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Developing robust and efficient oxygen evolution reaction (OER) electrocatalysts is essential for advancing
renewable energy technologies like water electrolysis. Here, we present an electrocatalyst comprising N-
heterocyclic carbene (NHC)-ligated nickel nanoclusters (NiNCs) covalently anchored on multi-walled
carbon nanotubes (MWCNTSs), with only 3.9% Ni/C atomic content. The unique nanoarchitecture,
featuring a conductive NHC—-Ni(0) core and an electroactive NiO, shell, was prepared via a dual metal-
reduction and transmetalation strategy, offering exceptional electrocatalytic stability and efficiency,
whereas MWCNTSs offer mechanical robustness and a conductive nanocarrier support contributing to the
enhanced OER kinetics. The electrocatalyst demonstrates low overpotentials of 320 mV and 500 mV at
10 mA cm~2 and 200 mA cm™2, respectively, in 1 M KOH, with very high specific (jgcsa = 133 mA cm™2)
and intrinsic (j,y = 2.8 x 10° mA mol™ cm?) activities, as well as exceptional turnover frequencies
(TOFs), reaching up to 7.4 s~ under industrially relevant conditions (200 mA cm™2). Electrochemical
impedance spectroscopy reveals rapid charge transfer kinetics (R.i: 66 Q to 9.7 Q) and efficient interfacial
processes, driven by high dispersion and ultrafine NiNC size (<1.6 nm). The synergistic interplay between
the NHC-NIi(0) core, which stabilizes the electroactive shell structure, and the MWCNTSs, which enhance
electron transport and provide mechanical robustness, ensures durability under prolonged cycling, with
minimal losses (<1.3% overpotential gain and <0.5% apparent loss of Ni active sites). These results
establish MWCNTs-NHC-ligated NiNCs as a scalable and high-performing electrocatalyst, surpassing
RuO, and competitive NiFe-based materials, highlighting how precise nanoengineering through
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attention due to their abundance, cost-effectiveness, and
promising electrocatalytic activity in the OER.*'® However,
enhancing the performance and stability of nickel-based elec-
trocatalysts remains a significant challenge." Recent research is
increasingly focusing on novel catalyst-support interactions to
enhance the electrochemical performance of Ni-based
nanomaterials.’*® In this context, exploring N-Heterocyclic
Carbenes (NHCs) ligated to metal nanomaterials as electro-
catalysts for the OER presents an underexplored but intriguing

Introduction

The Oxygen Evolution Reaction (OER) stands as a fundamental
anodic process in electrochemical water splitting, essential for
renewable energy technologies like water electrolysis and fuel
cells." Efficient electrocatalysts for the OER are crucial for
advancing these technologies and enabling the production of
clean and sustainable energy. Nickel-based materials, including
nanoclusters and nanoparticles, have attracted considerable
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avenue for innovation."”*® Among others, NHCs have emerged
as promising ligands for tailoring the surface chemistry of
metal nanomaterials.”® Renowned for their strong metal-
binding affinity and tunable electronic properties, NHCs offer
the potential to modulate the catalytic activity and stability of
nickel nanoclusters and nanoparticles.”» Despite these
promising attributes, the application of nanoscaled NHC-Ni
interactions in electrocatalysis remains largely unexplored. This
study aims to bridge this gap by investigating nanostructured
MWCNTs-NHC-functionalized nickel nanoclusters (NiNCs) as
electrocatalysts for the OER. Our nanoengineering strategy
demonstrates the potential of rational nanoscale design in
overcoming intrinsic material limitations to advance sustain-
able energy technologies.

In this work, we present a highly innovative electrocatalyst
for the Oxygen Evolution Reaction (OER), featuring NHC-ligated
NiNCs chemically bonded on oxidized Multi-Walled Carbon
Nanotubes (OMWCNTs). The oMWCNTs, known for their
inherent electrocatalytic properties, pose a significant challenge
as a nanocarrier due to their already high baseline activity.>* The
synergistic interaction between NHC ligation, NiNCs, and
MWCNT nanocarriers, however, achieves remarkable stability
and electrocatalytic performance in the OER, outperforming
OMWCNTs and surpassing the benchmark RuO, electrocatalyst.

Results and discussion

The implementation of NHC ligands to stabilize and enhance
the catalytic activity of metal catalysts has been extensively
explored, leading to the development of robust catalytic
protocols.>*” In this regard, the synthetic strategy starts with
the synthesis of an NHC-precursor ligand containing an alkyne
group.”® Next, a copper-catalyzed azide-alkyne cycloaddition
(CuAAC) with 4-azidoaniline 4 yields NHC-precursor 5, con-
taining a 4-triazolylaniline group (Scheme 1, pages S5-S7 and
Fig. S1-S11}). The formation of NHC-Cu(1) complex 6 is ach-
ieved using a weak base route as outlined by Nolan's group,*
with mesityl substituents providing steric protection and
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stability to the in situ generated NHC ligands and the resulting
copper complex (Scheme 1, page S8 and Fig. S12-5141%).

In parallel, pristine MWCNTs 7 were thoroughly purified to
remove any residual metals (page S17 and Fig. S15-S17f),*
before undergoing oxidation in a 3 : 1 v/v H,SO, : HNO; mixture,
resulting in oMWCNTs 8 bearing carboxylic acid groups
(Scheme S1, page S19 and Fig. S18-S211).>* Nanomaterial 9 was
then prepared via an amidation reaction between 8 and NHC-
Cu(1) complex 6, (page S22 and Fig. S22-526%). The coordination
of Ni(u) was achieved by reacting 9 with hexahydrate nickel
chloride, facilitated by both triazolyl and amide coordinating
functionalities.**** In situ reduction of Ni(u), transmetallation of
NHC-Cu(1) to NHC-Ni(0) and subsequent nucleation of NiNCs
in a water/ethanol mixture at room temperature, using sodium
borohydride (NaBH,) as the reducing agent, yielded the targeted
electrocatalyst 10 (Scheme 2, page S26 and Fig. S27-S301).

Raman spectroscopy of MWCNTSs 7 reveals an Ip/I; ratio of
0.80 =+ 0.01, with D and G bands at 1348 cm ™' and 1577 cm ™%,
respectively, indicating the graphitic structure (Fig. S15-S16
and Table S1}).>*** Upon oxidation to 8, the I,/I; ratio increases
to 1.03 = 0.01, accompanied by D and G band peaks blue-
shifting to 1355 cm™' and 1587 cm™’, confirming covalent
surface functionalization (Fig. S18-S19 and Table S1}).***” ATR-
FTIR analysis shows a carbonyl stretch at 1702 cm ™', corre-
sponding to -COOH groups (Fig. S20%). TGA reveals a 6.5%
weight loss at 600 °C, consistent with one ~-COOH group per 54
carbon atoms (Fig. $217).®

After amidation of 8, with complex 6, to form 9, the Raman
Ip/I ratio remains unchanged, suggesting that functionaliza-
tion occurs primarily on the ligand chain without altering the
MWCNT framework. Notably, small shifts of the D (1353 cm ™)
and G (1583 cm ') bands reflect changes in the electronic
properties of the carbon framework (Fig. S22-S23 and Table
S11).***° ATR-FTIR shows an amide carbonyl stretching vibra-
tion at 1715 cm™', confirming successful modification
(Fig. S247), while TGA suggests a ligand-to-carbon ratio of 1: 79,
consistent with sole “on-ligand” modification (Fig. S25%). XPS
analysis confirms the targeted nanostructure, with the survey
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Scheme 1 Synthesis of aniline functionalized NHC-Cu(l) complex 6.
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Scheme 2 Preparation of electrocatalyst 10.

scan revealing characteristic peaks for C 1s, N 1s, O 1s, Cu 2p,
and Cl 2p. High-resolution spectra of N 1s, C 1s, and Cu 2p
validate the successful integration of complex 6 on o MWCNTs,
highlighting the presence of triazole,** and NHC moieties along
with the Cu(r) oxidation state in 9 (Fig. S261).*

Following NHC-ligation with NiNCs in electrocatalyst 10, the
Ip/Ig ratio as well as the G and D band positions remain stable,
indicating a minimal impact on the MWCNT surface and the
persistence of NHC-metal ligation, respectively (Fig. S27-S28
and Table S1%). A 13 cm ™" downshift in the C=0 stretching
frequency found at 1702 cm™" in the ATR-FTIR spectrum
suggests an interaction between the carbonyl groups of 8 and
NiNCs, supporting the NHC-NiNC ligation on oMWCNTs (8)
(Fig. S29-S30%).

The XPS survey scan spectra confirm the engineered nano-
structure of 10 (Fig. S311) detecting all relevant elements: C 1s,
N 1s, O 1s and Ni 2p. Importantly, the absence of Cu 2p signals
validates the efficiency of the transmetalation method in
generating NHC-NiNCs (Fig. S31f). Additionally, the atomic
percentage of Ni/C, determined from the normalized areas of Ni
and C peaks, is calculated to be only 3.9%. High-resolution N 1s
spectra revealed three distinct components at binding energies
(BE) of 399.2 eV, 400.2 eV and 401.8 eV (Fig. 1a and Table S2}) in

This journal is © The Royal Society of Chemistry 2025

Ni (0)

Q: Ni (0)

a1:3:1ratio. The lowest BE at 399.2 eV is attributed to the N-C-
Ni(0) atom of the N-heterocyclic carbene, appearing at 1.0 eV
lower than the analogous N-C-Cu(i) in 9.* This shift reflects the
electron-richer carbene ligand species bonded to Ni(0) atoms in
the NiNCs. Narrow C 1s scans further corroborate the successful
preparation, with characteristic components fitted and
assigned (Fig. 1b and Table S2}). Notably, the normalized areas
show a 1:1 ratio between the N-C-Ni at 282.8 eV,* and the
MWCNTs-COONH- component at 289.1 eV, directly aligning
with electrocatalyst 10's rational design. Ni 2p spectra (Fig. 1c)
revealed a distinct component, at 852.7 eV, confirming the
presence of Ni (0), alongside the predominant component at
856.8 eV, attributed to oxidized Ni"".* Although this binding
energy falls within the reported range of both Ni(u) and Ni(m),
the observed shake-up satellites strongly support the assign-
ment to Ni(u).*”* The selective stabilization of Ni(0) by NHC
ligands highlights their strong metal-binding affinity and elec-
tronic tuning properties, which confer electronic conductivity
and structural integrity to electrocatalyst 10.>** The predomi-
nance of oxidized Ni"" is consistent with the very reactive Ni(0)
nano species due to the very small size and clean surface state
rendering Ni(0) highly prone to oxidation under atmospheric
and aqueous conditions.*® This dual functionality—where the

J. Mater. Chem. A, 2025, 13, 17489-17498 | 17491
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Fig. 1

NHC-stabilized Ni(0) core ensures stability and provides
a conductive support, while the oxidized NiO, shell acts as the
electroactive surface for the OER—underscores the synergistic
balance achieved in the engineered nanostructure of electro-
catalyst 10.

Low magnification TEM images show the presence of
MWCNTs (Fig. 1 d). The High-Resolution Transmission Elec-
tron Microscopy (HRTEM) study allows identifying the presence
of crystalline nanoclusters on the surface of MWCNTs as well as
graphitic and amorphous particles containing small crystalline
nanoclusters in agglomerates surrounding MWCNTSs' surface.
The Energy-Dispersive X-ray Spectroscopy (EDS) analysis indi-
cates the presence of Ni in both the MWCNT surface and the
surface's surrounding agglomerates. Moreover, a Scanning
Transmission Electron Microscopy (STEM) study has been
performed. The high-angle annular dark-field scanning trans-
mission electron microscopy (HAADF-STEM) images reflect the
presence of more intense areas both in the surface and
surrounding agglomerates suggesting—according to the higher
atomic number of Ni against C—the presence of Ni (Fig. 1e, S32
and S331). This is confirmed with the simultaneous acquisition
of EDS spectra in each scanning position (Fig. S32 and S331).
EDS maps confirm the presence of Ni in the brighter areas and
the existence of NiNCs. The interatomic distances of 2.08 A
measured in the NiNCs and the corresponding FFTs (Fig. 1f) are
compatible with the fcc NiO unit cell along the [001] zone axis.
The identification of NiO lattice fringes, a well-known Ni(u)
phase, provides additional structural confirmation that the
oxidized species observed by XPS corresponds to Ni(u) rather
than Ni(ur). The ensemble of these structural and compositional

17492 | J Mater. Chem. A, 2025, 13, 17489-17498
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(@) XPS narrow scans of N 1s, (b) C 1s, (c) Ni 2p and (d) TEM image of 10, (e) HAADF-STEM image of 10 and (f) HRTEM-atomic resolved
image of NiNCs of 10 with the corresponding lattice fringes (inset: FFT).

data allows validating the efficient decoration of NiNCs on
MWCNTSs. Given the exceptionally small size (<1.6 nm) and high
surface area of the NiNCs, the oxidation easily occurs on the
surface shell, while the NHC ligation stabilizes effectively the
Ni(0) core, in accordance with the XPS findings.*”*°

The electrocatalytic performance of electrocatalyst 10 was
evaluated for the OER in aqueous 0.1 M KOH electrolyte solu-
tion at room temperature and compared against oMWCNTS 8,
its MWCNTs-Cu(1)NHC precursor 9, and the benchmark RuO,.
Linear sweep voltammetry (LSV) polarization curves were
recorded within the potential range of 0.8-2.0 V vs. RHE, with iR
compensation applied and normalized to the geometric elec-
trode surface area (A = 0.196 cm?). Upon immersion of elec-
trode 10 into 0.1 M KOH electrolyte, surface hydration of Ni(u)
species to Ni(OH), occurs spontaneously on the NiNC surface,
consistent with previous reports.* During operation, the NiNCs
in 10 undergo surface oxidation, leading to the formation of
highly electroactive NiOOH species, as evidenced by the oxida-
tion peak associated with the Ni(u)/Ni(m) transition (Ni(OH),/
NiOOH conversion), occurring just prior to the OER onset
(Fig. 2a).° Over the course of 1000 CV cycles, 10 undergoes
progressive surface restructuring, with the Ni(u)/Ni(ur) oxidation
peak at 1.43 mV—with a full width half maximum (FWHM =
0.079), characteristic of highly uniform redox active species in
nanoclusters—shifting to an even narrower peak at 1.39 mV
(Fig. 2a) with a further 8% decrease in FWHM (Fig. S341). This
shift reflects stabilization into a dynamic equilibrium between
Ni(OH), and NiOOH, eventually resulting in a stable Ni(u)/Ni(ur)
oxidation potential.*>**

This journal is © The Royal Society of Chemistry 2025
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Fig.2 (a) LSV polarization curves obtained at 1600 rpm rotation speed and 5 mV s~* scan rate in 0.1 M KOH for pristine 10 and 10 after activation,

(b) tabulated ny; (mol) of 10 before (pristine 10) and after activation, (c) LSV polarization curves obtained at 1600 rpm rotation speed and 5mV s

-1

scan rate in 0.1 M KOH of 10, 9, 8 and RuO, before and after 10* successive LSV cycles, (d) Tafel slopes of 10, 8 and RuO, before and after 10*
successive LSV cycles, (e) tabulated comparative Tafel values of 10 (pristine 10, 10 and 10 after 10 cycles), 8 (8 and 8 after 10* cycles) and RuO,
(RuO, and RuO; after 10* cycles) and (f) tabulated comparative jOgcsa values of 10, 8 and RuO,.

Linear sweep voltammetry (LSV) measurements recorded
before and after electrode activation revealed that electrode 10
exhibited an overpotential of 370 mV (n,,) to achieve a current
density of 10 mA cm ™2, which decreased to 350 mV following
activation (Fig. 2a). Furthermore, at a higher current density of
80 mA cm 2, the electrode displayed an overpotential of 670 mV
(Fig. S35%), positioning 10 among the highly efficient electro-
catalysts for the OER.® To quantify the electroactive Ni sites (ryi,
mol) available on electrode 10 and evaluate the impact of the
activation process on surface restructuring and performance
stabilization, the electroactive Ni surface species (ny;) partici-
pating in the OER catalytic process were determined both
before and after activation (Fig. S34%).® By integrating the
anodic oxidation peak prior to the OER onset, the electroactive
Ni was calculated to be 6.05 x 10~® mol before activation.
Following the activation process, the electroactive Ni content

increased significantly to 7.05 x 10~° mol, representing a 16.5%
enhancement in the available active sites in the optimized
surface structure (Fig. 2b). Indeed, electrocatalyst 10 outper-
forms the highly efficient electrocatalyst 8 by 100 mV and
slightly exceeds the benchmark electrocatalyst RuO, by 30 mV
(Table 1). Concretely, 8 exhibits efficient electrocatalytic activity
with an overpotential 7;, of 450 mV consistent with prior
reports.> However, after functionalization with the Cu(i)-car-
bene complex 6, nanomaterial 9 completely loses its electro-
activity towards the OER. In contrast, the incorporation of NHC-
ligated NiNCs in 10 not only restored but further enhanced its
electrocatalytic activity by 100 mV (Fig. 2c). This stark difference
in OER performance highlights the role of the metal center and
surface functionality. In nanomaterial 8, surface -COOH groups
facilitate proton-coupled electron transfer (PCET), enabling
efficient OER activity. However, in 9, these are replaced by

Table 1 Electrochemical data of targeted electrocatalyst 10 and comparison with reference nanomaterials 8, 9 and RuO,. All potentials are
measured at 10 mA cm™2 current density. LSVs were measured under identical conditions: 0.1 M KOH, 1.600 rpm rotation speed, 5 mV s~* scan

rate and electrode preparation

Material Eio vs. RHE* E10 vs. RHE (10" ¢) N0 Rt Tafel slopes (1¢/10%c)  jOgcsa Specific activity jrcsa
8 1.68 V 1.69 V 450 mV 133Q  80/94 mV dec* 1.52 MA CMpcsy 2 1.5 MA CMpcsa 2

9 — R - 6711Q  — — —

10 1.58V 1.58V 350 mV 55 Q 62/62 mV dec™* 1.28 MA cMpcsa > 15.3 MA CMgcsa >
RuO, 1.62V 1.63V 390 mV 114Q  95/112 mV dec™* 0.11 MA cMgesa > 0.6 MA CMgcsa

“ Nanomaterial presents no electroactivity and does not reach a current density of 10 mA cm™>.

This journal is © The Royal Society of Chemistry 2025
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electronically inert -CONH linkages, while NHC-Cu(1)
complexes further passivate the surface. Cu(r), with its d'°
closed-shell configuration, remains redox-inactive under OER
conditions and does not form catalytically active oxyhydroxide
species. In contrast, nanomaterial 10 contains NHC-Ni(0)NiO,
nanoclusters that dynamically restructure under increasing
anodic potentials to form high-valent Ni oxyhydroxide phases,
well-known as OER-active phases. These differences explain why
10 outperforms greatly both 8 and 9 in the OER. Notably,
consistent performance was observed across five independent
synthetic batches of electrocatalyst 10, confirming both its
synthetic reproducibility and operational robustness in the OER
(Table S3%).

The stability of electrocatalyst 10 was then evaluated over 10*
cycles and compared to the previously demonstrated efficient
electrocatalysts 8 and RuO, (Fig. 2c and Table 1). Electrocatalyst
10 maintains its electrocatalytic performance with no measur-
able 7, gain, while 8 and RuO, show only minor gains of 10 mV
(Fig. 2c, dotted lines). In addition, the retention of active nickel
sites after 10* OER cycles—as calculated with only a slight
0.46% decrease—highlights the excellent electroactive surface
stability and sustained OER activity of 10 promoted by the
effective ligation of MWCNTs-NHC-Ni(0) (Fig. S361). Long-term
potentiometry for over 5 hours at 10 mA cm > was also con-
ducted, showing a minimal gain of 15 mV in overpotential,
corresponding only to a 0.94% increase (Fig. S377).

Tafel slopes were determined for 8, 10, and RuO, in the low-
potential region immediately after the interference from the
Ni(u)/Ni(m) oxidation peak of 10 to ensure accuracy (Fig. 2d and
Table 1). Electrocatalyst 10 demonstrates the lowest Tafel slope
of 62 mV dec™, outperforming 8 and RuO,, which exhibit
slopes of 80 mV dec ™' and 95 mV dec ™", respectively, indicating
significantly faster OER kinetics for 10. Notably, after 10* OER
cycles, the Tafel slopes of 8 and RuO, increase by 17.5% and
17.9%, respectively, indicating a decline in kinetic efficiency
over prolonged cycling. In contrast, electrocatalyst 10 maintains
its initial Tafel slope, showcasing superior kinetic stability
under extended operational conditions (Fig. 2d and e). To gain
deeper mechanistic insights into electrocatalyst 10,>* Tafel
slopes were compared before and after activation (Fig. 2e and
S38%). Initially, pristine 10 exhibited a Tafel slope of 97 mVv
dec™", indicating a more kinetically hindered surface-controlled
process, with a rate-determining step (RDS) involving surface
restructuring and the initial oxidation of Ni(u) to active NiOOH
species. After activation, the Tafel slope decreased significantly
to 62 mV dec™ ', reflecting a diffusion-assisted regime, where
OH™ ion adsorption and PCET steps dominate, with an RDS
likely involving PCET on stabilized NiOOH sites.>>* Finally, the
unchanged slope after prolonged cycling further indicates the
robustness of the activated surface and the minimized impact
of mass transport limitations.

The exchange current density (jO) provides key insight into
the intrinsic efficiency of electron transfer at the electrode/
electrolyte interface, reflecting the inherent activity of electro-
catalysts.”” It was obtained by Tafel extrapolation and was
normalized by the geometric electrode surface area. Before

activation, electrocatalyst 10 exhibits a high jo of 1.87 mA cm 2,
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which improves to 1.91 mA cm > after activation and remains
stable even after 10* OER cycles, underscoring its exceptional
kinetic robustness (page S36%). Electrocatalyst 8 demonstrates
a slightly higher j0 of 2.27 mA cm ™2, while RuO, shows a slightly
lower value of 1.89 mA cm™>. Despite the inherently high jo of
10, we further analyzed its intrinsic activity by normalizing jO to
the electrochemically active surface area (ECSA) for a fair
comparison across materials with differing characteristics. The
ECSA of 8, 9, 10 and RuO, was calculated from double-layer
capacitance (Cq;) measurements in non-faradaic regions of CVs
at different scan rates (Fig. S39-S42 and Table S41).>** When
normalized by ECSA, the jOgcsa of 10 is 1.28 mA cmgcgs” %, only
0.24 mA cm ? lower than that of 8 but surpassing the bench-
mark RuO, by an impressive 12-fold (Fig. 2f and Table 1),
highlighting the very efficient intrinsic kinetic activity of elec-
trocatalyst 10.

To delve further into the performance of electrocatalyst 10,
the specific activity per unit surface area (jgcsa) and intrinsic
activity per Ni electroactive site (f,n;) were evaluated across
various overpotentials. Electrocatalyst 10 exhibits a remarkable
specific activity, starting at 1.3 mA cmgcga > at an overpotential
of 300 mV and reaching 15.3 mA cmgcsa” > at 380 mV, signifi-
cantly outperforming both 8 (10-fold) and RuO, (25-fold)
(Fig. 3a and Table 1 and S43%). This exceptional enhancement
highlights the efficient utilization of electroactive Ni sites in 10,
attributed to its rationally engineered nanostructure, which
enables a high catalytic turnover per unit surface area.
Furthermore, electrocatalyst 10 demonstrates an outstanding
intrinsic activity (Fig. S441),* increasing from 2.83 x 10’ mA
mol " ecm ™2 at 300 mV to 1.65 x 10° mA mol™"-¢cm ™ at 360 mV
(Fig. 3b). This significant increase reflects the enhanced acces-
sibility and reactivity of the Ni"™" active centers within the
nanostructure of 10, facilitated by the synergistic interplay
between the MWCNT-supported NHC-stabilized Ni(0) core
providing a conductive support to the electroactive oxidized
Ni"" shell species. This unique nanoarchitecture facilitates fast
electron transfer kinetics and maximizes the utilization of every
electroactive Ni site, positioning 10 as a highly efficient and
intrinsically active OER electrocatalyst, significantly out-
performing benchmark catalysts.®*

The turnover frequency (TOF), a critical parameter reflecting
the catalytic activity per active site, was also calculated for
electrocatalyst 10 across various overpotentials (Fig. 3¢).*>*> At
360 mV, corresponding to jye,@10 mA cm 2, electrocatalyst 10
demonstrates a very high TOF of 0.46 s~' per mole of Ni,
underscoring the high activity and accessibility of its electro-
active Ni sites (page S42}) and highlighting the efficiency of its
rationally engineered nanostructure. Furthermore, the linearity
of the log TOF vs. 7 plot (Fig. 3d) and its slope of 62 mV dec "
further validate the OER kinetics of 10, consistent with the Tafel
slope, underlining the efficient, uniform activation of the elec-
troactive Ni sites, further supporting PCET as the RDS.

Electrochemical impedance spectroscopy (EIS) was
employed to investigate the charge transfer kinetics and
capacitive properties of electrocatalyst 10,* benchmark RuO,,
and comparative starting materials 8 and 9 (Fig. 3e). The
Nyquist plots modeled with a Randles circuit containing

This journal is © The Royal Society of Chemistry 2025
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Fig.3

(a) Tabulated values of specific activity jecsa of 10, 8 and RuO, across various overpotentials, (b) tabulated values of the intrinsic activity j,ni

of 10 across various overpotentials, (c) TOF as a function of n for electrocatalyst 10, (d) logarithmic TOF (log TOF) as a function of n for elec-
trocatalyst 10, (e) Nyquist plots of 10, 9, 8 and RuO, (inset: applied Randles circuit fit) and (f) R, and CPE.YO across various overpotentials for 10.

RDS changes are marked with stars.

a constant-phase element (CPE) reveal significant differences in
charge transfer resistances (R..) among the samples (Table S51).
Electrocatalyst 8 exhibits a moderate R . of 133 Q, while upon
functionalization with the NHC-Cu(1) complex in 9, R
skyrockets to thousands of Q, underscoring the detrimental
impact of this intermediate on charge transport. However, the
formation of NHC-NiNCs in electrocatalyst 10 restores and
dramatically enhances charge transfer efficiency, resulting in an
R value 2.5 times lower than that of 8 and nearly half that of
RuO,. The overall decrease in R reflects improved charge
transport and enhanced electrical conductivity in 10.** Addi-
tionally, Fig. 3f insets illustrate the detailed evaluation of R
and capacitive properties at 0.1 M KOH, at various 7. The bar
chart (top inset, Fig. 3f) confirms a progressive decrease in R,
with increasing overpotential for electrocatalyst 10, demon-
strating efficient electron transfer during the OER process. The
relationship between 7 and R, was analyzed across the kinetic
region of the OER, corresponding to current densities up to 7
mA cm ™~ (Fig. S45%). Two distinct transitions are observed in
the Nyquist-derived R, values: a sharp decrease at approxi-
mately 2.5 mA cm > and an even steeper drop at 7 mA cm 2.
These transitions likely correspond to changes in the RDS of the
OER mechanism.*® At lower current densities, the initial R
decrease suggests the onset of faster PCET kinetics, possibly
associated with Ni(u)/Ni(m) oxidation. The second, more
pronounced decline in R, at 7 mA cm > likely reflects the
transition to the oxygen evolution step, where surface oxygen
species become the dominant intermediates. These observa-
tions underscore the dynamic restructuring of the electroactive

This journal is © The Royal Society of Chemistry 2025

surface of electrocatalyst 10, highlighting its adaptive behavior
in achieving efficient charge transfer across different kinetic
regimes of the OER process.'>%

After the comprehensive electrochemical evaluation in 0.1 M
KOH, the study of 10 was extended to approach conditions
closer to practical applications. The LSV polarization curve of 10
was recorded up to 200 mA cm™> in the more concentrated
alkaline environment, 1 M KOH (Fig. 4a), giving outstanding
overpotentials 7,9 of 320 mV, 719, of 420 mV, and 7,9, of 500
mV. The improved ionic conductivity in 1 M KOH likely miti-
gates diffusion-limiting factors, enhancing charge transport
and ensuring more efficient catalytic activity at higher current
densities.®*®” This is also reflected by the smaller Tafel slope of
51 mV dec ™, suggesting that in 1 M KOH, the RDS involves the
oxidation of adsorbed hydroxide species (OH*) to oxygen
intermediates (O*), a step commonly associated with high-
performance OER catalysts (Fig. 4b).°® The jO and jOgcss values
are 1.86 mA cm ™2 and 1.24 mA cm™ 2, respectively, whereas the
JEcsa at M350 iS 17 MA cmgesa > reaching 133 mA cmgesy ~ at
Ns00 (Fig. 4c and S461) and the intrinsic activity j,n; at 7350 is 3.6
x 10° mA mol " em? with a j,n; = 2.8 x 10° mA mol ' em?® at 9509
(Fig. 4d and S47%).

The TOF values further reinforce these metrics, with 10
achieving a TOF of 7.4 s~ at 500 mV (Fig. 4e). This substantial
metric emphasizes how the increased hydroxide ion availability
and improved charge transport in 1 M KOH enables signifi-
cantly faster reaction kinetics and higher TOF values. Further-
more, catalyst 10 demonstrates highly rapid charge transfer
kinetics at higher n, with a significant decrease in R from 66 Q

J. Mater. Chem. A, 2025, 13, 17489-17498 | 17495
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Fig. 4 (a) LSV polarization curve obtained at 1600 rpm rotation speed and 5 mV s~* scan rate in 1 M KOH for 10 reaching up to 200 mA cm~2, (b)
Tafel slope of 10 in 1 M KOH, (c) tabulated values of the specific activity of 10 across various overpotentials in 1 M KOH, (d) tabulated values of the
intrinsic activity of 10 across various overpotentials in 1 M KOH, (e) TOF plot of 10 across 350-500 mV overpotentials in 1 M KOH and (f) Nyquist
plots of 10 (dots) with applied Randles circuit fit (lines) obtained at various j (mA cm™2) in 1 M KOH.

at .55 t0 9.7 Q at 7,4 (Table S61). The Cq4 decreases consistently
from 51.0 puF to 35.6 uF, due to increased surface coverage by
reaction intermediates (OH*, O*) and thinning of the double
layer, reflecting efficient interfacial processes. The substantially
smaller solution resistance (R;) in 1 M KOH (~7.5 Q) confirms
the elimination of diffusion limitations, under these condi-
tions. The Tafel slope derived from log(1/R), 54 mV dec "
(Fig. S48%), aligns closely with the polarization-derived Tafel
slope, 51 mV dec™*, pointing to similar kinetic behavior, in
which surface-controlled charge transfer processes dominate
without significant contributions from diffusion complexities.
Such alignment strengthens the hypothesis that the RDS
involves the formation or oxidation of adsorbed intermediates
(OH* or O%*).

Finally, the durability was evaluated in 1 M KOH, at 10 mA
cm 2 for ~3 hours, demonstrating a minimal gain of 20 mV in
overpotential, corresponding to only a 1.3% increase (Fig. S491).
Interestingly, we recorded a post-test LSV (Fig. S50%), which
showed the near disappearance of the characteristic Ni(i)/Ni(iu)
redox peak, with only a faint shoulder visible at higher poten-
tials and partially merged with the OER onset. This suggests
progressive oxidation of surface Ni species into higher-valent
Ni**/Ni** states within the NiO, shell under prolonged anodic
polarization. This phenomenon is consistent with prior studies,
where extended electrochemical operation induced phase
transitions and suppression of redox features due to the stabi-
lization of higher oxidation states and restructuring of the
active surface, while preserving electrocatalytic activity.*

17496 | J Mater. Chem. A, 2025, 13, 17489-17498

Importantly, in electrocatalyst 10, this transformation corre-
lates with only a minor performance loss (14 mV gain at 10 mA
em™?), confirming the robustness and adaptability of the NiO,
catalytic surface during extended operation. Additionally, after
10" cycles in 1 M KOH, 10 maintained its performance with only
a 15 mV overpotential gain and negligible change in Ni active
sites (<0.1%), further confirming its durability (Fig. S511).

Conclusion

In conclusion, NHC-ligated NiNCs anchored covalently on
MWCNTs were prepared via a dual metal-reduction and trans-
metalation strategy, creating a precisely engineered robust
nanoarchitecture. Leveraging the unique tuning properties of
NHC-M(0) ligation, the NHC-Ni(0) core provides exceptional
stabilization and conductivity, supporting the formation of an
electroactive NiO, shell, as confirmed by XPS and HRTEM
studies. This synergistic design achieves efficient mechanistic
progression through all OER steps. In 0.1 M KOH, the catalyst
exhibits a low overpotential of 350 mV at 10 mA cm 2, with
activation enhancing performance through the dynamic
formation of a stabilized NiOOH shell. The catalyst outperforms
the RuO, benchmark in overpotential, jO, Tafel slopes, charge
transfer resistance and specific activity, highlighting the effi-
cient utilization of electroactive Ni sites. Under industrially
relevant conditions (1 M KOH, 200 mA cm ™ 2), electrocatalyst 10
achieves very low overpotentials (7, = 320 mV, 7,90 = 500 mV),
exceptional TOF values up to 7.4 s~ ', and remarkable specific
(fecsa = 133 mA em ™ ?) and intrinsic (f,n; = 2.8 x 10° mA mol "

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ta00780a

Open Access Article. Published on 28 dubna 2025. Downloaded on 03.11.2025 18:02:50.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

cm?®) activities, effectively overcoming diffusion limitations
observed in less concentrated electrolytes. EIS analysis revealed
highly efficient charge transfer kinetics, with R, decreasing
from 66 Q to 9.7 Q and Cq declining consistently due to
increased surface coverage by intermediates. The alignment of
Tafel slopes derived from polarization (51 mV dec™') and
impedance (54 mV dec™ ") confirms a surface-controlled charge
transfer mechanism, with the RDS involving intermediate OH*/
O* formation or oxidation. Durability tests confirm the cata-
lyst's robustness, with minimal overpotential gains (0.9% and
1.3%) and <0.5% apparent loss of Ni active sites after 10 000
cycles. The ultrafine size (<1.6 nm) and high dispersion of
NiNCs expose nearly all electroactive Ni sites in the NiO, shell,
maximizing catalytic efficiency. The NHC-Ni(0) core ensures
structural stability and conductivity, while MWCNTSs enhance
electron transport and provide robust mechanical support,
enabling efficient charge transport kinetics and enhanced
durability under harsher electrochemical conditions. These
findings position NHC-ligated NiNCs on MWCNTs as a scalable,
durable, and highly efficient electrocatalyst for sustainable OER
applications, surpassing state-of-the-art Ni-based and RuO,
benchmarks (Table S77).
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