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[(
Cl

Im
Dipp

)P=P(Dipp)][GaCl4]: A Polarized, Cationic Diphosphene  

Kai Schwedtmann,a Michael H. Holthausen,a Chris H. Sala,a Felix Hennersdorf,a Roland Fröhlichb 
and Jan J. Weiganda,* 

The reaction of the neutral diphosphanide [(
Cl

Im
Dipp

)P-P(Cl)(Dipp)] 

(6) (
Cl

Im
Dipp

 = 4,5-dichloro-1,3-bis(Dipp)-imidazol-2-yl; Dipp = 2,6-

di-iso-propylphenyl) with methyl triflate (MeOTf) leads to the 

formation of cationic diphosphane [(
Cl

Im
Dipp

)(Me)P-P(Cl)(Dipp)]
+
 

(8
+
) in a stereoselective methylation. In contrast, reacting 6 with 

the Lewis acid GaCl3 yields cationic diphosphene 

[(
Cl

Im
Dipp

)P=P(Dipp)]
+
 (7

+
), which is explained by a low P–Cl bond 

dissociation energy. The significantly polarized P=P double bond in 

7
+
 allows for its utilization as acceptor for nucleophiles – the 

reaction with Cl
-
 regenerates diphospanide 6 and the reaction with 

PMe3 gives cation [(
Cl

Im
Dipp

)P-P(PMe3)(Dipp)] (9
+
). In depth DFT 

investigation provides detailed insights into the bonding situation 

of the reported compounds.  

A few decades ago, the concept of kinetic stabilization by 

sterically demanding substituents provided a breakthrough in 

the field of multiple bonded compounds based on heavier 

main group elements.[1] In 1981 Yoshifuji succeeded in the 

preparation of the first diphosphene Mes*P=PMes* 1 by 

introducing the very bulky Mes* substituent (Mes* = 2,4,6-tri-

tert-butylphenyl, “super-mesityl”, Figure 1).[2] Only recently, N-

heterocyclic carbenes (NHCs) have gathered comparable 

attention in phosphorus chemistry for their ability to stabilize 

low-coordinate bonding environments in poly-phosphorus 

compounds, which can also be explained by thermodynamic 

stabilization (conjugated π-system, charge delocalization).[3] 

This was shown by Robinson who prepared the neutral 

(ImDipp)P–P(ImDipp) (ImDipp = 1,3-bis(Dipp)-imidazol-2-ylidene)[4] 

and explored its further reactivity.[5] Later, Bertrand reported 

on the stepwise oxidation of (ImDipp)P–P(ImDipp) and isolated 

the P2 dicationic species 2
2+,[6] illustrating that imidazoliumyl-

substituents can be used for the stabilization of cations (Figure 

1). The activation of white phosphorus (P4) by carbenes was  
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Figure 1. First reported diphosphene 1 and selected imidazoliumyl functionalized 

polyphosphorus compounds (22+ - 5+) (only one representative Lewis structure is 

presented). 

investigated thoroughly and gave access to extended 

frameworks of low-coordinate P atoms,[4,7] such as the neutral 

catena P4-species 3.[7a,b] We reported on the stepwise 

transformation of P4 by using an electrophilic phosphenium 

cation and a nucleophilic carbene ClImDipp which yielded the 

linear P3 cation 4
+ featuring two terminal imidazoliumyl-

substituents.[8,9] In a very recent contribution, Grützmacher 

isolated the cationic disphosphene 5
+, via the reaction of 

(ImDipp)PH with PCl2(Ni-Pr2) in the presence of DABCO (1,4-

diazabicyclo[2.2.2]octane) and subsequent chloride 

abstraction with GaCl3.[10]  

The aforementioned compounds have illustrated the ability of 

imidazoliumyl-substituents to accept π-electron density from 

adjacent two-coordinate P atoms which is important for their 

stability since it significantly lowers the nucleophilicity of the 

phosphorus moiety. The termination of the Pn (n = 2, 3, 4) 

chains in 22+ – 4+ by two imidazoliumyl-groups, however, leads 

to symmetrical distribution of electron density within the 

multiple bonded polyphosphorus fragments. We envisioned 

that a diphosphene, bearing a sterically demanding aryl group 

and an imidazoliumyl-substituent has a polarized P=P double 

bond and serves well for an interesting reactivity. 
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Scheme 1. Synthetic route to 7[GaCl4] and 8[OTf] (comprised of a pair of enantiomers, 

only the (R,S) enantiomer is shown) and resonance structures 7a
+ and 7b

+. 

Aiming at the synthesis of such a diphosphene, we reacted 

neutral diphosphanide 6 with distinct electrophiles (GaCl3, 

MeOTf). This gave rise to cationic diphosphene salt 7[GaCl4] 

via halide abstraction or cationic diphosphane salt 8[OTf] via 

stereoselective methylation. Reactions of 7+ with nucleophiles 

(PMe3, Cl−) demonstrate its remarkable acceptor properties. 

The reaction of diphosphanide 6 with GaCl3 in a 1 : 1 

stoichiometry in C6H6 solution resulted in the immediate 

formation of a red precipitate of 7[GaCl4] (Scheme 1, 76% 

yield). This compound constitutes a rare example of an 

unsymmetrically substituted, cationic diphosphene.[10,11] Its 
31P{1H} NMR spectrum shows an AX spin system. The observed 

large 1
J(PP) coupling constant (1

J(PAPX) = –577.9 Hz) is 

characteristic for a P=P double bond.[12] The A part, assigned to 

the imidazoliumyl-substituted P atom, is shifted to higher field 

(δ(PA) = 398.1 ppm). On the other hand, the X part, assigned to 

the Dipp-substituted P atom, is at remarkable low field 

(δ(PX) = 605.8 ppm) compared to (E)-configured diphosphenes 

(e.g. Mes*P=PMes* δ(P) = 492 ppm).[12] This implies a 

significant polarization of the P=P double bond, which can be 

indicated by resonance structure 7b
+ (Scheme 1). An inverse 

polarization was observed previously by 31P NMR spectroscopy 

for π-donor substituted diphosphenes (e.g. Mes*–P1=P2–(Ni-

Pr2: δ(P1) = 276 ppm, δ(P2) = 447 ppm,[13] 5+: (ImDipp)–P1=P2–(Ni-

Pr2)+: δ(P2) = 158 ppm, δ(P1) = 492 ppm).[10] Cation 7+ is bright, 

red-colored and the UV/vis spectrum of 7[GaCl4] reveals two 

absorptions at 490 nm (ε = 429 cm2/mol) and 349 nm 

(ε = 4995 cm2/mol). The first absorption is assigned to a 

symmetry forbidden n(P)→π*(P=P) transition and the second 

to the symmetry allowed π(P–P) →π*(P=P) transition.[12] The 

molecular structure of 7[GaCl4] is depicted in Figure 2 and 

confirms the (E)-configuration (C28–P2–P1–C1: 179.9(2) °). The 

P=P bond length (P1–P2: 2.038(1) Å) is typical for 

diphosphenes.[10,12] The C–P–P angle involving the 

imidazoliumyl-substituent (C1–P1–P2: 105.0(1) °) is larger than 

that involving the Dipp-substituent (C28–P2–P1 95.1(1) °). This 

might be a result of a higher degree of π-bonding interactions 

involving the more electron withdrawing imidazoliumyl-group, 

or the large steric demand of the imidazoliumyl-substituent.[14] 

Interestingly, the reaction of 6 with MeOTf does not yield MeCl  

 

Figure 2. Molecular structure of cation 7
+
 in 7[GaCl4]•C6H5F (anions, hydrogen atoms 

and solvate molecules are omitted for clarity and thermal ellipsoids are displayed at 

50% probability); selected experimental bond lengths [Å] and angles [°]: C1–P1 

1.834(2), P1–P2 2.038(1), P2–C28 1.854(4), C1–P1–P2 105.0(1), C28–P2–P1 95.1(1). 

and 7[OTf]. Instead, addition of MeOTf to a solution of 6 in 

benzene gave a yellowish reaction mixture from which 8[OTf] 

was conveniently obtained in good yields via addition of n-

hexane and isolation of the formed precipitate (77% yield). The 
31P{1H} NMR spectrum of the reaction mixture shows the 

prominent resonances of an AX spin system. These are 

assigned to diastereomeric 8
+ (δ(PA) = –15.1 ppm, δ(PX) = 

75.1 ppm, 1
J(PAPX) = –218.2 Hz) which mainly comprises a pair 

of enantiomers with (R,S)- and (S,R)-configuration. Thus, the 

relatively small absolute value of the 1
J(PP) coupling constants 

in (R,S)- and (S,R)-configuration is attributed to an anti- 

periplanar arrangement of the lone pairs of electrons.[15] In 

contrast, the relatively large absolute value observed for the 

(S,S)- and (R,R)-configuration is attributed to the gauche 

arrangement.[15] Similar observations were reported for meso- 

and rac-1,2-bis(trifluoromethyl)-diphosphane where the trans 

dispositions of electronegative CF3 groups determines the 

favoured rotamers.[16] The A part is assigned to the Me-

substituted P atom on the basis of the observed 2
J(PH) 

coupling constant (8.7 Hz). A second AX spin system of low 

intensity (< 5%) is assigned to the second diastereomer of 8
+ 

(δ(PA) = –10.5 ppm, δ(PX) = 86.4 ppm, 1
J(PAPX) = –354.8 Hz) 

comprised of a pair of enantiomers with (R,R)- and (S,S)- 

configuration. The significantly different values of 1
J(PP) 

coupling constants observed for the (R,S)/(S,R) and (R,R)/(S,S) 

pairs of enantiomers are explained by the relative 

arrangement of the lone pairs of electrons in 8+. Most likely, a 

 

Figure 3. Molecular structure of 6 (M06-2X/def2svp) showing the favoured and 

disfavoured approach of electrophiles. Hydrogen atoms are omitted for clarity. 
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Figure 4. Molecular structure of 6•(Et2O)•(n-hexane), 8
+
 in 8[OTf]•2(1,2-C6H4F2), 9

+
 in 9[GaCl4] (hydrogen atoms and solvent molecules are omitted for clarity and thermal 

ellipsoids are displayed at 50% probability); selected experimental bond lengths in Å and angles in°; 6: C1–P1 1.865(3), P1–P2 2.1327(9), P1–Cl1 2.1586(8), C1–P1–P2 95.83(8), 

C13–P2–P1 102.2(1). 8
+
: C1–P1 1.842(2), P1–P2 2.2250(9), P2–C29 1.841(2), P2–Cl1 2.0673(9); 9

+
: C1–P1 1.799(3), P1–P2 2.151(1), P2–P3 2.208(1), P1∙∙ P3 3.478(1), C1–P1–P2 

100.5(1), P1–P2–P3 105.8(1).  

trans-conformation of the sterically demanding imidazoliumyl- 

and Dipp-substituent represents the most stable rotamer of 

8
+.[15] The high stereoselectivity of the methylation of 6 might 

be a consequence of significant differences in the steric 

demand of the substituents at both, the di-coordinate P atom 

and the adjacent chiral P atom. Thus, the favoured approach of 

the electrophile (E+) to the di-coordinate P atom occurs from 

the less crowded side as illustrated in Figure 3. The molecular 

structure of 8[OTf] confirms the (R,S)- and (S,R)-configuration 

of the major isomer (Figure 4). The anti-periplanar 

conformation of the imidazoliumyl- and Dipp-substituents as 

observed in solution is also present in the solid state (C1–P1–

P2–C29: 152.8(1) °). The formation of 8[OTf] in the reaction of 

6 with MeOTf indicates that the di-coordinate P atom exhibits 

the most nucleophilic properties. Therefore, it is reasonable to 

assume that the halide abstraction from 6 by GaCl3, which 

yields 7[GaCl4], proceeds via coordination of the electrophile 

to the di-coordinate P atom, followed by 1,2-elimination of 

GaCl4
−. Additionally, resonance structure 7b

+ indicates that this 

compound is a suitable acceptor for nucleophiles due to the 

polarization of the diphosphene mojety by the adjacent 

imidazoliumyl-substituent. The acceptor properties of 7+ were 

further investigated by DFT calculations (Figure 5). The 

polarization of the P=P double bond is expressed by a higher 

contribution of Pa (57.4% vs. 42.6% for Pb) to the orbital and a 

donor acceptor interaction with the adjacent π* C=N orbital of 

18.5 kcal/mol, indicating a stabilization of the positive charge 

by delocalization. Analysis of the natural charges of 7+ showed 

that Pb carries the highest charge in the molecule of +0.44e 

compared to +0.24e on Pa, making Pb the preferred reaction 

site for nucleophiles. This reactivity was elucidated by the 

reaction of 7[GaCl4] with suitable nucleophiles - a Cl-  
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Scheme 2. Synthetic route to 6  and 9[GaCl4]. 

source and PMe3 (Scheme 2). The addition of [n-Bu4N][Cl] to a 

solution of 7[GaCl4] in o-C6H4F2 results in the immediate color 

change from red to yellow, associated with diphosphanide 6. 
31P NMR investigation of the reaction mixture revealed 

quantitative regeneration to 6 via adduct formation of the 

cationic diphosphene with the chloride anion. The previously 

unknown molecular structure of 6[8] was determined by means 

X-ray single crystal structure determination in the course of 

this study (Figure 4). The P–C bond length of compound 6 

involving the imidazoliumyl-substituent (P2–C13: 1.803(2) Å) is 

longer than related bond distances in (ImMes)PPh (P–C: 

1.763(6) Å)[18] or 2 (P–C: 1.750(2) Å).[4] In addition, the P–P 

bond length (P1–P2: 2.1327(9) Å) is shorter than the typical P–

P single bond distance observed for diphosphanes (2.22 Å)[19] 

but significantly longer than the a typical P=P double bond 

length observed for diphosphenes (2.00 Å).[12] This can be 

explained by the donation of electron density from the p-type 

lone pairs of electrons on P2 into the lobe of the σ*-orbital of 

the adjacent P–Cl bond (vide infra). This is supported by a 

longer P–Cl bond length (P1–Cl1: 2.1586(8) Å) than those 

typically observed for chloro-substituted diphosphanes 

(2.10 Å).[20] Collectively, the structural data indicates that the 

interaction of chloride in 6 is significantly weaker than a 

covalent P–Cl bond in a chlorophosphane. This is supported by 

computations which show a significant donor acceptor 

interaction of 22.5 kcal/mol of the p-type lone pair of Pa and 

the antibonding σ* Pb-Cl orbital (Figure 5). A comparison of the 

energy profiles of the P−Cl bond dissocia_on of 6me (all iso-

propyl moieties are substituted by methyl groups, r0 = 2.131 Å) 

and Ph2PCl (r0 = 2.104 Å) yielded a dissociation energy of 

34.1 kcal/mol and a force constant of 154.4 N/m for 6me versus 

88.2 kcal/mol and 218 N/m for Ph2PCl (Figure S4.1). This result 

further proves the weaker P−Cl bond in 6 compared to regular 

chlorophosphanes. 

The addition of PMe3 to a red solution of 7[GaCl4] in o-C6H4F2 

again leads to an immediate color change to yellow. The 

phosphane adduct 9[GaCl4] was isolated in high yields from the 

reaction mixture (96%, Scheme 2). Its 31P{1H} NMR spectrum 

shows an AMX spin system. The A part of the spin system 

(δ(PA) = −108.1 ppm) is assigned to the di-coordinate P atom  
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Figure 5: Natural charges and selected secondary interactions of NBO analysis on DFT 

optimized structures of 6, 7+ and 9+. 

and the pronounced high field shift indicates an inverse 

polarized phosphaalkene (or a phosphanide) moiety.[20] The 

resonance at lowest field (δ(PX) = 11.2 ppm) is assigned to the 

tetra-coordinate P atom (compare [Ph2P−PMe3]+: δ(PMe) = 

15 ppm)[21] while the M part (δ(PM) = -62.1 ppm) corresponds 

to the tri-coordinate P atom.[22] As the 1
J(PP) couplings are of 

expected magnitude (1
J(PAPM) = –322.1 Hz, 1

J(PMPX) = –

343.3 Hz) a comparatively large 2
J(PP) coupling (2

J(PAPX) = 

72.8 Hz) might indicate a through space interaction between 

the di- and tetra-coordinate P centers. The connectivity of 9
+ 

was confirmed by X-ray single crystal structure determination 

(Figure 4). Its P−C bond length involving the imidazoliumyl-

moiety is in the typical range of inverse polarized 

phosphaalkenes (C1−P1: 1.799(3) Å) and is comparable to 6. 

Two distinct P−P bond lengths are observed in 9
+ (P1−P2: 

2.151(1) Å, P2−P3: 2.208(1) Å) and that one involving the di-

coordinate P atom is significantly shorter than a typically P−P 

single bond (P−P: 2.22 Å).[19] The distance between both 

terminal P atoms (P1∙∙∙P3: 3.478(1)  Å) is well within the sum of 

the van der Waals radii of the respective atoms 

(ΣrvdW(P,P) = 3.80 Å),[23] which might explain the observed large 
2
J(PP) coupling between both atoms. It is important to note 

that polyphosphorus compounds featuring di-, tri- and tetra-

coordinate P atoms in one molecule are very rare[24] and, to 

the best of our knowledge, 9
+ is the first example of a 

phosphane environment that bridges a phosphanide and a 

phosphonium moiety. 

In summary, we have studied reactions of neutral 

diphospanide 6 with selected electrophiles (GaCl3, MeOTf). 

They proceed either via stereoselective methylation yielding 

cationic diphosphane 8
+ or halide abstraction giving the 

remarkable cationic diphosphene 7
+. The latter features a 

sterically demanding aryl group and a cationic, π-electron 

accepting imidazoliumyl-substituent. The substitution pattern 

in 7+ causes a significant polarization of the P=P double bond. 

This allows for its utilization as an acceptor towards chloride or 

PMe3 as nucleophiles and the corresponding adducts 6 and 9+ 

were obtained. The utilization of polarized P=P double bonded 

cations as Lewis acids is expected to provide new avenues in 

diphosphene chemistry, which is subject of ongoing studies in 

our laboratories. 
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The reaction of neutral diphosphanide [(ClImDipp)P-P(Cl)(Dipp)] 
with the Lewis acid GaCl3 yields cationic diphosphene 
[(ClImDipp)P=P(Dipp)]+, which is explained by a low P–Cl bond 
dissociation energy. The polarized P=P double bond in 
[(ClImDipp)P=P(Dipp)]+, allows for its utilization as acceptor for 
nucleophiles, such as Cl- or PMe3. 
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