in Figure 9d), or half-

interlaced chains with free ends, in which connected filaments

twist around each other (see dark purple cluster in Figure 9d, for

example). Looking for confirmation of the latter observation,

we decided to focus on betweenness. This choice was driven by

the fact that the distribution of degrees in this case provides very

limited information, as it is very narrow and has a sharp peak at

δ = 2, due to the overwhelming dominance of linear segments.
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Fig. 8 Equilibrium configuration snapshots (left column) and

connectivity graphs (right column) at different normal external fields for

σ = 0.040, T = 1. (a) H = 0.5. (b) H = 2. (c) H = 3. For higher fields, no

added connections were observed.

On the other hand, the average cluster size for both grafting den-

sities is a monotonously decreasing function of the applied field,

with a saturation value equal to the number of particles in a fil-

ament. If one plots the fractions of particles in chains and in

branched structures, the chains contain almost all beads in the

brushes starting from H = 0.5 for σ = 0.040 and from H ∼ 2.5 for

σ = 0.111. The betweenness, instead, can provide a more accu-

rate measure after some manipulation. In our previous work, we

showed that for a system of ideal N-particle chains—i.e., chains

with no other connections than the provided by the permanent

links—the average betweenness as a function of the bead posi-

tion along the filament, j = {1, . . . ,N}, can be written as:19

Cid
B ( j) =− j2 + j(N +1)−N. (9)

Thus, we can subtract Cid
B ( j) from the averaged betweenness of

the beads given by Expression (8) to see even small deviations

from the ideal system, ∆CB( j) =CB( j)−Cid
B ( j). The results of this

Fig. 9 Equilibrium configuration snapshots (left column) and

connectivity graphs (right column) at different normal external fields for

σ = 0.111, T = 1. (a) H = 0.5. (b) H = 2. (c) H = 3. (d) H = 4.

subtraction for high external fields are shown in Figure 10. For

σ = 0.040 the deviations are basically negligible, but the position

of the maximum clearly points towards the middle of the chain.

The full confirmation of our aforementioned assumption about

the topology of junctions can be obtained by looking at Figure

10. It becomes clear that the highest deviation from ideal chains

is between particle numbers 5 and 6, with number 1 being the

grafted end and number 10, the free chain end.

As a last comment, these kind of X-junctions have three clear
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Fig. 10 Variation of the average centrality betweenness of the beads

with respect to the case of an ideal chain, measured for two grafting

densities as a function of the position of the bead along the filament.

advantages: they preserve the entropy of free chain ends, they

add a negative dipolar connection, which lowers the system free

energy, and basically do not perturb the dipoles aligned along the

magnetic field. On the other hand, their presence lead to non-

complete chain stretching at given fields.

4 Conclusions

In this work, we explored the control of the structural proper-

ties of a magnetic filament brush with the help of two external

stimuli: temperature and an applied external magnetic field per-

pendicular to the grafting surface. Both parameters affect the self-

assembly of magnetic colloids by changing the topology and the

size distribution of formed clusters. The latter structural trans-

formations manifest themselves in the brush density profiles and

average brush height. In other words, we explored the possi-

bility to manipulate the magnetic filament brush through fine

tuning of the constituents’ self-assembly. In order to carefully

study the equilibrium properties of magnetic filament brushes,

we employed the combination of molecular dynamics computer

simulations and graph theory analysis methods. We investigated

two grafting densities: σ = 0.040 and σ = 0.111. This allowed

us to pinpoint the influence of chain concentration on the self-

assembly. We showed that at zero field, low temperature and low

grafting density, filament chains bend to connect their free ends to

neighbouring grafted ends, creating a closed multi-ring-like clus-

ter, whose magnetic moment is nearly zero. The same tendency,

just with less regularity, is observed for high grafting density in

zero-field at low-T regimes. Under these conditions, the brush is

very compact, with a rather low height, and weakly magnetore-

sponsive. If the temperature grows slightly, the dipole-dipole in-

teraction is still strong enough to drive to the self-assembly in long

linear structures that involve both free and grafted chain ends,

but the entropy leads to the opening of the magnetically closed

structures, gaining in such a way the entropic contributions of the

chains free ends. At this point the number of “chain-like” clusters

reaches its maximum, and the number of branching points has its

minimum. Further increase of T results in a completely random,

highly branched network of bonds, mainly defined by the grafting

density and thermal fluctuations. The analysis of the influence of

the external field at T = 1 reveals a more drastic grafting den-

sity dependence. Thus, for low grafting density, even a low field

leads to an almost complete elimination of the self-assembly be-

tween neighbouring chains and results in the brush formed by

extended chains, whose length is the result of the competition

between thermal fluctuations and dipole-dipole interaction stim-

ulated by the external field. For high grafting density, instead, a

weak external field cannot perturb the structures formed due to

the dipolar interactions: the overall brush height remains rather

small, and the brush continues to be rather dense up to mod-

erate fields. For stronger fields, however, the same structural

changeover, as observed for σ = 0.040 at low fields, takes place,

and the filaments tend to straighten perpendicular to the graft-

ing surface. We also observed that, even though the number of

branching points decreases with the field, for σ = 0.111 there are

two clear configurations of clusters that appear to “survive” even

under strong external fields, namely, the X-shape junction con-

necting two neighbouring chains by only one point of their middle

regions, and the staggered configuration of two chains. Both con-

figurations do not demand large deviations of the dipoles from

the orientation of the field. Cluster size is a monotonously de-

creasing function of the applied field. In general, the field re-

sponse of the denser brush suggests the potential existence of a

hysteresis-like behaviour on low-high-low field cycles. However,

this effect deserves special attention and will be the subject of fu-

ture studies. This work, instead, clearly shows that magnetic fil-

ament brushes have a complex microstructure with versatile self-

assembly in clusters of different size and topology which, impor-

tantly, can be uniquely predicted, based on the grafting density,

temperature, dipole moment and intensity of externally applied

magnetic fields.

Even though at this point there is no direct experimental real-

isation of a magnetic filament brush, modern soft matter physics

actually offers all necessary building blocks. Thus, for exam-

ple, a very good control has been achieved in the synthesis

of monodisperse magnetite or cobalt permanently magnetised

nanoparticles.5,49 On the other hand, growing experience in DNA

origami50,51 opens up a new perspective in precisely tuneable

crosslinking. Finally, the recent advances in functionalisation of

surfaces12,52 provide various elaborated techniques to create an

actual magnetic filament brush.

As a final comment, we briefly discuss the open questions that
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arose during the study of field and temperature influence on the

properties of the magnetic filament brush, which are far beyond

the scope of this paper. First, it is important to understand the

thermodynamics of these systems and analyse relevant parame-

ters, like the specific heat, as a function of field and tempera-

ture. This can shed light on the differences between magnetic

filament systems and self-assembling dipolar spheres brought by

the presence of the permanent links. On the other hand, it is

known that there is a series of structural transitions in dipolar

hard spheres on cooling, but the temperatures at which they oc-

cur is rather low.10,11 For the filament brush system, the tem-

perature range should be extended in order to perform a proper

analysis and provide an extensive comparison. Another control

parameter, which is known to be very efficient in tuning brush

properties, is the length of the grafted chains. Here, we purpose-

fully focused on only one chain length to avoid multiple effects

and provide a clear description of the structural transitions under

cooling and increasing field. Now, one can easily separate the in-

fluence of the number of particles in filaments. Finally, an open

question, which has already been mentioned above, is related to

the external magnetic field: wether there exists a hysteresis on

the increasing-decreasing field cycle and, if that is the case, what

is the influence on it of the grafting density and the rest of brush

parameters?
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