Open Access Article. Published on 28 Ginora 2025. Downloaded on 07.01.2026 18:01:51.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Journal of

Materials Chemistry A

REVIEW

#® ROYAL SOCIETY
PPN OF CHEMISTRY

View Article Online
View Journal | View Issue

i '.) Check for updates

Cite this: J. Mater. Chem. A, 2025, 13,
11050

Received 14th November 2024
Accepted 26th February 2025

DOI: 10.1039/d4ta080949g

rsc.li/materials-a

“Department of Nanotechnology and Advanced Materials Engineering and HMC,
Sejong University, Seoul 05006, South Korea. E-mail: skumar@sejong.ac.kr

School of Chemical, Biological and Battery Engineering, Gachon University, 1342
Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea

Synergistic effects of polymer integration on the
properties, stability, and applications of MXenes

Sunil Kumar, ® %2 Syed Muhammad Zain Mehdi,?® Manish Taunk, @<
Sanjeev Kumar,® Amit Aherwar, Sudhanshu Singh® and Tej Singh'

MXenes are known for their exceptionally high electrical conductivity, mechanical resilience, and versatile
surface chemistry. However, these tend to oxidize under ambient conditions, posing a major hurdle to their
performance in various applications. In contrast, polymers are mostly stable under ambient conditions,
making them ideal materials to combine with MXenes to create MXene—polymer nanocomposites with
enhanced stability against oxidation, while also improving MXene functionality. This synergy can also
enhance the mechanical strength, thermal stability, surface properties, and other characteristics of
MXenes, improving the overall performance of MXenes. This review focuses on the role of polymers in
improving the properties of MXenes and mitigating their oxidation under various conditions. Polymers
serve as protective barriers and improve interfacial interactions, maintaining various properties of MXenes
for longer periods. This review also highlights MXene—polymer nanocomposite fabrication techniques,
like solution blending, layer-by-layer assembly, in situ polymerization, electrospinning, etc., for their
effective integration. The review also explores MXene—polymer nanocomposite applications in different
areas, including energy storage devices, electronics, filtration membranes, biomedical
applications, etc. Finally, the review also outlines various challenges and opportunities in synthesizing

Sensors,

MXene—polymer nanocomposites for diverse applications, emphasizing the potential of MXene—polymer
synergy to open new opportunities in future hybrid materials.
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1. Introduction

Nanocomposites have been identified as a promising way to
meet the growing global demands in various sectors, including
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the energy sector. The combination of nanoparticles, nano-
fillers, and a polymer matrix material leads to improved prop-
erties like strength, conductivity, catalytic activity, etc. in these
materials.” The potential of nanocomposites lies in their ability
to revolutionize energy storage, conversion, and transportation
technologies, which can offer more efficient and sustainable
solutions for the future.” Polymers are the most popular for
nanocomposite synthesis due to their versatility, easy process-
ing, and ability to incorporate various nanofillers.® Different
materials can be used as fillers for the synthesis of polymer-
based nanocomposites.* In this perspective, 2D MXenes are now
recognized as promising candidates.> MXenes originate from
MAX phases, which are compounds of transition metals and are
obtained through an etching process using HF or LiF/HCl
acids.® Following the etching process, the A component is
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removed from the MAX phases, and the resulting MXenes are
thoroughly washed with DI water. MXenes possess surface
terminal groups such as -OH, -O, —Cl], or -F, and are commonly
denoted as M,,;;X,, Ty, where M denotes a transition metal, X
typically denotes a carbon/nitrogen/carbonitride, and T, repre-
sents surface functionalities as terminal groups.”

MXenes have remarkable features such as high electrical
conductivity,®® hydrophilicity,'® electrochemical characteris-
tics,"'* adjustable band gap,'>'* and substantial surface area."
These characteristics make MXenes versatile materials with
applications in fields such as energy storage,*'**>*® fuel cells,"*
photodetectors,**** sensors,* conductive ink,”® 3D printing,**>¢
smart windows,” electromagnetic interference (EMI),*** etc.
Ti;C,T, MXene stands out as the most widely recognized member
of the MXene family. High electrical conductivity, a tailored
surface, thermal stability, mechanical strength, etc. make it the
most favored member of the MXene family. In addition to
Ti;C,T,, the MXene family includes other potential members,
such as Ti,CT,,* V,CT,,***"? Nb,CT,,* etc. These MXenes, each
possessing unique characteristics, offer a wide range of proper-
ties useful in diverse potential applications.** MXenes, including
Ti,C, V,C, Nb,C, Mo,TiC,, and Mo,Ti,C3, showcase distinctive
characteristics distinguishing them from the widely studied
Ti;C,. For example, Ti,C has thinner layers, offering a slightly
larger bandgap and rapid ion transport, making it suitable for
photothermal therapy,* energy storage applications,* electro-
catalysis for water splitting,*” etc. V,C demonstrates superior
redox properties due to the variable oxidation states of vanadium,
improving its performance in pseudocapacitors and catalytic
reactions.*® Similarly, Nb,C is known for its superior electro-
chemical durability in aqueous and organic electrolytes, making
it highly suitable for robust energy storage**** and photocatalytic
applications.* Additionally, Nb,C MXene demonstrates good
electrical conductivity and improved wettability, attributed to its
lower Fermi energy level relative to TizC,.** In the case of dual-
transition metal MXenes (M,M"C,), structurally stable Mo, TiC,
combines the enhanced catalytic performance of Mo with the
structural integrity of Ti, offering improved HER/OER perfor-
mance® and N, reduction reaction activity.* Similarly, Mo, Ti,Cs,
with its thicker multilayer structure, offers tunable conductivity
and thermal stability, positioning it as a promising material for
thermal management and electronics. Mo,Ti,C; MXene exhibits
elevated photothermal conversion efficiency due to its substantial
optical absorption across a wide spectral range and layered
structure, which facilitates efficient heat transfer and energy
dissipation.** Partially oxidized Mo,Ti,C; MXene has demon-
strated significant potential for energy storage applications due to
its enhanced electrochemical properties and structural stability.*

MXenes boast various remarkable properties; however, they
are vulnerable to oxidative degradation when exposed to ambient
conditions or during processing, which restricts their practical
application.*® Therefore, enhancing oxidation stability is crucial
for their broader adoption in real-world uses. Various methods
have been proposed to enhance the oxidation stability of MXenes.
These methods include storing MXenes at low temperatures in an
Ar atmosphere,” or in eutectic solvents,*® using sodium r-ascor-
bate,*® or integrating MXenes into polymer blends.>** The use of
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polyanions for preservation has shown promising results in
minimizing MXene oxidation, as this process usually begins at
the edges of the material.*> MXenes treated with antioxidants
have demonstrated better stability under ambient conditions,
allowing their use in energy storage applications for more than 80
days.” Among these approaches, MXene-polymer hybrids or
nanocomposites stand out most favorably as they provide various
functionalities to these hybrid materials. However, the tech-
niques of passivation or blending may lead to decreased electrical
conductivity compared to pure MXenes.

Polymers are recognized for their outstanding capability to be
processed and shaped. Incorporating MXenes into polymers can
enhance and customize their characteristics for particular uses.
MXene-polymer nanocomposites can improve mechanical attri-
butes, including flexibility, tensile strength, and toughness.>*
MXenes are prone to oxidation and deterioration under typical
environmental conditions®® but polymers can form a protective
barrier around the MXene flakes, which increases their stability
against oxidation.’>** Additionally, the polymers mixed with
MZXenes provide numerous possibilities for functionalization and
alteration.” MXene-polymer nanocomposites have found appli-
cations in flexible electronics,**** self-healing sensors,”* 3D
printing,*>** energy storage,**® anti-corrosion,**® fire retar-
dants,*® water purification/treatment,*”* solar cells,”>”®
antibacterial applications.

MXene-polymer nanocomposites can be prepared using
methods, such as solution casting,*®”” solution blending,”
electrospinning,”* in situ polymerization,*"* thin film coating
or polymer lamination,* fiber formation,**** etc. Some of the
popular polymers that are hybridized with MXene include
polyvinyl alcohol (PVA),*® polydimethylsiloxane (PDMS),*
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
(PEDOT:PSS),*”*® polyaniline (PANI),* polypyrrole (PPy),* etc.
The polymers can serve as intercalants or spacers within
MXene-polymer nanocomposites.'®**

Some earlier reviews on MXene-polymer composites are
available; however, these primarily focus on synthesis and
general applications,®>*® or the role of MXenes as fillers,* and
a few are outdated.”® This article uniquely highlights the
synergistic effects of MXene-polymer integration, showcasing
enhancements in mechanical strength, conductivity, and
thermal stability. By emphasizing these synergistic effects and
the latest advancements, this review provides a comprehensive
and up-to-date perspective on their advanced applications,
filling the gaps left by previous studies.

and
74-76

2. Synthesis of MXenes

The synthesis of 2D MXenes was first achieved in 2011 by
etching Ti;AlC, using a highly concentrated acid. This top-down
approach involves removing the “A” layer from the MAX phases.
A strong acid like HF effectively breaks the M-A metallic bond,
leading to the formation of layered MXene structures. The
reaction mechanism of selective etching using HF is as
follows:*®

Mn+1AX,, + 3HF — M;1+1Xn + A1F3 + 15H2

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ta08094g

Open Access Article. Published on 28 Ginora 2025. Downloaded on 07.01.2026 18:01:51.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

M, 1 X, + 2H,0 - M,,+,X,(OH), + H,

M,+1X, + 2HF — M, X, Fo+ H,

During the HF etching process, Al (A layer) removal creates
surface terminations, leading to the functionalization of the M
layer. The chemical etching in an acidic medium inevitably
results in defect sites in the synthesized MXene flakes. These
defect sites play a key role in the oxidation of MXenes and
reduce their self-life to a few days in an ambient environment,
limiting their extensive use. Later, many synthesis routes were
developed but selective etching methods using fluoride-
containing agents in an acidic medium were widely used.®”
The reaction time, temperature, and acid concentration affect
the quality and quantity of the resultant MXenes.

Despite the successful synthesis of MXenes using concen-
trated HF etching, environmental concerns and the need for
a safer, simpler method have prompted the use of mild etching
agents like HCI with various fluoride salts for large-scale
production. The HCI and fluoride salt mixture forms in situ
HF for etching the “A” layer in the MAX phases (Fig. 1a). The
MXenes synthesized using HCl have high yields and fewer
defects and resulted in higher electrical conductivity. However,
the MAX phase's purity is also a crucial factor in deciding the
resultant properties of MXenes.”® Natu et al. reported a water-
free synthesis method using polar solvents along with ammo-
nium dihydrogen fluoride.” The etching process in this method
is reported to be very slow but surprisingly the resultant MXene
has only the -F group as the termination species.

One of the major issues associated with MXene synthesis is the
use of hazardous chemicals, such as HF or in situ-produced HF
from fluoride salts and strong acids, which pose significant
ecological and health hazards. These chemicals can lead to
hazardous waste, requiring meticulous management and disposal
processes. To address these issues, researchers have been
exploring environmentally friendly or less harmful methods for
MXene synthesis. Recently, fluoride-free synthesis methods
including the electrochemical method,' molten salts assisted
etching,'** the alkali etching method,'* the chemical vapor depo-
sition (CVD) synthesis approach,'® etc., have been developed to
minimize hazardous byproducts. These methods not only mitigate
safety and environmental concerns but also allow the alteration of
the MXene structure and surface chemistry, making them prom-
ising approaches for scalable and eco-friendly MXene production.

The electrochemical etching method selectively removes the
“A” layer from the MAX phase using non-acidic electrolytes,
making it safer and more environmentally friendly than tradi-
tional acid-based methods. In a two-electrode system (Fig. 1b),
the bulk MAX phase (like Ti3AlC,) serves as both the anode and
counter electrode, with an electrolyte including ammonium
chloride and tetramethylammonium hydroxide (TMAOH, pH >
9). The anode undergoes etching at room temperature, under
a constant potential while the electrolyte is stirred. After a few
hours, the electrolyte turns grey-white with a gelatinous
precipitate, and black powders (stacked Ti;C,T,) settle at the
bottom.

This journal is © The Royal Society of Chemistry 2025

View Article Online

Journal of Materials Chemistry A

The alkali etching method employs alkali solutions (like NaOH
or KOH) to selectively remove the “A” layer from the MAX phase,
resulting in the synthesis of layered MXenes (Fig. 1c). In this
method, an alkaline solution is dissolved in argon-purged deion-
ized water before adding the MAX phase powder. The mixture is
transferred to an autoclave, sealed, and subjected to heating under
an argon atmosphere for 12 hours. After the hydrothermal process,
the resulting suspension is filtered, thoroughly rinsed, and dried
under vacuum, producing MXene with minimal impurities and
a high degree of purity. This method is considered safer and more
straightforward than fluorine-based acidic etching but may yield
lower amounts of MXene or require extended reaction times
depending on the alkali concentration and reaction conditions.

These methods lead to MXene formation but exhibit low
yield and are more time-consuming than fluoride-based
synthesis approaches. Recently, a new approach called dry
selective extraction has been proposed theoretically.’® In this
method, a glass ampoule filled with a known quantity of MAX
phase is placed in a tube furnace at an elevated temperature
(Fig. 1d). Iodine vapors are then passed through the ampoule
containing the MAX phase at 350 °C, acting as an etchant to
remove the A layer and leaving behind MXenes. It was reported
that the reaction does not occur below 350 °C and temperatures
above 400 °C result in over-etching.

Bottom-up synthesis methods allow precise control over
material chemistry, thus enabling tailored customization of
material design. These approaches include the CVvD method'*”
(Fig. 1e) and direct solid-state synthesis. In a recent article,
Wang et al. reported Ti-based and Zr-based MXenes by
combining Ti metal and graphite powder with the desired
quantity of TiCl,."® The sealed ampoules containing this
mixture were placed in a furnace at 950 °C for 2 h to obtain
MXenes. The process involved methane or N, gas reacting with
TiCl, on the titanium surface, resulting in Cl-terminated
Ti,CCl, or Ti,NCl, MXenes. The proposed method is shown to
have the potential for bulk production.

Besides these, salt-template MXene synthesis was reported by
Xiao et al. to synthesize molybdenum nitride."* In this method,
a 2D template of MoO; is prepared and coated with NaCl by
annealing in an Ar atmosphere. The NaCl-coated 2D MoO; mixture
was heated to 650 °C in an NH; atmosphere to yield MoN MXene.
Ding et al. introduced a chemical scissor-mediated method for
precise structural editing of layered transition metal carbides to
synthesize MXene.'” This method uses chemical scissors to open
non-van der Waals gaps in MAX phases, followed by atomic
replacement via diffusion of metal ion intercalants into interlayer
vacancies. The scissors are also used for termination removal.

3. MXene structure and surface
chemistry

MXenes exhibit a surface-rich chemistry that endows them with
unique properties and potential applications.’”® In MXene
synthesis, when the “A” layer is selectively etched from the
precursor MAX phase, interlayer spaces are generated between
the MXene layers, where solvent molecules or functional groups

J. Mater. Chem. A, 2025, 13, I050-11113 | 11053


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ta08094g

Open Access Article. Published on 28 Ginora 2025. Downloaded on 07.01.2026 18:01:51.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

Journal of Materials Chemistry A

:(a) MAX phase

4T T
NN g \¢

View Article Online

Review

TMA-OH:

« Surface functionalities (T,) Tetramethylammonium Hydroxide

~ Na*

o )
R

-OH/-0

dry selective extraction (DSE)

MAX phase @ gaseous etchant

MXene @2 gaseous byproduct

Ti,CCl, MXene
@=Ti @=Cl o=C

Fig.1 MXene synthesis strategies. (a) MXene etching with fluorine-based etchants. Reproduced with permission from ref. 104. Copyrights 2016,
Wiley. (b) Electrochemical etching method. Reproduced with permission from ref. 100. Copyrights 2018, Wiley. (c) Alkali-assisted etching
method. Reproduced with permission from ref. 102. Copyrights 2018, Wiley. (d) Dry selection extraction approach. Reproduced with permission
from ref. 105. (e) CVD method-based MXene synthesis using Ti, graphite, and TiCl,. Reproduced with permission from ref. 103. Copyrights 2023,

The American Association for the Advancement of Science.

are developed (Fig. 2a). These surface terminations on the
MXene surface play an important role in defining the properties
of MXenes.'” The nature of the surface terminations can be
altered during the synthesis of MXenes to tailor the surface
chemistry of MXenes."® The layered structure of MXenes,

1054 | J Mater. Chem. A, 2025, 13, TIO50-11113

combined with their tunable surface chemistry and properties,
allows various applications in electronics, energy storage,
catalysis, sensing, medicine, and more.""*'*?

MXenes typically possess surface terminations, such as -OH, -
0, —Cl, or -F, resulting from the etching process used to synthesize

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 MXene surface terminations. (a) A schematic representation of MXene structures, indicating the surface terminations of the outer metal
layers. Reproduced with permission from ref. 111. Copyrights 2021, The American Association for the Advancement of Science. (b) MXene
termination scenarios: (i) halogen and —O/-OH terminations from the acidic etching of MAX phases, (ii) surface terminations from molten salts,
(iii) surface terminations via molten salts via altered treatment, and (iv) post-synthesis modification introducing uniform terminations. (c) Surface
terminations: (i) FCC sites, (ii) “Top” positions on surface Ti, (iii) HCP sites, and (iv) bridge sites between Ti atoms. Reproduced with permission

from ref. 116. Copyrights 2023, American Chemical Society.

them. During acidic etching, which mainly involves fluoride ions,
MXenes typically exhibit -F and -O/-OH groups (Fig. 2b). F
terminations can be modulated by adjusting acid concentrations,
while their complete replacement with -O/~OH groups can be
achieved through alkaline treatments using KOH, NaOH, or
TBAOH.">"* Molten salt etching (like ZnCl,) facilitates Lewis
acid-base reactions between cations and the A layer, substituting
it with Zn, followed by -Cl terminations."*® Variation in the
composition of molten salts during MAX phase etching facilitates
the incorporation of halogen terminations, such as -Cl, -Br, and -
I. In addition to these, a wide range of terminations, such as -S, -
Se, -Te, -P, and -Sb, can be uniformly introduced onto MXene
surfaces, enabling tailored surface functionalities for diverse
applications (Fig. 2b). Heating MXenes under reactive gases
further allows the formation of uniform -O and -C terminations.
The molten salt method also produces -Cl or -Br terminated
MXenes like Ti;C,Cl,, Nb,CBr,, etc., which can act as templates for
post-synthesis modifications, yielding MXenes terminated with -S,
-Se, -Te, -NH, -O, or bare/-H groups (Fig. 2b).

Theoretical investigations show that MXene surface termi-
nations occupy distinct crystallographic sites.*” For TizC,Ty
MXene, terminations above middle Ti atoms align with FCC
sites, while those above surface Ti atoms adopt a “top”

This journal is © The Royal Society of Chemistry 2025

configuration, and those above C atoms occupy “HCP” sites.
Terminations between Ti atoms form a “bridge” configuration
(Fig. 2c). FCC sites are the most energetically favorable among
these, with most terminations preferring these positions.

These terminations play a significant role in determining the
surface chemistry, stability, and interactions of MXene with
other materials."® The surface terminations of MXenes offer
opportunities for functionalization.”™® The presence of water-
loving polar surface terminations, particularly -OH groups,
leads to a strong affinity for water molecules and promotes
wetting of the MXene surface.’™ This hydrophilicity can be
advantageous for applications such as water treatment and
filtration.*® The surface chemistry of MXenes influences their
solubility and interactions with solvents. MXenes are generally
not soluble in common organic solvents but are dispersible in
water-based solutions due to their hydrophilic nature.”* This
solubility behavior enables their use in solution processing
techniques and the fabrication of MXene-based films, coatings,
and composites.

3.1 MXene oxidation and its factors

MXenes oxidize when exposed to ambient conditions or
elevated temperatures, transforming into their corresponding

J. Mater. Chem. A, 2025, 13, I050-11113 | 11055
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(a) Digital images of TizC,T, suspensions before and after oxidation. Reproduced with permission from ref. 123. Copyrights 2021,

American Chemical Society. (b) MXene dispersion impact in water and isopropanol. Reproduced with permission from ref. 134. Copyrights 2019,
American Chemical Society. TEM images of (c) MXene flakes of fresh TizC, T, solution and solutions stored at room temperature in the air after (d)

7 days and (e) 30 days. (f-h) HRTEM images corresponding to panels

(c—e), respectively. In figure (f), the inset shows the corresponding SAED

pattern, while figures (g and h) display the respective FFT patterns. Reproduced with permission. Reproduced with permission from ref. 47.
Copyright 2017, American Chemical Society. Defects in MXenes: (i and j) depiction of TiO, cluster bonding with TizC,, highlighting the TiO,-(101)
plane-oriented perpendicular to the MXene basal plane (0001). (k) Schematic illustrating TisC, oxidation, showing carbon oxidation at the
positive side and Ti-ion oxidation at the negative side of the internal electric field. Rapid electron transport to the convex area and slow Ti-ion
diffusion create the internal electric field. Reproduced with permission from ref. 127. Copyright 2022, Royal Society of Chemistry. Effect of pH on

MXene oxidation: () proposed mechanism for the oxidation reaction in TisC, T, mixtures under (m

with permission.*?® Copyright 2021, American Chemical Society.

oxides. For example, Ti;C,T, MXene evolves into Ti;C,T,/TiO,
and eventually forms carbon-supported TiO,
particles.”>'** It has been reported earlier that MXene oxidation
starts at the edges of MXene flakes and advances toward interior
basal planes."*"*

The oxidation can be observed through color changes; fresh
Ti;C,T, MXene dispersed in water has a dark green color, which
is converted to a translucent, cloudy hue as oxidation prog-

nano-

resses with time (Fig. 3a). MXene oxidation is relatively faster in
aqueous suspensions than in organic dispersions.'*®'** MXene
hydrolysis is crucial in transforming MXenes into respective
oxides in aqueous suspensions, a process that can be inhibited
in organic solvents. For instance, no oxidation was observed in
iso-propanol solutions of MXenes stored under an O, atmo-
sphere for the same duration'® (Fig. 3b). TEM analysis of freshly
prepared MXenes shows clean surfaces and edges (Fig. 3¢), with
high-resolution TEM images revealing single-crystalline nano-
sheets (Fig. 3f).*” The SAED pattern confirms a hexagonal
atomic structure (Inset: Fig. 3f). After one week of exposure to

1056 | J Mater. Chem. A, 2025, 13, 1050-1TM3

) acidic and (n) basic conditions. Reproduced

air at room temperature, MXene edges display “branch-like”
features and crystalline nanoparticles form on the basal planes
of the flakes (Fig. 3d and g), identified as anatase in fast Fourier
transform (FFT). After 30 days, MXenes completely decompose
into anatase clumps and disordered carbon (Fig. 3e and h). The
presence of dissolved oxygen and water leads to a reaction with
the active edges of the flakes, resulting in TiO, formation.
MXene oxidation is influenced by various factors. For example,
the chemical etching process used to synthesize MXenes in
strong acids creates surface defects in MXene flakes.'*”'*® Under
ambient conditions or in aqueous suspension, these defect-rich
sites ease oxidative degradation, which in turn affects the
properties of MXenes."* Environmental factors, such as expo-
sure to air or immersion in water, further contribute to MXene
degradation. The stability and reactivity of MXenes are signifi-
cantly influenced by factors like the pH of the dispersion,"****

storage temperature,’* MXene concentration,"*>*** flake size,
etc125132

This journal is © The Royal Society of Chemistry 2025
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During sonication-assisted delamination, maintaining
a constant temperature and using Ar can prevent oxidation.
Storing solutions in Ar-sealed vials or refrigeration reduces
oxidation. Using mild etchants like tetraethylammonium
hydroxide (TMAOH) avoids fluorine by-products, enhancing the
stability of MXenes."*® MXenes should be protected from UV
exposure, as prolonged exposure leads to faster oxidation.'*®
Synthesis methods determine surface terminations, with HF-
etching resulting in more -F terminations compared to those
synthesized with LiF-HCL"”

Etching MAX phases with alkali and molten salts prevents
MXene oxidation and hydrolysis.'***® HF etching introduces
defects, accelerating degradation to TiO,. Relatively mild acids
like HCI/LiF and fluorine-free etchants like TMAOH, NaOH, or
KOH reduce the MXene defects.

Defects in MXenes also facilitate oxidation. Defects in
MXenes, created during etching, drive oxidation and affect
reactivity, structural changes, conductivity, and functional
group formation."”®"® Adjusting etchant concentration can
control defects, which can also boost the resistance against
oxidation as well as the performance in desired applications. In
Tiz;C, MXene, Ti atoms form TiO, nanoparticles, while the
remaining carbon atoms cluster to produce amorphous carbon,
resulting in C@TiO, heterojunctions.”” During oxidation at
room temperature, the anatase TiO, (101) plane is oriented
perpendicular to the Ti,C, basal plane (Fig. 3i and j). The
rotation of the TiO,-(101) lattice plane during nucleation
depletes Ti** in adjacent Ti;C, crystals, creating Ti vacancies
and excess carbon atoms. Ti vacancies are commonly found in
the surface layer of MXenes prepared via exfoliation methods.
Ti-vacancies in Tiz;C, MXenes create an internal electric field
that drives electron flow, carbon cluster nucleation, and Ti-
cation diffusion. This field enhances carbon oxidation, form-
ing TiO, nanoparticles and amorphous carbon. Ti-vacancies
also facilitate O, entry into the lattice, promoting TiO, nucle-
ation and growth. Wrinkles and atomic steps act as nucleation
sites for oxidation, with Ti-vacancies promoting carbon oxida-
tion and TiO, formation (Fig. 3k).

Temperature and pH significantly influence MXene oxida-
tion by affecting its reaction kinetics and pathways.***” Higher

View Article Online
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pH slows oxidation at 20 °C, while increased temperature
accelerates it.

The oxidation mechanism of aqueous Ti;C,T, MXene
dispersions starts at ~-OH group sites, with pH significantly
impacting reaction intermediates (Fig. 31). Acidic conditions
protonate surface hydroxyls, enhancing Ti atom electrophilicity
and promoting nucleophilic addition reactions with H,O or O,.
Under basic conditions, excess OH- deprotonates hydroxyls,
forming sodiated intermediates and bulky solvent cages that
hinder oxidation due to steric effects and reduced electrophi-
licity (Fig. 3m and n).

4. MXene-polymer hybrids for
oxidation prevention

MXene-polymer nanocomposites are increasingly recognized
for their ability to prevent MXene oxidation, as polymers serve
as protective layers that shield MXenes from environmental
degradation. Polymers can preserve MXenes for more than 180
days."** These nanocomposites can preserve MXenes not only at
room temperature but also under higher temperatures and
moist conditions.*" This integration not only enhances the
stability of MXenes but also improves their overall performance
in various applications. Table 1 summarizes some MXene-
polymer combinations investigated to enhance MXene stability
over different periods.

4.1 Polystyrene/MXene for oxidation improvement

To address the issue of MXene oxidation, a ‘particle
manufacturing technique’ (Fig. 4a) was employed to develop
polystyrene/MXene (PS/MXene) composites with a 3D conduc-
tive network structure.**® The material conductivity reached
3846.15 S m~ ' when the filler content was merely 1.81 vol%.
Due to the compact and ordered structure of the fabricated PS/
MXene composite, it retains 53.4% of its initial conductivity
after 180 days.

The fundamental procedure for exfoliating Ti;C,T, MXene
and creating PS/MXene composites with a 3D ordered structure
follows the “particle construction” approach.*® First, this work
used the conventional technique of manufacturing MXene

Table 1 MXene-polymer nanocomposites for MXene stability improvement

S. no. MXene-polymer composition MXene etchant Preventive measure Stability duration Ref.
1 MXene/poly(tannic acid) LiF/HCl Oxygen-rich macromolecule 60 days 142
2 MXene/melamine LiF/HC1 Nanocomposite 60 days 143
3 MXene/PVA-CA hydrogel LiF/HCl Nanocomposite 30 days 144
4 MXene/polymer — Nanocomposite 42 days 145
5 MXene/polyacrylamide — Nanocomposite 15 days 146
6 MXene/aramid nanofiber (ANF) LiF/HCl Nanocomposite — 147
7 MXene/polystyrene LiF/HCl Nanocomposite 180 days 140
8 MXene/dopamine LiF/HCl Nanocomposite 13 hours at 170 °C 148
9 MXene/bentonite LiF/HCl Nanocomposite 2 hours at 600 °C 149
10 MXene/sodium alginate LiF/HCl Nanocomposite 30 days 150
11 MXene/PVA LiF/HCl Nanocomposite 50 days 151
12 MXene/PET LiF/HC1 Nanocomposite 200 hours at 70 °C 141
13 MXene/polymer LiF/HCl Nanocomposite 180 days 152

This journal is © The Royal Society of Chemistry 2025
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(a) Schematic showing the exfoliation of TizC,T, MXene and fabrication of composites with a three-dimensional conductive network

framework, (b) storage environment effects on MXene's intrinsic conductivity. (c and d) Impact of environmental factors on conductivity during
composite material preparation, and (e) schematic of the oxidation mechanism in the MXene—polymer composite. Reproduced with permission

from ref. 140. Copyright 2021, Elsevier Ltd.

because of its benefits, which include large lamellae, fewer
flaws, and good electrical conductivity when created by LiF/HCI
etching." The electrical conductivity of freshly prepared
MXene sheets was initially determined to be 2.28 x 10° Sm ™,
as shown in Fig. 4b. This conductivity remained stable over 30
days in an argon atmosphere or at low temperatures. However,
in the air at room temperature, MXene's conductivity dropped
drastically, retaining only 0.026% of its initial value, high-
lighting its rapid oxidation and reduced practicality. The rela-
tionship between conductivity and storage time for PS/MXene
composites is illustrated in Fig. 4c and d. Key findings include:
(1) composites with higher MXene content maintain conduc-
tivity better over time compared to those with lower MXene
content, showing slower degradation. (2) Larger particle
composites exhibit greater conductivity loss than those with
smaller particles, regardless of MXene concentration. Addi-
tionally, smaller PS microspheres create a denser conductive
network, providing superior protection for MXene, as depicted
in Fig. 4e. At larger microspheres, the conductive network is not
well established, while smaller microspheres can form a much
denser network that certainly offers superior MXene protection.

1058 | J Mater. Chem. A, 2025, 13, 11050-1M3

4.2 Polymer passivation

Polymer passivation is a technique used to improve the oxida-
tion stability of MXenes, particularly against oxidation. By
applying a polymer coating, such as polydopamine, the surface
of MXenes is protected from environmental factors that can
lead to degradation. This passivation method effectively
reduces the oxidation rate and maintains the electrical prop-
erties of MXenes over time."”” Under ambient conditions, pris-
tine MXene begins to oxidize at room temperature. FE-SEM
images of untreated MXene after 30 days (Fig. 5a) reveal
powdery particles around the edges, indicating early oxidation.
This process starts at edges and imperfections, progressing
inward as shown in Fig. 5b, where oxidized TiO, (orange)
replaces the MXene flakes (greenish). Prior reports have indi-
cated that the smaller the MXene flake, the higher the oxidation
rate.” Even in its dry state, MXene will eventually oxidize;
nevertheless, the rate of oxidation is slower under ambient
circumstances than in humid environments or DI water.'>* To
prevent oxidation, an MXene film was coated with a 1% polymer
solution in acetone. The polymer layer thickness was ~50 nm.
Sheet resistance (R) was measured over 180 days to evaluate

This journal is © The Royal Society of Chemistry 2025
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Fig. 5 MXene passivation by polymers. (a) FE-SEM image of an MXene sheet after 30 days of exposure to ambient conditions. The MXene flake
that has been highlighted indicates the start of oxidation. (b) An illustration of the oxidation phases of MXene flakes. (c) The ratio of resistance
change (R — Ro/Ro)% for treated and non-treated MXene films up to 180 days, where Ry is the initial sheet resistance. UV-vis spectra of MXene
films (d) non-treated and (e) treated at varying times. Reproduced with permission from ref. 152. Copyright 2022, Elsevier Ltd. (f) PL-MXene
electrode's oxidation stability in comparison to the thin MXene layer. (g) The resistance decrease (AR) and initial resistance (Rg) of the PL-MXene
electrode are shown against time and PVPh concentration, 200 hours after undergoing air oxidation. (h) Evolution of the resistance variations
over time for the PL-MXene electrode under oxidation stability tests at 50% humidity and 70 °C. Reproduced with permission from ref. 141.

Copyright 2021, American Chemical Society.

oxidation stability, with percentage changes shown in Fig. 5c.
The results showed obvious proof that polymer passivation
preserves MXene from oxidization. Even 180 days later, the
relative resistance change, (R — Ro/Ry)%, is ~20% in polymer-
passivated MXene as compared to 800% in pristine MXene.
The UV-vis spectra of the pristine MXene film after 30 days show
the same transmittance as that on day 1; however, the trans-
mittance rises to ~89% after 180 days (Fig. 5d). The high
transmittance may be associated with TiO, formation due to the
oxidized Ti;C,T, MXene."”* In contrast to this, a negligible
change in transmittance was noticed in the passivated MXene
film after 180 days (Fig. 5e), indicating that almost no TiO, is
formed and MXene oxidation is suppressed due to polymer
passivation.

In another study, a polymer laminated MXene (PL-MXene)
electrode was fabricated to analyze the impact of polymer

This journal is © The Royal Society of Chemistry 2025

lamination on electronic applications.”* MXene flakes
dispersed in water were spin-coated on a glass substrate silan-
ized with a self-assembled monolayer of (3-aminopropyl)trie-
thoxysilane (APTES).

Subsequently, poly(4-vinyl phenol) (PVPh) was prepared as
a barrier layer on the MXene film.'*! The PL-MXene film, coated
with a PVPh layer (~60 nm) on an MXene layer (~18 nm),
exhibits a very smooth surface with an RMS roughness of
~1.4 nm. After 200-600 hours of air exposure, the resistance of
bare MXene increases by 310% and 470%, respectively (Fig. 5f).
In contrast, PL-MXenes with PVPh coatings showed minimal
resistance change, between 27% and 38% after 200 hours, with
only slight increases after 600 hours, demonstrating excellent
oxidation resistance (Fig. 5g). Even at 70 °C temperature and
50% relative humidity, PL-MXenes with PVPh coatings main-
tained good stability, showing a AR/R, change of 35% to 60%

J. Mater. Chem. A, 2025, 13, I0O50-11113 | 11059
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(a) Schematic synthesis of MXene and illustration of the single-step fabrication strategy for sodium alginate—MXene films. Sheet-resis-

tance (R/Ro) variation upon treating in (b) HCl (pH = 1) and (c) NaOH (pH = 14), and (d) change in R/Rq for MX15-10 and MX;0@S;-10 with varying
SA content at 11% RH and 25 °C. Reproduced with permission from ref. 150. Copyright 2024, Springer Nature.

after 200 hours, while bare MXene showed a drastic increase of
600% (Fig. 5h).

4.3 MXene-sodium alginate nanocomposites

Sodium alginate (SA) effectively stabilizes MXenes against
oxidation. Alginate-stabilized MXenes maintain their conduc-
tivity and offer improved oxidation resistance. These MXene-
alginate nanocomposites are particularly useful in flexible EMI
shielding applications. Fig. 6a shows a schematic illustrating
the fabrication process of the MXene-SA composite.”® Linen
fabric, chosen for its eco-friendly properties, was used as
a substrate for MXene composite modification. Before applying
the composite, the fabric was treated with decontamination
powder to ensure effective loading. Hydrogen bonding between

1060 | J Mater. Chem. A, 2025, 13, 1050-1M3

SA and MXene was achieved via functional groups on the
MXene surface, enhancing the composite's mechanical strength
and oxidation stability. MXene-SA composites and MXene
alone were subjected to acidic and basic conditions to assess
their environmental stability and oxidation resistance. After 30
minutes in HCI (pH = 1), the sheet resistance of MX;,@85;-10
(MXene with SA) increased to 20.4 & 0.7 Q per sq, whereas MX;,-
10 (MXene without SA) showed a much higher increase to 58.63
+ 0.047 Q per sq (Fig. 6b). In NaOH (pH = 14), the resistance of
MX;,@5;-10 rose to 155.33 £ 7.02 Q per sq after 25 minutes,
compared to a significant rise to 867.67 £ 66.38 Q per sq for
MX;-10 (Fig. 6c). This demonstrates that the MXene-SA
composite offers superior protection against oxidation in both
acidic and basic environments. The results manifest that

This journal is © The Royal Society of Chemistry 2025
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concentrations (0-15%), and (e) change in electrical resistance during heating (170 °C) in air. Reproduced with permission from ref. 148.
Copyright 2020, American Chemical Society. The conductivity variation of (f) pristine MXene films and (g) MXene/PVA films in air.*>*

MX;0@$51-10 has much better stability than MX;,-10 even under
harsh conditions such as acidic and alkaline. The coating of
MXene sheets with SA inhibited the direct interaction of
ambient oxygen, moisture, or corrosive solutions, resulting in
improved oxidation stability.

This journal is © The Royal Society of Chemistry 2025

The oxidation stability of the fabricated MXene composites
was further studied by measuring their sheet resistance after
storing under humid conditions at ambient temperature (25 °©
C). MX;9-10 and MX;,@S;-10 were stored under humid condi-
tions (RH) of 11%, 33%, 75.5%, and 97.6% with varied SA
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amounts of 10%, 20%, 30%, and 40% for evaluating their
stability. There is a change in the resistance of the MX;,-10
composite with time at 11% RH, with the resistance ratio
decreasing to 36.67% from 57.48%. The resistance ratio
decreased from 88.56% to 60.99% for MX,,@S5:-10 upon the
addition of 10% SA (Fig. 6d). MX;,@8S:-10 has a higher resis-
tance ratio than MX;,-10, indicating that MX;,@S;-10 has
a higher stability under varied humid and corrosive conditions.

4.4 Mussel-derived dopamine polymerization

Researchers addressed the oxidation vulnerability of MXene-
based materials by utilizing mussel-derived dopamine poly-
merization."® Dopamine derived from mussels effectively
overcomes oxidation by enhancing interfacial interaction and
ordering in MXene films. Dopamine forms a thin sticky layer on
the surfaces of MXene flakes by in situ polymerization and
binding caused by spontaneous interfacial charge transfer.
Effective oxygen and moisture screening also significantly
increases the ambient stability of MXene films. It is interesting
to note that angstrom thick polydopamine enhances MXene
films' inherent high electrical conductivity. Fig. 7a shows the
fabrication procedure and morphological distinction between
pure- and polydopamine-treated MXene (PDTM) films. SEM
cross-sectional images show that pure MXene has random,
misaligned layers, while PDTM5 films exhibit well-aligned,
consistent MXene sheets (Fig. 7b and c). Neighboring MXene
flakes are aligned in their organized stacking by the polydop-
amine nanobinder, which bridges them together and creates
a highly ordered MXene structure.”*® After applying a polydop-
amine coating, internal voids and misfits could be mostly
eliminated.”” As a result, the dopamine coating increased the
apparent density of hybrid films, resulting in in-plane electron
transfer. Furthermore, dopamine hybridization enhances
MXene's electrical conductivity; PDTM5 has the greatest
conductivity of 5141 S cm ™" as shown in Fig. 7d. The enhanced
flake alignment, enhanced film densification, and increased
electron density all contribute to in-plane electron transport.**®
Polydopamine-treated MXene films exhibit significantly
reduced oxidation under ambient conditions and elevated
temperatures, as shown in Fig. 7e. The PDTMS5 film experiences
a much smaller increase in sheet resistance at 170 °C compared
to the pure MXene film, which shows a five-fold resistance
increase in 13 hours. The PDTM10 film demonstrates even
lower resistance, likely due to thermally induced crystallization
of the polydopamine layer, which also limits oxygen and
moisture infiltration.

The thin dopamine layer protects MXene from oxidation
while maintaining electrical performance and enhancing
interfacial contact.

4.5 Can all polymers prevent MXene oxidation?

As discussed above, while most polymers support MXene
stability, not all polymers can effectively prevent oxidation.
Polymers with a hydrophilic nature are mostly unable to prevent
oxidation in MXenes as hydrophilicity allows water and oxygen
molecules to penetrate the composite and the MXene surface.

1062 | J Mater. Chem. A, 2025, 13, 11050-1M3
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Habib et al. studied the oxidation stability of vacuum-filtered
Ti;C,T, films and MXenes/PVA films and used the electrical
conductivity as an indicator to estimate their stability.”** The
study monitored the decline in the electrical conductivity of
Tiz;C,T,/PVA composites over time and compared it with that of
pristine MXene films exposed to air (Fig. 7f and g). Two different
weight ratios of PVA were used to assess the impact of polymer
concentration on the stability of MXenes: 50-50 wt% Ti;C,T, to
PVA and 10-90 wt% Ti;C,T, to PVA. The study reported that the
pristine MXene maintained only 2% of its initial conductivity in
air after 9 weeks (Fig. 7f). The conductivity of the 50-50 wt%
sample decreased to about 40% of its original value by day 30
and 20% by day 57, while that of the 10-90 wt% sample dropped
to roughly 7% by day 29 and 4% by day 50 (Fig. 7g). Both
samples exhibited a rapid decline in conductivity during the
first four weeks, followed by a slower decrease, indicating
a reduction in oxidation rates due to diminishing reactive sites.
This consistent trend across both composite samples and the
Ti;C,T, film suggests that the oxidation mechanism is mostly
unaffected by polymer content, and the hydrophilic PVA does
not provide an effective protective barrier against oxidation.

5. Synergistic effects on
nanocomposite properties

Typically, the main benefit of composite membranes lies in
their tailored properties, allowing the use of specific materials
for particular applications. MXene materials can serve as
optimal nanofillers, enhancing MXene/polymer membranes
with a range of properties such as increased mechanical
strength,’ better thermal performance,'® enhanced conduc-
tivity,'®* etc. Moreover, the oxidation of MXene materials is
significantly reduced due to their effective encapsulation within
the polymer.’® MXenes can be combined with two types of
polymers: cationic and neutral."*® The cationic polymer (e.g
PDDA) can form electrostatic interactions with negatively
charged MXene nanosheets, resulting in a relatively loose
structure with some voids, similar to the MXene-only film. In
contrast, the neutral polymer (e.g. PVA) can rely on hydrogen
bonding, leading to a compact layered structure (Fig. 8a). Using
negatively charged polymers can enhance the dispersion of
MXene nanosheets due to electrostatic repulsion. Molecular
dynamics simulations reveal the synergy of hydrogen and ionic
bonding agents in effectively transferring local stress while
providing substantial slippage space for MXene nanosheets.***

5.1 Mechanical properties

The mechanical properties represent a crucial factor for
polymer-based composites, which can be effectively enhanced
by incorporating inorganic fillers. The distinctive characteris-
tics and nanostructures of nanomaterials, along with their
reactivity, have made them appealing candidates as fillers to
strengthen polymer-based membranes across various types of
polymers. Usually, free-standing MXenes often experience
inadequate mechanical characteristics and weak interactions
among the nanosheets, which can lead to structural failure due

This journal is © The Royal Society of Chemistry 2025
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Fig. 8 Mechanical properties of the MXene—polymer nanocomposite. (a) Schematic representation of MXene-based functional films demon-
strating tunable mechanical characteristics of flexible, free-standing TizC,T,, TizC,T,/PVA, and TizC,T,/PDDA films. (b) Stress—strain curves
illustrating the performance of TizC,T,/PVA films with varying TisC,T, content.*** (c) Load—displacement curves showcasing the performance of
the MCF/epoxy EMI shielding nanocomposites; (d) hardness and Young's modulus measurements for the MCF/epoxy EMI shielding nano-
composites, illustrating their mechanical properties. Reproduced with permission from ref. 165. Copyright 2019, Elsevier Ltd. (e) Compressive
stress—strain (o—¢) curves for the aerogel (MXene to PAA ratio 1:4) at various strains, with an inset showing energy loss coefficients at these
strains. (f) Fatigue performance of the aerogel (MXene to PAA ratio 1: 1) subjected to 1000 cycles at 50% strain. (g) Changes in elastic stress and
energy loss coefficients over 1000 cycles at 50% strain. (h) Stress—strain curves of the aerogel (MXene to PAA ratio 2 : 1) evaluated at different
compressive strain rates (20, 100, 500, and 1000% min~Y). (i) Tensile stress—strain curve for the aerogel (MXene to PAA ratio 2 : 1); (j) SEM image
illustrating the fracture morphology of the MXene/P| aerogel. Reproduced with permission from ref. 166. Copyright 2018, Wiley.

This journal is © The Royal Society of Chemistry 2025 J. Mater. Chem. A, 2025, 13, 11050-11113 | 11063


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ta08094g

Open Access Article. Published on 28 Ginora 2025. Downloaded on 07.01.2026 18:01:51.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Journal of Materials Chemistry A

to capillary forces during the polymer impregnation process.
Introducing 10 wt% PVA improves the tensile strength of the
Ti;C,T,/PVA film by 34%, reaching 91 + 10 MPa, around four-
fold that of the pure Ti;C,T, film, when the PVA loading was
increased to 60 wt%'®* (Fig. 8b). The enhanced stiffness and
strength indicate effective stress transfer to the embedded
Ti;C,T, nanosheets, suggesting some interfacial bonding, likely
aided by the OH group terminations on Ti;C,T,. The Young's
modulus of Ti;C,T,/PVA films can be adjusted by varying the
Tiz;C,T,-to-PVA ratio. Hollow cylinders made from these films
can support substantial weights; a cylinder with a 6 mm
diameter and 10 mm height can support about 4000 times its
weight (~1.3 MPa) and a similar cylinder with 90 wt% TizC,T,/
PVA can support approximately 15000 times its weight (~2.9
MPa).

To explore this issue in greater depth, researchers have
created MXene composite frameworks by adding crosslinking
agents to connect MXene nanosheets. Researchers combined
resorcinol and formaldehyde with Ti;C,T, to form a composite
framework.' The organic precursors polymerized on hydro-
philic Ti;C,T,, creating a crosslinked Ti;C,T,/C foam (MCF)
structure after pyrolysis. This framework exhibited a well-
connected structure with impressive mechanical strength,
supporting 500 times its weight. Using a similar polymer
impregnation method with epoxy precursors, a dense TizC,T,/
C/epoxy film structure was also produced. The MCF samples
were labeled as MCF-0 to MCF-5, with increasing Ti;C,T,
MXene content from 0 to 1.64 wt%, respectively. The SEM
images show that adding Ti;C,T, MXene to the MCF resulted in
a reduction of cell density due to crosslinked, folded sheets,
while further MXene addition increased cell density and
decreased sheet size.

The polymerization of resorcinol and formaldehyde on
hydrophilic Ti;C,T, MXene effectively fused the carbon struc-
ture and MXene, enhancing crosslinking density and carbon
junctions. The load-displacement curves (Fig. 8c) show that
increasing Ti;C,T, MXene content reduces the indentation
depth of MCF/epoxy EMI shielding nanocomposites, enhancing
their resistance to indentation. As Ti;C,T, MXene content
increases, Young's modulus and hardness improve by 13% and
11%, respectively, due to the superior mechanical properties of
MXenes and the improved stress transfer within the cross-
linked MCF network (Fig. 8d). The higher cell density from
additional MXene further strengthens the cross-linked struc-
ture, boosting the mechanical performance of the nano-
composites. Liu et al. improved the flexibility and mechanical
stability of Ti;C,T,/PI foam by using polyimide (PI) to bridge
Ti;C,T, nanosheets, achieving compressibility and stretch-
ability through freeze-drying Ti;C,T,/poly(amic acid) (PAA) fol-
lowed by polymerization.**® An aqueous solution of hydrophilic
PAA and Ti;C,T, was freeze-dried, followed by thermal anneal-
ing to polymerize PAA into PI. Strong polar interactions between
PI and Ti;C,T, tightly bonded the two components, resulting in
a durable Ti;C,T,/PI foam with excellent mechanical properties,
including compression, torsion, and 180° bending. The MXene/
PI aerogel demonstrates strong interfacial bonding between
MXene and PI, resulting in superior mechanical properties
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compared to neat MXene aerogel. Fig. 8e shows the compressive
stress—strain curves, where the MXene/PI aerogel exhibits
excellent reversible compressibility up to 80% strain (MXene to
PAA ratio 1 : 4), unlike the pristine MXene aerogel, which suffers
from irreversible deformation due to weak interactions between
its layers. The MXene/PI aerogel also has a high energy loss
coefficient (n), reaching 80.9% at 80% strain, indicating strong
energy absorption. This makes it highly effective for shock
absorption, as demonstrated by its ability to protect a glass plate
from fracturing after a heavy impact while maintaining its
original shape. The MXene/PI aerogel was tested for fatigue
resistance through long-term compression-release cycles. After
pre-stabilizing the aerogel with several loading-unloading
cycles, it maintained over 90% of maximum stress with only 7%
volume deformation after 1000 cycles at a fixed strain of 50%
(Fig. 8f), indicating excellent structural robustness. While the
maximum stress and energy loss coefficient slightly decreased
during initial cycles, they stabilized over 1000 cycles (Fig. 8g).
Additionally, the aerogel retained its compressibility at various
strain rates (20, 100, 500, and 1000% min "), with stress—strain
curves showing close overlap (Fig. 8h). Uniaxial tensile tests
show that the MXene/PI aerogel achieves a tensile strain of 26%
and a maximum stress of 31.1 kPa, attributed to enhanced
sheet-to-sheet interactions with PI (Fig. 8i). The tensile stress-
strain curve consists of four stages: (1) elastic deformation,
where stress increases linearly with strain; (2) densification,
marked by continuous stress increase as the porous network
compacts; (3) a plateau region with slower stress increases due
to friction and adhesion; and (4) fracture, characterized by
decreasing stress with fluctuations, indicating structural
failure. Fractured surfaces with pleated cell walls illustrate the
role of micro-folds in tolerating cyclic tensile deformation
(Fig. 8j). Some of the mechanical properties of MXene-polymer
nanocomposites are summarized in Table 2.

5.2 Electrical properties

In any device application, conductivity is a crucial property, and
MXenes excel in this regard, achieving an impressive electrical
conductivity of ~24 000 S cm™'.77®* Among the MXenes, Ti;C,T,
stands as a pinnacle, characterized by its exceptional electrical
conductivity and multifaceted utility across diverse applica-
tions. Most polymers are insulators, but adding MXene flakes
can improve their electrical conductivity. The addition of
MXenes to polymers can separate the layers of MXenes and
promote bonding at the molecular level between MXene and the
polymer. It was found that the electrical conductivity of PVA
increases from 0.04 to 2.2 x 10* S m~' when the MXene
(TizC,T,) content varies from 40 wt% to 90 wt% in the polymer
matrix."® The relationship between the MXene content in the
polymer matrix, e.g. polyacrylamide (PAM), and electrical
conductivity is expressed as'”®

o = k(m — my,)*

In this equation, o represents the electrical conductivity of
nanocomposite (Ti;C,T,/PAM) membranes, k is a constant, m
denotes the MXene loading amount, my, is the percolation

This journal is © The Royal Society of Chemistry 2025
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S.no.  Polymer MXene MXene concentration Mechanical property (MPa) Improvement percentage (%)  Ref.
1 Natural rubber Ti;C, T,  6.71 vol% ~18 (tensile stress) 700 167
2 Epoxy resin Tiz;CoTy 1.0 wt% 98 (flexural strength) 66 168
3 PEDOT:PSS TizC,Ty  TisC,Ty:polymer (3:1)  30.18 (tensile strength) 503.6 169
4 Polyvinyl alcohol (PVA)  Ti;C,T, 2 wt% ~48 (tensile stress) 77.8 170
5 Polyurethane (PU) TizC,T, 0.5 wt% ~18 (tensile strength) 20 171
6 Thermoplastic Ti;C,Ty 0.5 wt% 20.6 (tensile strength) 47.1 172
polyurethane (TPU)
7 PVC TizCoTy 15 Wt% 57.3 (tensile strength) 174.1 173
8 PVA TizC,T, 0.5 wt% 13 (tensile strength) — 174
9 Epoxy Tiz;CN 90 wt% 12.8 GPa (Young's modulus) — 175
10 Epoxy Tiz3CoTy 15 wt% 4.32 GPa (Young's modulus)  20.8 176
11 Epoxy Tiz;CoTy  4.25 wt% 3.96 GPa (Young's modulus) 13 165
12 Polypropylene TizCoT, 2.0 wt% 18.4 (tensile strength) 35.3 177
13 PVA TizC,Ty 40 91 (tensile strength) 313.6 163

threshold required for conductivity enhancement, and « is the
scaling exponent.

The role of MXene in inducing electrical conductivity in
MXene-polymer nanocomposites has been theoretically pre-
dicted for various nanocomposites like polypropylene (PP)/
MXene, nitrile butadiene rubber (NBR)/MXene, natural rubber
(NR)/MXene, polystyrene (PS)/MXene, and polyacrylamide
(PAM)/MXene.*® A proposed model predicts electrical conduc-
tivity, assuming a MXene nanosheet thickness of ~500 nm. The
percolation threshold (¢p), calculated using the interphase
thickness, aligns with experimental values. The ¢, is given by
the following equation:

(401)
“r (D +201)*

where ¢ is the thickness, ¢ the interphase depth, and D the
MXene diameter. Uniform MXene dispersion lowers the
percolation threshold, while clustering increases it. Based on
theoretical predictions, the interphase thickness for NBR/
MXene, PP/MXene, PS/MXene, NR/MXene, and PAM/MXene
nanocomposites is 10, 10, 34, 17, and 5 nm, respectively. The
proposed model yields a tunneling distance of 0.76 to 7.5 nm,
which is below the 10 nm maximum threshold for tunneling
conductivity. For all MXene-based nanocomposites, the theo-
retical calculations match experimental values (Fig. 9a-d).

Yu et al. developed an MXene organohydrogel incorporating
glycerol (Gly), featuring an MXene network for electron
conduction, binary solvent channels for ion conduction, and
multiple solvent-polymer-MXene interfaces for EMI applica-
tions.”® The conductivity of the MXene hydrogel rises sharply
from 0.099 to 0.442 S m~" with increasing MXene content from
0.1 to 2.2 wt%, before slightly decreasing to 0.394 S m™*
(Fig. 9e). This trend reflects the balance between enhanced
electron transport and reduced ion conduction due to smaller
ion channels at higher MXene concentrations.

MXenes, when combined with cellulose nanofibers (CNFs),
form a composite paper that demonstrates significant
improvements in electrical conductivity."®* As the p-TizC,Ty
content increases, the conductivity rises sharply, reaching 739.4

This journal is © The Royal Society of Chemistry 2025

S m™" at 90 wt%. Even at 50 wt%, the conductivity is 9.691 S
m ', exceeding the 1 S m ™" required for effective EMI shielding
applications (Fig. 9f). While the insulating nature of CNFs
slightly reduces the overall conductivity compared to pure p-
Ti;C,T,, their one-dimensional structure aids in the alignment
of MXene nanosheets, ensuring a connected and efficient
conductive network. This nanocomposite exhibits a tensile
strength of 135.4 MPa, a fracture strain of 16.7%, and a high
folding endurance of up to 14 260 cycles.

MXene-based nanocomposites display both isotropic and
anisotropic electrical properties, depending on their structural
alignment and processing conditions. When hybridized with
materials like CNTs and PVDF, these composites can exhibit
anisotropic conductivity, with high in-plane conductivity and
lower through-plane conductivity in films, while achieving
isotropic conductivity in foams. Le et al. prepared PVDF/CNT/
MXene films and introduced foam structures using CO,-assis-
ted foaming at various saturation temperatures (Ts,) and
different MXene content levels. CNTs intertwine with MXenes to
form a 3D conductive network, further improving electrical
performance. PVDF is selected for its pyroelectric effect, high
dielectric constant, mechanical stiffness, and thermal stability.
The in-plane conductivity (¢)) and through-plane conductivity
(01) of PVDF/CNT/MXene films initially increase with MXene
content but level off due to contact resistance between fillers.
With 1 wt% MXene, o) reaches a peak value (~17 Sm™ ") due to
optimal MXene alignment, while ¢, remains lower due to poor
conductivity between layers. Higher MXene content (12 wt%)
leads to aggregation, reducing o and increasing o, slightly.
Composite foams, prepared at T, = 171 °C, show increased o |
and decreased o) compared to films, with more random filler
orientation enhancing through-plane connectivity. Larger cell
sizes at higher Ty, reduce filler contact, lowering both
conductivities. Some of the electrical properties of MXene-
polymer nanocomposites are summarized in Table 3.

5.3 Thermal properties

MXenes exhibit anisotropic properties due to their structural
makeup, with strong covalent bonds within the basal plane

J. Mater. Chem. A, 2025, 13, I050-11113 | 11065
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Fig. 9 Electrical properties of MXene—polymer nanocomposites. (a—d) Empirical findings and conductivity predictions for NBR/MXene, PP/
MXene, PS/MXene, and NR/MXene nanocomposites, respectively. Reproduced with permission from ref. 180. Copyright 2024, Elsevier Ltd. (e)
Conductivity variation of the MXene hydrogel with MXene content.’® (f) Electrical conductivity vs. p-TizC,T, content for p-TisC,T,/CNF
composite sheets. Reproduced with permission from ref. 182. Copyright 2018, American Chemical Society.

providing high in-plane strength, while weaker interlayer forces
allow easy exfoliation.”® This anisotropy results in higher
thermal conductivity within the plane, making MXenes ideal for
heat dissipation in different applications.”® MXenes, particu-
larly Ti;C,, have thermal conductivities that often surpass those
of many metals, making them ideal for enhancing heat transfer
in composites. When incorporated into polymers, MXenes
improve thermal conductivity by forming interconnected
networks that facilitate efficient heat conduction. The effec-
tiveness of these composites depends on the polymer type;
those that form hydrogen bonds with MXenes, like PVA and
PVDF, enhance thermal transfer through better interfacial
bonding. The loading amount of MXenes also influences

Table 3 Electrical properties of MXene—-polymer nanocomposites

conductivity, with significant improvements occurring when
a continuous network is established at higher concentrations.
First-principles density functional calculations show that
MXenes exhibit thermal conductivities greater than most
metals and low-dimensional semiconductors, making them
promising additives for enhancing the thermal conductivity of
polymer composites. Earlier studies demonstrate that a Tiz;C,T,/
PVA membrane (12.71 wt% PVA) demonstrated a thermal
conductivity of 47.6 W m™~* K ', which was lower than that of
pristine Ti;C, (55.8 W m~' K ').** Cao et al. found that the
thermal conductivity of Ti;C,T,/PVDF membranes exhibited
minimal increase at low MXene loading (<1.0 wt%) but surged
at higher levels." This increase is attributed to the extensive

S. no. Polymer MXene MXene concentration Electrical conductivity (S m™") Ref.
1 Natural rubber Tiz;C,Ty 6.71 vol% 1400 167
2 PEDOT:PSS TizCyTy 88 wt% 340.5 169
3 Epoxy TisC,Ty 15 wt% 105 176
4 Epoxy Ti;C,T, 4.25 Wt% 184 165
5 PDMS TisC,T, 2.5 vol% 550 183
6 PVA Ti;C,T, 90 wt% 22433 163
7 PEO TisC,Ty 1 wWt% 210 x 10°° 184
8 PAM Ti;C,Ty 6 Wt% 3.3 x 1072 185
9 PVA TisC,T, 0.14 wt% 590 x 10~° 186
10 Polystyrene TizC,Ty 0.26% 1081 187
11 PVDF-TrFE-CFE® TisC,Ty 19.5 wt% 37.4 188

“ poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE).
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Fig.10 Thermal properties of MXene—polymer nanocomposites. (a) lllustration of the ice-template technique for aligning MXene/Ag nanofillers.
(b) Effective heat transfer in both in-plane and through-plane directions within the welded MXene/Ag aerogel skeleton due to material and
structural synergy. (c) Thermal conductivities of MXene films with varying Ag loadings. (d) Through-plane conductivity comparisons of MXene—
epoxy, MXene/Ag (unwelded)-epoxy, and MXene/Ag—epoxy nanocomposites. (e) In-plane conductivity comparisons of MXene—epoxy, MXene/
Ag (unwelded)-epoxy, and MXene/Ag—epoxy nanocomposites. Reproduced with permission from ref. 193. Copyright 2020, American Chemical
Society. (f) Thermal conductivity of TizC,T,/epoxy composites at 1.0 vol% filler content. (g) Thermal conductivities of TizC,O,/epoxy composites
with varying volume content and filler size. Reproduced with permission from ref. 194. Copyright 2022, Elsevier Ltd.

surface area of Ti;C, flakes and the formation of hydrogen
bonds with PVDF, which effectively reduce interfacial thermal
resistance and enhance thermal conductivity.

To improve the thermal conductivity of MXene/epoxy nano-
composites, Ji et al. designed 3D MXene/Ag aerogels using the
ice templating method (Fig. 10a) as heat transfer skeletons for
epoxy nanocomposites by in situ decorating Ag nanoparticles on

This journal is © The Royal Society of Chemistry 2025

exfoliated MXene nanosheets to improve contact'* (Fig. 10b).
The vertically aligned MXenes, with a high through-plane
thermal conductivity of 472 W m~" K, form a thermally
conductive network when combined with Ag, which has
a thermal conductivity of 430 W m~" K" and low soldering
temperature. The resulting MXene/Ag/epoxy nanocomposite
exhibits a through-plane thermal conductivity of 2.65 W m™*
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Table 4 Thermal properties of MXene—polymer nanocomposites
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Thermal conductivity Improvement

S. no. Polymer MXene MXene concentration (W mK ™) percentage (%) Ref.
1 PVA Ti;C,Ty 2 Wt% — 18.7 170
2 Thermoplastic polyurethane (TPU) TizCyTy 1 wt% — 8.4 172
3 PVC TizC,Ty 15 wt% 3.45 ~1050 173
4 PVA Ti;C, T, 2 Wt% — 8.2 174
5 Epoxy Ti;CN 5 wt% — 2.7 175
6 Epoxy resin TizC,Ty 1.0 wt% — —0.55 168
7 Polypropylene TizC,Ty 2.0 wt% — 11.8 177
8 PDMS Ti;C, T,y 2.5 vol% 0.694 220 183
9 PVDF TizC,Ty 5 wt% 0.363 100 196
10 PVA Ti;C,Ty — 47.6 — 197
11 Epoxy Ti;C,T, 15 wt% 7.60 ~100 198
12 Epoxy Ti;C, T, 1 wt% 0.587 141.3 199

K%, a 26.2% increase compared to that of the MXene-epoxy
nanocomposite, along with improved mechanical and thermal
expansion properties. The films demonstrate distinct thermal
conductive behaviors in the in-plane and through-plane direc-
tions, with in-plane thermal conductivity rising to 47.57 W m ™"
K ! at 3.2 wt% Ag nanoparticle loading compared to 15.64 W
m ' K for pristine MXene films. In the through-plane direc-
tion, the thermal conductivity increases from 0.7 to 2.2 W m™*
K" (Fig. 10c), enhancing efficient heat dissipation in practical
applications; however, Ag nanoparticle loading beyond 3.2 wt%
leads to film fragility. The thermal conductivities of
MXene/Ag/epoxy nanocomposites, measured via the laser flash
technique, exhibited enhancements in both in-plane (Fig. 10d)
and through-plane (Fig. 10e) directions upon incorporating
MXene/Ag fillers. The through-plane thermal conductivity rea-
ches 2.65 W m™" K" at 15.1 vol% filler loading, representing
a >1200% increase compared to pure epoxy resin. This suggests
that Ag nanoparticles improve thermal conductivity by
promoting effective heat transfer channels within the nano-
composite. The observed anisotropic thermal behavior is
attributed to the two-dimensional structure of MXenes, which
results in distinct heat transfer mechanisms along the hori-
zontal and vertical orientations of the film.

Terminal groups on MXenes can impact thermal conduc-
tivity by reducing phonon scattering and enhancing interfacial
interactions with epoxy matrices."**'*> Wang et al. used molec-
ular dynamics and effective medium theory to analyze four
MXenes, Ti;C,, TizC,F,, Ti;C,0,, and Ti;C,(OH),, and their
epoxy composites.*** The study found that Ti;C,0, achieves the
highest thermal conductivity of 140.25 W m~' K™ ', while
Ti3C,(OH), exhibits the lowest interfacial thermal resistance
(ITR), improving composite conductivity at optimal flake sizes
(Fig. 10f). The study assumes MXene flakes as disk shapes with
a diameter and thickness of 0.98 nm. It was proposed that the
effective thermal conductivities of the nanocomposites initially
increase sharply with the lateral size of fillers, eventually
leveling off after reaching a critical size. Among the composites,
TizC,0,/epoxy demonstrates the highest thermal conductivity,
while Ti;C,/epoxy exhibits the lowest due to its intrinsic thermal
conductivity and high ITR. The results indicate two
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intersections between Ti;C,(OH),/epoxy and the -O and -F
terminated MXenes, suggesting that below critical sizes
(325 nm for -O and 772 nm for -F), interfacial thermal
conductance plays a more significant role in enhancing thermal
performance. Additionally, in the Ti;C,0,/epoxy system, a filler
volume content below 2 vol% is optimal to avoid agglomeration,
with thermal conductivity increasing linearly before reaching
a plateau as the MXene size increases (Fig. 10g). Some of the
thermal properties of MXene-polymer nanocomposites are
summarized in Table 4.

6. Synthesis strategies for MXene—
polymer nanocomposites

MXenes can be integrated with a wide range of polymers, facili-
tating the tailoring of nanocomposite materials for specific
applications. The interaction force between the MXene matrix and
polymers in nanocomposite synthesis primarily
hydrogen bonding, van der Waals interactions, electrostatic
interactions, and m-m stacking, depending on the functional
groups present on both MXene surfaces and the polymer chains.*
The MXene surface terminations (e.g., -0, ~OH, and -F) can form
hydrogen bonds with polymers containing polar groups like -OH,
-COOH, -NH,, etc. Additionally, electrostatic interactions may
occur when charged polymers are used, especially in systems
where MXenes have surface charges.”” van der Waals forces
contribute to non-covalent binding, while polymers with aromatic
groups can engage in 7-7 interactions with MXene layers.
These interactions are key to enhancing compatibility, mechan-
ical strength, and functional properties in MXene-polymer
nanocomposites. MXene-polymer composites can be fabricated
using different processing techniques, such as solution
casting,”®”” melt blending,****** electrospinning,* etc., allowing
for the production of complex shapes, thin films, coatings, or
fibers. This versatility in processing enables the integration of
MXenes into a wide range of devices and structures.”**>%

involves

6.1 Surface grafting/modification of MXenes

Due to the abundant functional groups at the surface of
MXenes, it becomes easier to functionalize them with different

This journal is © The Royal Society of Chemistry 2025
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Fig. 11 MXene-polymer nanocomposite synthesis. (a) The surface modification of MXene nanosheets is achieved through an esterification
reaction with serine. (b) MXene network in NMSE is constructed using the latex assembly method. Reproduced with permission from ref. 209.
Copyright 2020, American Chemical Society. (c) MXene—polymer blending. MXene multilayers are then treated with DHT to enhance their
functionality. The functionalized MXene nanosheets are dispersed in a nonpolar solvent and subsequently utilized in the solution processing of
LLDPE 2°* (d) Electrospinning technique. MXene material is concentrated in an aqueous solution and then assembled into a fiber. This fiber was
aligned in the axial direction using a wet-spinning process.?*? (e) The process of LBL self-assembly of (MXene/TAEA),, multilayer films on planar
substrates is depicted schematically.?® (f) In situ polymerization MXene—polymer hybrids. Schematic illustration of the modification process of
MXene with in situ polymerized PPy. (g) Fabrication of PPy/MXene-decorated PET textile, along with the subsequent process of creating
multifunctional silicone-coated M-textile. Reproduced with permission from ref. 82. Copyright 2018, Wiley. (h) Schematic showing the process
of fabrication an MXene/SA hybrid aerogel and its subsequent PDMS-coated MXene/SA foam. Reproduced with permission from ref. 214.

Copyright 2024, Elsevier Ltd.

organic molecules. First-principles calculations revealed that
unmodified Ti;C, MXene can cleave and decompose monomers
effectively. In contrast, surface-functionalized Ti;C,F,, TizC,FO,
and Ti;C,0, bind weakly with monomers due to van der Waals
forces, while Ti;C,(OH), shows a stronger binding affinity.>*® In
the surface modification process, MXene sheets are function-
alized or chemically modified to introduce specific groups or
moieties on their surfaces. These modified MXene sheets are
then mixed or dispersed within a polymer solution or melt.
During polymerization or crosslinking, the functionalized
MXene sheets become covalently bonded or physically

This journal is © The Royal Society of Chemistry 2025

intertwined with the polymer chains, leading to the formation
of a nanocomposite material.**”?°® A protein-inspired supra-
molecular elastomer was developed for intelligent sensing
applications, utilizing self-healable Ti;C, MXene blended with
rubber (serine-grafted epoxidized natural rubber) (S-ENR)
latex.>” The study created a self-healing elastomer inspired by
proteins for smart sensing. MXene nanosheets were esterified
with serine using EDC and DMAP at 100 °C for 3 hours to
produce S-MXene (Fig. 11a). Serine-modified epoxidized natural
rubber (ENR) latex was synthesized by reacting serine with ENR
latex at 100 °C for 3 hours. S-MXenes/S-ENR nanocomposites
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were prepared by combining S-MXene with S-ENR latex, stirring,
sonicating, and drying to form a 3D network film (Fig. 11b).
Besides this, another surface modification technique involving
the covalent attachment of polyethylene glycol carboxylic acid
(PEG6-COOH) onto MXenes through esterification chemistry
was introduced. The surface modification of Ti;C,T, using
PEG6-COOH with high ligand loading significantly improves
the dispersibility of MXene flakes in a wide range of non-polar
organic solvents (e.g., 2.88 mg mL " in chloroform) without
inducing oxidation or altering the structural ordering of TizC,T,
two-dimensional layers.?*® Besides these, there are other reports
on MXenes surface modifications for MXene-polymer
hybridization.>**>'°

6.2 Solution blending

In this method, MXenes and polymers are dispersed in
a compatible solvent and mixed via stirring, ultrasonication, or
high-shear mixing. Then the solvent is removed by evapora-
tion, vacuum drying, or freeze-drying to form a solid MXene-
polymer composite. Carey et al. conducted a study where they
prepared a dispersion of alkylated 2D MXene in nonpolar
solvents using the blending method.*** The study investigated
the pseudocapacitive behavior of the resulting nanocomposite
material. In this process, after the MXene etching, the Li" ions
present inside the multilayers are ion-exchanged with di(hy-
drogenated tallow)benzyl methyl ammonium chloride (DHT)
(Fig. 11c). The resulting multilayers can be easily dispersed in
nonpolar solvents. These can be easily processed with a linear
low-density polyethylene nanocomposite (LLDPE) for many
applications. A notable advantage of this hybrid assembly is
that it remains dispersed for more than 10 days without sedi-
mentation even in nonpolar solvents. Jiao et al. conducted
a study to prepare photothermal healable, stretchable, and
conductive TizC,T, MXene composite films using the vacuum
filtration method, to achieve efficient EMI shielding.*** To
determine the optimal ratio between waterborne polyurethane
(WPU) and natural rubber latex (NR latex), a series of
composite films were prepared with varying WPU : NR mass
ratios. These composite films were respectively denoted as
WNM as they contain WPU, NR, and MXene. The next step
involved obtaining WPU/NR composite emulsions by mixing
specific proportions of WPU and NR latex emulsions in an ice
bath. Subsequently, a TizC,T, suspension was gradually
introduced into the WPU/NR composite emulsions. This step
allowed the incorporation of Ti;C,T, at various volume
fractions.

The WNM films were obtained through vacuum filtration,
followed by natural drying. Recently, Pan et al. have reported
a wearable and flexible MXene and PEDOT:PSS conducting
polymer nanocomposite for continuous noninvasive moni-
toring of sweat glucose.”** The addition of a 0.1% mass fraction
of MXene has significantly improved the conductivity of the
composite. In this study, ethylene glycol has been utilized to
increase the cross-linking and film-forming properties of the
nanocomposite. The nanocomposite hydrogel sensor showed
a sensitivity of 21.7 pA mM ™' ecm ™ within the concentration
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range of 1-94 uM and a sensitivity of 8.3 pA mM " cm ™2 within
the range of 94-1294 pM. Importantly, this glucose biosensor
demonstrated outstanding electrochemical performance in
sweat, which was highly correlated with the corresponding
findings of the glucometer.

6.3 Electrospinning method

The electrospinning technique can prepare polymer fibers with
diameters in the nanoscale range. MXene-polymer nano-
composites can be effectively synthesized using electrospinning
techniques.®>*'* MXene fibers can also be synthesized using the
wet-spinning technique. Eom et al. devised a technique for
producing pure MXene fibers without additional binders.**
This method involves a large-scale wet-spinning assembly,
where MXene sheets are dispersed in water at high concentra-
tions, preventing aggregation or phase separation issues
(Fig. 11d). The coagulation process plays a pivotal role in the
fabrication of these fibers. By introducing ammonium ions
during coagulation, the researchers have assembled MXene
sheets into highly flexible, meter-long fibers. These fibers
exhibit an exceptionally high level of electrical conductivity,
making them promising candidates for various applications in
advanced materials. Besides, MXenes can be incorporated into
polymer solutions used for electrospinning to produce MXene-
polymer composite nanofibers. Recently, a study was conducted
on an electrospun flexible triboelectric nanogenerator that
utilized metallic MXene nanosheets and poly(vinyl alcohol)
(PVA).2"” To prepare the PVA-MXene solution, a 10% (w/v) PVA
solution and 1.0 g of PVA were mixed with 10 mL of distilled
water at 90 °C while stirring for ~1 h. Subsequently, MXene was
added to the PVA aqueous solution and stirred thoroughly to
achieve a homogeneous PVA/MXene mixture. Electrospinning
was performed using a 5 mL syringe and needle with a 0.68 mm
inner diameter at an applied voltage of 18 kV. The combination
of MXene nanosheets and PVA in the composite material
imparts outstanding electrical properties, enhancing its elec-
tronegativity and conductivity. For the positive friction layer,
silk fibroin (SF) was selected as the material for electrospinning
nanofiber films due to its biocompatibility, biodegradability,
and significant triboelectric properties.

6.4 Layer-by-layer (LBL) assembly

This method involves the sequential deposition of alternating
layers of Ti;C,T, MXenes and polymers onto a substrate. The
MXene and polymer layers are formed through techniques such
as dip coating, spin coating, spray deposition, etc. The coating
process can be repeated to achieve the desired thickness and
control the MXene-to-polymer ratio in the composite. A method
for the vacuum-assisted LBL self-assembly of pillared two-
dimensional multilayers comprising MXene and a small mole-
cule called tris(2-aminoethyl)amine (TAEA) was developed.>** In
this process, (MXene/TAEA), multilayers were prepared, where
n represents the number of bilayers formed in the self-
assembled structure. In this method, Tiz;C,T, MXene and
TAEA solutions with a concentration of 1 g L ™" were used.
Porous substrates were placed on a cellulose membrane fixed in

This journal is © The Royal Society of Chemistry 2025
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an adjustable-flow vacuum system. Using airbrushes, atomized
solutions were sprayed onto the substrates. The cycle of spray-
ing TAEA, rinsing with water, and then spraying MXene was
repeated to create (MXene/TAEA), films of the desired thickness
(Fig. 11e). For larger surfaces of 3D CNF aerogel and melamine
foam, a rapid-LBL assembly method was used. MXene and TAEA
solutions were poured on top of the aerogel or foam and forced
through by applying vacuum pressure. (MXene/TAEA),, multi-
layer films can be prepared through LBL self-assembly onto
fibers and foams. Another study was conducted titled LBL
assembly of polyaniline nanofibers (PNF) and Ti;C,T, MXene
electrodes for electrochemical energy storage.*® In this
research, the LBL assembly technique was used to create thin-
film electrodes by stacking PNF and Ti;C,T, MXene materials.
The resulting electrodes were intended for applications in
electrochemical energy storage, aiming to enhance the perfor-
mance of energy storage devices such as batteries or
supercapacitors.

6.5 In situ polymerization

In this method, the monomers of a polymer are introduced into
a solution containing MXene, and polymerization occurs in situ,
meaning within the same environment as the MXene parti-
cles.®#>?* This leads to the formation of a homogeneous
mixture of MXene and polymer, creating a nanocomposite
material with MXene uniformly dispersed throughout the
polymer matrix.*** The choice of the polymer depends upon the

Table 5 MXene—polymer nanocomposites and their applications
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end requirement. If a conducting polymer is chosen, it will
result in a nanocomposite, which may have applications as an
active electronic material, whereas an insulating polymer will
result in a final product with limited or reduced conductivity. In
a study reported by Wang et al., the fabrication of MXene-
decorated multifunctional and water-resistant textiles with
remarkable electromagnetic interference (EMI) shielding and
Joule heating performance was investigated. To achieve this,
PPy modified MXene sheets using in situ polymerization
(Fig. 11f) were utilized, which were deposited onto poly(ethylene
terephthalate) textiles.®” Subsequently, a silicone coating was
applied to the textiles to enhance their conductivity and
hydrophobicity. Highly conductive and water-resistant textiles
exhibited high EMI shielding efficiency and excellent Joule
heating performance (Fig. 11g). In another study, Wu and co-
workers developed compressible, durable, and conductive
PDMS-coated MXene/sodium alginate (SA) foams (MS) for high-
performance electromagnetic interference (EMI) shielding. The
researchers used MXene and SA to fabricate the foam and then
coated the foam with PDMS to enhance its properties for EMI
shielding.”** Ti;C,T,/SA hybrid aerogels were fabricated as
follows: Ti;C,T, suspension (20 mg mL™') was added to
different amounts of SA (0, 4, 12, 28, and 48 mg) with stirring at
500 rpm for 5 h to achieve homogeneous and high viscosity
suspensions. The resulting suspensions were poured into
Teflon molds and rapidly frozen on a copper cylinder immersed
in liquid nitrogen. Subsequently, the directionally frozen
samples were freeze-dried at —60 °C under 10 Pa for 48 h to yield

S.no. MXene Polymerused Synthesis technique MXene concentration Application of the nanocomposite  Reference
1 Ti;C,T, PEDOT:PSS Electrogelation method 0 to 60 wt% Sensing 220
2 Ti;C,T, PEDOT:PSS Ice templating method 0, 1, and 3 wt% Electrical stimulation 221
3 Ti;C,T, PEDOT:PSS Mixing/blending 10-90 wt% EMI shielding 222
4 Ti;C,T, PEDOT:PSS LBL assembly — Energy storage/capacitive sensors 88
5 Tiz;C,T, PEDOT:PSS LBL assembly (spray) 29-76.6 wt% Multifunctional 223
6 V,CT, PEDOT:PSS Mixing/blending — Solar cells 224
7 Nb,CT, PEDOT:PSS Solution mixing MXene : PEDOT:PSS Solar cells 225
(1:5,1:7,and 1:9)

8 TizC,T, PDMS Dip-coating and curing 1, 3, and 5 wt% EMI shielding skins 226
9 Ti;C,T, PDMS Mixing/curing 20-50% Pressure sensor 227
10 V,CT, PDMS Coating — EDL transistor 228
11 Ti,C,T, PU? Mixing 1:1 EMI shielding 229
12 Ti;C,T, PU’ LBL assembly — EMI shielding and Joule heating 230
13 Ti;C,T, Epoxy Coating 0-2 wt% Anti-corrosion 231
14 TizC,Ty  Polypyrrole In situ polymerization MXene: PPy (9:1, 8:2 and 7:3)  Supercapacitors 232
15 TizC,T, Doxorubicin Surface modification 1:2 Tumor targeting 233
16 Ti3;C,T, Chitosan Electrospinning 0-0.75 wt% Antibacterial 234
17 Ti;C,T, Silane Surface modification 1:1 Water purification 235
18 TizC,T, PANI/PU Electrospinning 0-10% Zn-ion batteries 236
19 Ti;C,T, Polypyrrole Polymerization 1:1and 2:1 Pseudocapacitive electrodes 81
20 Ti;C,T, PEG 3D printing — Tissue engineering 237
21 Ti;C,T, PVA Blending 40-90% Flexible electronics 16
22 TizC,T, PVA Solvent exchange 2.50% Strain sensors 238
23 Ti;C,T, SA Ultrasonic mixing 5-30 mg mL ™" Flexible electronic sensors 239
24 Ti;C,T, Polypropylene Hot-pressing 25%, 56%, and 70% Flame-retarding/EMI shielding 240
25 Ti;C,T, TAEA® LBL self-assembly — Supercapacitors 213

“ Tris(2-aminoethyl)amine (TAEA). * Polyurethane (PU).

This journal is © The Royal Society of Chemistry 2025
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unidirectional aerogels. These MS porous architectures were
coated with PDMS by a vacuum-assisted impregnation method.
To create the PDMS-coated MS foam, a mixture of 10 g PDMS
prepolymer, 1 g curing agent, and 30 mL n-hexane was thor-
oughly mixed in a beaker for 30 min. The resulting mixture was
cured at 60 °C for 12 h, resulting in the formation of a thin
PDMS layer on the MXene nanosheets of the MS aerogel,
creating the PDMS-coated MS foam (Fig. 11h). The resulting
PDMS-coated MXene/SA foam exhibited excellent compress-
ibility, durability, and electrical conductivity, making it
a promising candidate for effective EMI shielding applications.
Besides these, Table 5 summarizes different polymers utilized
in the synthesis of MXene-polymer nanocomposites, along with
their respective applications.

Combining MXenes with a wide variety of polymers makes it
possible to enhance and tailor the properties of MXenes and
these can alter the properties of the resulting composite mate-
rial as desired.***>*

7. Applications of MXene—polymer
nanocomposites

The addition of polymers to MXenes can significantly improve
their performance and expand their applications in various
fields. By incorporating polymers with good mechanical
strength and flexibility, the resulting MXene-polymer hybrids
exhibit enhanced mechanical properties, making them suitable
for applications requiring flexibility, stretchability, and impact
resistance.’»****** These applications include flexible elec-
tronics, wearable devices, and flexible coatings.®%#*20%24 poly-
mers can enhance the electrochemical performance of MXenes
in energy storage devices. The combination of MXenes' high
electrical conductivity with polymers' ion transport properties
can enhance the charge storage capacity of these devices.>*">*®
Polymers enhance MXene dispersion, prevent restacking, and
improve synergy, boosting overall material properties.**®

7.1 MXene-polymers for energy storage applications

MXene-polymer composites offer several advantages in energy
storage devices. Polymers can provide mechanical stability to
electrode materials. This improved mechanical stability leads to
enhanced cycling performance and a longer lifespan of energy
storage devices.”®® Due to van der Waals forces, MXenes layers
tend to restack and agglomerate, resulting in reduced accessible
surface area and hindered ion diffusion due to lack of active
sites.”»*** Polymers in MXene-polymer composites help to
disperse and stabilize MXene layers, preventing restacking and
preserving the high surface area of MXenes.'® Polymers can
facilitate ion diffusion within electrode materials.**> Polymers
can enhance the compatibility of MXene electrodes with
different electrolyte systems. Certain polymers can act as ion-
conductive additives or binders that promote ion transport
and enhance the stability of electrolyte-electrode interfaces.
The performance of electrodes, which were fabricated using
PEDOT (poly(3,4-ethylene dioxythiophene)) deposited TizC,T,
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sheets, exhibited an improvement compared to electrodes made
with pristine Ti;C,T,.>**

Polyaniline@MXene-based positive electrodes have been
investigated for asymmetric supercapacitor applications.”** An
electrode is prepared by casting a homogeneous polyaniline
layer onto a 3D porous TizC,T, MXene. This enabled the stable
operation of MXene at positive potential due to the increased
work function after combining with polyaniline. The resulting
flexible polyaniline@MXene positive electrode offers a high
volumetric capacitance of 1632 F cm ™ at 5000 mV s *. In
another study, pseudocapacitive electrodes were developed by
performing oxidant-free polymerization of PPy between the
layers of Ti;C,T, MXene.*" Hybrid electrodes of Ti;C,T, and PPy
achieved up to 416 F g~ " capacitance in 1 M H,SO,.

MXene/PPy (2:1 and 1:1 ratios) nanocomposites, prepared
by mixing delaminated Ti;C,T, and PPy, were utilized for
supercapacitor applications. Cyclic voltammetry (CV) curves of
the hybrid samples revealed a strong pseudocapacitive
behavior. The supercapacitors based on a 2:1 ratio nano-
composite demonstrated higher capacitance than those of
pristine MXene with a 1:1 ratio due to optimized composition.
These supercapacitors outperformed PVA-Ti;C,T, electrodes,
achieving ~99% coulombic efficiency and 92% capacitance
retention over 25 000 cycles. Nyquist plots confirmed good ionic
conductivity, with slightly higher diffusion resistance in PPy-
containing films, attributed to robust bonding, effective ion/
electron transport, and the protective role of MXene.

Besides Ti;C,T, MXene, Ti,C MXene has also demonstrated
excellent energy storage capabilities. Xue et al. developed
ultrafast, metal-free, on-paper micro-supercapacitors (MSCs)
using a composite of conductive PEDOT:PSS and capacitive Ti,C
MXene.”® They developed more effective direct ink writing
(DIW) by combining PEDOT:PSS with Ti,CT,, leveraging its
higher specific capacitance and compatibility with PEDOT:PSS's
hole transport paths (Fig. 12a). Unlike TizC,T,, this blend
avoids conductivity degradation, enabling improved conduc-
tivity, reduced restacking, and high-rate electrochemical
performance even with thick electrodes. At a 1000 mV s~ scan
rate, PEDOT:PSS-Ti,C MSCs (10 layers, =5 pm thick) achieved
a volumetric capacitance of =30.6 F cm >, which is nearly
double that of pure Ti,C MSCs and 6 times higher than that of
PEDOT:PSS MSCs, confirming their synergistic interaction. CV
curves maintained excellent rectangularity, and capacitance
increased linearly with the number of layers at lower scan rates
(Fig. 12b and c). These MSCs retained >96% of their capacitance
after 10 000 cycles at a high scan rate of 1000 mV s~ . They also
exhibited an extended voltage window of up to 6 V and main-
tained outstanding performance even at an ultrafast scan rate of
10 V s~ . This work highlights the potential of Ti,C when inte-
grated with polymers for eco-friendly, high-performance power
sources for paper-based, portable, and wearable electronics.
Additionally, flexible solid-state micro-supercapacitors can be
fabricated by electrochemically polymerizing MXene-facilitated
PEDOT composite films, and these composite films can be
utilized along with MnO, to create pseudocapacitive asym-
metric micro-supercapacitors.>**

This journal is © The Royal Society of Chemistry 2025
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(a) Schematic of interactions between PEDOT:PSS and MXenes (Ti,C and TizC,). (b) CV curves of 10 L MSCs with Ti,C, PEDOT:PSS, and

PEDOT:PSS—Ti,C electrodes. (c) CV curves of PEDOT:PSS-Ti,C MSCs at 200 mV st with different layer numbers.?* (d) CV curves of
S@MXene@PDA at 0.2 mV s~ (first three cycles). (e) Cycling performance of S@MXene@PDA vs. S@MXene at 0.2C. (f and g) Rate performance
and voltage profiles at 0.2-6C. Reproduced with permission from ref. 255. Copyright 2018, Wiley.

MXene-polymer nanocomposites also offer advantages in
batteries, as demonstrated by Yao et al. in Li-S batteries with
MXene-polydopamine (S@MXene@PDA) cathodes.>® The dual
polysulfide confinement strategy effectively suppresses shut-
tling, supports high sulfur loading, and ensures strong

This journal is © The Royal Society of Chemistry 2025

conductivity and lithium polysulfide adsorption for improved
performance. The polar amine sites of the PDA layer enable
strong chemical adsorption of polysulfides, localizing them on
the electrode surface. Additionally, PDA enhances electrolyte

wetting, uptake, and ionic conductivity, improving Li"
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transport. Fig. 12d shows the CV curves of the S@MXene@PDA
cathode at 0.2 mV s~ ', with reduction peaks at 2.27 and 1.98 V
corresponding to the formation of Li,S, and Li,S,/Li,S. Fig. 12e
displays long-term cycling stability at 0.2C, with S@MXe-
ne@PDA achieving 1044 mA h g™ " after 150 cycles (73% reten-
tion), outperforming S@MXene (565 mA h g™, 39% retention)
due to better polysulfide confinement. Fig. 12e and f demon-
strate the rate performance of S@MXene@PDA, showing stable
capacities at 1349-624 mA h ¢~ from 0.2 to 6C, with minimal
capacity loss when returning to lower rates, indicating fast
kinetics and stability.

Besides these, MXene—polymer hybrids can also be utilized
for all-solid-state batteries and fuel cells.'®2%%2372%8

7.2 MXene-polymer nanocomposites in sensors and flexible
electronics

MXene-polymer nanocomposites offer several advantages over
MXene-only systems in the field of sensors.?>¢****2%° The
incorporation of polymers in MXene-based sensors can improve
the sensing performance by enhancing selectivity, flexibility,
sensitivity, and response time depending upon their sensing
nature.>**>%* Polymers can provide a selective environment for
target analytes by interacting with specific molecules, gases, or
ions.>***%* The integration of MXene-polymer nanocomposites
has shown significant promise in enhancing the performance of
pressure and gas sensors due to the higher conductivity and
surface area of MXenes. In a study, a bioinspired interlocked
structure was developed to achieve high deformability in 2D
MXene/natural microcapsule-based flexible pressure sensors
using polyimide (PI) and PDMS.>** To prepare a Ti;C, MXene/
natural microcapsule nanofilm, a 0.2 g portion of natural
microcapsule (NMC) was dispersed in 10 mL of ethanol to
create a well-mixed solution. 10 ml of Ti;C, MXene solution was
then added to the NMC solution, and the mixture was stirred for
2 hours to ensure uniform dispersion of Ti;C, MXenes and
NMC. The mixture was subsequently filtered through a poly-
propylene membrane to create a composite film. This film was
air-dried for 30 minutes at room temperature and carefully
peeled off from the polypropylene membrane, resulting in
a flexible Ti;C,/NMC composite film (Fig. 13a).

Polymeric Ti;C,T, MXene nanocomposites have exhibited
promising applications in room-temperature ammonia gas
sensing.>*® The PEDOT:PSS/MXene composites were prepared
via a simple in situ polymerization process in/on Ti;C,T, MXene
and subsequently utilized to fabricate a gas sensor on a PI
substrate. The synthesis involved adding EDOT to an appro-
priate amount of Ti;C,T, MXene suspension, followed by the
introduction of ammonium persulfate (APS) and poly(4-styrene
sulfonate) (PSS). The mixture was stirred for 24 hours at room
temperature and 1000 rpm, producing a black PEDOT:PSS/
MXene composite solution (Fig. 13b). These MXene-polymer
nanocomposites are used to create wearable capacitive pressure
sensors, with TizC,T, MXene and poly(vinylidene fluoride-tri-
fluoroethylene) (PVDF-TrFE) as the dielectric layer between
PEDOT:PSS and polydimethylsiloxane electrodes, facilitating
reliable human physiological signal acquisition.”® MXene

1074 | J Mater. Chem. A, 2025, 13, IO50-11113

View Article Online

Review

powder in DMF was sonicated for 1 hour to form a homoge-
neous suspension, mixed with PVDF-TTFE to create a solution
with up to 13 wt% MXene, and electro-spun into nanofibers. For
the sensor, PDMS was spin-coated and cured on glass, followed
by PEDOT:PSS spin-coating and DMSO treatment. The
PEDOT:PSS film was peeled off, with CNS placed between two
PEDOT:PSS layers, and carbon tape electrodes were added
(Fig. 13c).

Self-healing sensors based on MXene-polymer nano-
composites have attracted significant attention due to their
unique capabilities in autonomously repairing damage and
restoring functionality.>*® Polymers provide flexibility and con-
formability to MXene-based sensors, enabling their integration
into various form factors and substrates. These composites
combine the exceptional properties of MXene, such as high
electrical conductivity and mechanical strength, with the self-
healing properties of polymers.>®” A study recently developed
a conductive MXene nanocomposite hydrogel with healable and
degradable properties for advanced epidermal sensors.”®” The
hydrogel was created by combining MXene, poly(acrylic acid)
(PAA), and amorphous calcium carbonate (ACC). In the
synthesis, PAA and calcium chloride were dissolved in water
and stirred, followed by the addition of an MXene solution. A
carbonate solution was then added, forming an MXene-PAA-
ACC hydrogel. After formation, the hydrogel was washed thor-
oughly until the water was clear.

Besides these, there are many other reports on MXene-
polymer composites in Table 6 with diverse
applications.32,243,260,268

MXene-polymer composites can lead to the development of
lightweight, flexible, and high-performance electronic devices
with enhanced mechanical properties, tailored electrical
conductivity, and improved protection against environmental
factors.*® The synergistic effects between MXenes and poly-
mers can be used in next-generation flexible electronic devices
with diverse applications, including wearable electronics, flex-
ible displays, EMI shielding, conformable sensors, and piezo-
electric applications.>****”**%! Zhang et al. investigated a flexible
MXene-decorated fabric (M-CF) featuring interwoven conduc-
tive networks. The study explored the fabric's multifunctional
capabilities, specifically focusing on integrated Joule heating,
electromagnetic interference shielding, and strain-sensing
performance.* By incorporating MXene into the fabric's struc-
ture, the researchers aimed to enhance its electrical and
thermal properties, making it a versatile material for various
applications related to heating, shielding, and sensing. After
etching the MXene, inks were uniformly sprayed onto the
surface of pretreated cotton fabrics (Fig. 14a). To achieve
different loading contents of MXene on the fabric, they adjusted
the spray-drying cycles. By varying the MXene content in the
cotton fabric, they aimed to optimize and find the most suitable
MXene loading for achieving the desired multifunctional
applications like EMI shielding, Joule heating, sensing, etc.
(Fig. 14b). The EMI shielding properties of the samples were
studied within a frequency range of 8-12 GHz, employing
awaveguide method. The average EMI shielding effectiveness of
the 2 wt% MXene-based sample is ~25 dB, while for 4 and 6
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Fig. 13 MXene-polymer nanocomposite-based sensors. (a) Schematic diagram illustrating the fabrication process of the TizC,/NMC bio-
composite film. Reproduced with permission from ref. 262. Copyright 2019, American Chemical Society. (b) The schematic illustration depicts
the synthesis process of PEDOT:PSS/MXene composites and the subsequent fabrication process of the gas sensor based on these composites.
Reproduced with permission from ref. 265. Copyright 2020, American Chemical Society. (c) Schematic diagram illustrating the fabrication
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wt%, it measured 33 and 36 dB, respectively. The sensors based
on 2 wt% MXene led to maximum resistance change under the
same bending strain, making the nanocomposite ideal for
detecting small human activities. The optimized 2 wt% M-CF
sensor maintained consistent resistance change for more than
5000 cycles of bending and releasing. Attached to a finger, the
MXene-based sensor consistently detected resistance changes
during bending movements and accurately recorded a pulse
rate of 80 beats per minute.

Polymer lamination can effectively mitigate MXene oxida-
tion, as evidenced by their application in various devices. Lee
et al. demonstrated that laminating a thin poly(4-vinylphenol)
(PVPh) layer as a protective film on MXene (PL-MXene)
protects it from the external environment.*® This combination
was utilized for the electroluminescent (EL) display, whose
structure is demonstrated in Fig. 14c. The relative luminance
variance (AL/Ly) of devices with PL-MXene and bare MXene
electrodes over time is shown in Fig. 14d. Besides these, there
are many other reports on the usage of MXene-polymer nano-
composites in the domain of flexible devices with a wide variety
Of applications.244,248,256,258,279,282,283

MXene-polymer nanocomposites are also studied for
piezoelectric applications. Piezoelectric sensors can transform
the plentiful mechanical energy that surrounds us into elec-
trical energy, and mechanical energy harvesters are seen to be
one of the most appealing energy harvesting technologies.
Nevertheless, their poor electrical performance is preventing
them from being used practically. Because the electrical
performance of an energy harvester may be enhanced by har-
vesting the applied mechanical energy in two harvesters
concurrently, hybridization of two distinct mechanical energy
harvesters such as MXene and any other piezoelectric material
may offer a solution to this problem.

An overall schematic representation of the hybridization
generator integrating MXene and barium titanate as conductive
fillers in the PDMS matrix (HG-MBP) is shown in Fig. 14e.>** HG-
MBP was made of MXene/BaTiO;, polyimide (PI), and
aluminum (Al), as seen in Fig. 14e.

The electrode, substrate, piezoelectric layer, and triboelectric
layer are all PDMS (MBP) composite films. As seen in the inset
photographic image of Fig. 14e, the superior flexibility of HG-
MBP was verified with a high bending angle using a bending
test. This resulted from the intrinsic properties of the MBP
composite film, which has a thickness of 125 + 10 um and
contains 2D and nano-scaled materials, such as MXene sheets
and BaTiO; nanoparticles, inside the PDMS matrix with high
elasticity. A schematic of MXene is shown in Fig. 14g(i). Addi-
tionally, X-ray diffraction (XRD) analysis was performed to verify
that MXene was successfully synthesized. As shown in
Fig. 14g(ii), a high open-circuit voltage of 80 V, a short-circuit
current of 14 pA, and a power density of 13.5 W m™~> were
achieved after determining the ideal MXene concentration. An
example of this is the successful control of a 3D printer-
modeled robot hand using the finger joint motions of a real
hand that has HG-MBPs attached. The k-means clustering
approach was also used in the development of the object
recognition system, which distinguishes between various

This journal is © The Royal Society of Chemistry 2025
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Fig. 14 MXene—polymer nanocomposites in flexible electronics. (a) Multifunctional MXene-decorated cotton woven fabrics fabricated by
employing the spray-coating method, where the MXene material is applied to the cotton woven fabric to impart multifunctional properties like
EMI shielding, Joule heating, strain sensing, etc. (b) Demonstration indicating the applications of MXene coated flexible fabrics in different areas.
Reproduced with permission from ref. 59. Copyright 2020, American Chemical Society. (c) SEM image showing the cross-sectional view of an
organic AC-EL display with a PL-MXene electrode (scale bar: 50 nm). The inset provides a schematic representation of the PL-MXene organic
AC-EL display. (d) Maximum AL (luminance change) to Lg (initial luminance) ratio of bare MXene and PL-MXene organic AC-EL displays as
a function of air exposure duration (days).>® Copyright 2020, American Chemical Society. (e) General schematic representation of the manu-
factured HG-MBP with the Al electrode connected to the Pl substrate spin-coated with a MBP composite film. The inset graphic illustrates the
constructed HG-BMP's flexibility. (f) MXene and BaTiOs particles implanted in the PDMS matrix as shown in a cross-sectional EDX picture. (g) (i)
MXene's schematic chemical bond structure and (ii) XRD result.?®*
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materials with a high classification accuracy of 93.33%. These
findings demonstrate the great potential of the suggested HG-
MBP as a material detection sensor and human gesture
manipulation system, which is anticipated to be used as a next-
generation e-skin in the human-machine interface.

MXene exhibits a better piezoelectric effect on poly(-
vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE)
compared to polyvinylidene fluoride (PVDF). Generally the
(beta-phase) B-phase in PVDF crystals exhibits the best piezo-
electric properties, although achieving this phase in PVDF is
still challenging.”®?% However, PVDF-TrFE inherently
possesses a larger content of the electroactive B-phase than
PVDF due to its higher steric hindrance.*®” The incorporation of
MXene into PVDF-TTFE further promotes the nucleation of this
phase, leading to improved piezoelectric properties.®®® This
enhancement is less significant in PVDF due to its lower initial
B-phase content. The dielectric constant significantly increases,
while dielectric loss decreases in PVDF-TrFE as a result of the
interaction between the polymer matrix and the surface func-
tional groups of MXene. PVDF-TrFE/MXene composites exhibit
enhanced mechanical flexibility and durability, making them
more suitable for applications in flexible electronics and wear-
able devices. Fatemeh M. et al.**® reported the fabrication of
acoustic energy harvesters using electrospinning of the piezo-
electric polymer PVDF-TrFE onto fabric-based electrodes. The
incorporation of Ti;C,T, MXene flakes effectively induced
polarization locking within the electro-spun PVDF-TrFE, opti-
mizing its electromechanical performance. The resulting device
was mechanically robust, lightweight, and flexible, enabling
efficient energy harvesting and sound detection within the 50 to
1000 Hz frequency range and at sound pressure levels between
60 and 95 dB. The device demonstrated an impressive sensi-
tivity of 37 V Pa~ ', outperforming previous PVDF-based acoustic
harvesters. It achieved a peak output power of 19 mW cm > at
200 Hz and 95 dB. This advancement highlights the potential of
MXene-enhanced PVDF-TrFE composites in powering small
electronic devices, including implantable biomedical devices,
smart wearables, and remote Internet-of-things (IoT) systems.
The comparison of PVDF/MXene and PVDF-TrFE/MXene
composites is given in Table 7. Numerous studies that reported
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the applications of PVDF-TrFE/MXene-based piezoelectric
nanogenerators can be found here.**>

Zhao and colleagues used rolling,*®* hot pressing, and elec-
trospinning techniques to create a high-performance MXene/
PVDF composite film with a B-phase of more than 95 weight
percent. The MXene/PVDF-based sensor showed an exceptional
voltage sensitivity of up to 0.0480 V N~ ', It is important to
remember that the MXene used in this work was generated via
HF etching, which left it with rich surface groups. The favorable
impact may be primarily ascribed to the hydrogen bonding
interaction that favors all trans planar conformation (B-phase)
during PVDF crystallization and is brought about by the -OH
groups of the MXene and F atoms of PVDF chains. The directed
distribution and orderly stacking of MXene flakes, which facil-
itated the transfer, storage, and release of electric charge, were
further examined by Han and colleagues.*® Furthermore, this
study discussed the -F groups of the MXene with interfacial
compatibility, which are typically considered as significant
surface functional group for modulating the surface chemistry
of MXenes.

Even though adding MXenes to composites increases their
piezoelectricity for improved sensing properties, if the MXene
level is over the percolation threshold, the composite's
performance drastically declines.****°* This may be explained
by the fact that when the amount of conductive MXene is too
high, many connections are created that degrade the perfor-
mance. Increased MXene content may result in additional
B phases but a conductive route inside the composite. Addi-
tionally, a lower MXene content results in fewer  phases. One
important component for improving performance is the
percolation threshold. Li and colleagues used molecular
dynamics to simulate MXene/PVDF composite material
systems with varying MXene levels based on the Forcite
model.**> They then computed the free volume fraction (FFV)
to demonstrate the impact of MXene sheets on the shape of the
macromolecular chain. The space between molecules is known
as free volume. When a suitable number of MXene sheets were
introduced into the PVDF polymer system, the polymer
system's FFV dropped to its lowest value, indicating that there
less room for macromolecular chains

281

was to move.

Table 7 The comparison of several MXene-based composites as piezoelectric nanogenerators

Components MXene content (wt%) Device dimensions Source Fabrication technique  Sensitivity Power density  Ref.
PVA/Ti5C,Ty — 8 x 8 mm? 0.5 Hz Electrospinning — 42 mW m > 293
Glycine/Nb,CT, — 100 mm* 0.6 Hz, 10 N Crystallization 5pCN! — 294
PVDF/Ti;C, T, — 1 x 1cm? 96.5 dB, 0.2 N Crystallization 0.4nAkPa' — 295
PVDF/Ti;C, Ty 0.4 wt% 2.5 cm x 3.0 cm 1-3 Hz Electrospinning 43 pCN! — 281
PVDF/Ti;C, Ty 1.0 wt% 2 X 20 mm 1-10” Hz Microinjection molding 189 pWem™2 280
PVDF/Ti;C, Ty 0.01-0.05 g L " 2 cm X 2 cm 4.7 N, 5 Hz Spin- and spray-coating — 14 pW cm > 296
PVDF/Ti;C, T, 5-25 wt% 20 mm x 20 mm  1-8 Hz Electrospinning — 11213 Wm™2 297
PVDF/CNT/TizC,T,  0.05-0.2 wt% 2 x 1.5 cm? 1-500 MQ Electrospinning — 18.08 Wm > 298
PVDF-TrFE/Ti;C,T, 0.05-0.2 wt% 12.56 cm? 200 Hz, 95 dB Electrospinning 37VPa? 0.207 mW m > 288
PVDF-TIFE/Ti;C, T, 0.02-0.5 wt% 2.4 cm? 5kPa, 1 Hz  Printing —52.0 pCN' — 299
PVDF-TrFE/Ti;C,T, 2.0 wt% 1 x 1 cm? 20N, 1Hz Electrospinning — 3.64mWm™2 285
PVDF-TIFE/Ti;C,Ty  16% (W/V) 15 x 1.3 mm 7N, 6 Hz Electrospinning — 4.02W m™> 289
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Additionally, the optimized sensor demonstrated a sensitivity
of up to 55.42 mv kPa™".

Due to their varied inherent characteristics, MXenes give
composite materials new functions in addition to improving
piezoelectric performance. In addition to their electrical benefits,
MXenes are biocompatible, which makes them appropriate for
a range of biomedical applications.***?*** MXene-based compos-
ites can be employed safely in settings that require interactions
with biological systems thanks to their biocompatibility. MXenes
are promising materials for advanced composite technologies
because of their improved piezoelectricity and bio-friendly
qualities, which help to close the gap between high-
performance materials and environmentally and biologically
compatible solutions. By using MXenes' high electrical conduc-
tivity to increase electron transfer rates, Fu and colleagues were
able to generate and transport electrical charges under
mechanical stress, improving the piezoelectric response.’®
Furthermore, the MXenes in the composite not only generated
sufficient heat to eradicate bacteria but also produced singlet
oxygen, which may also have a highly effective sterilizing effect.
This suggests that it has significant potential for use in
biomedical and self-powered body monitoring applications. A
comparison of several MXene-polymer composites in the field of
piezoelectric nanogenerators is given in Table 7.

7.3 MXene-polymer nanocomposites in 3D/4D printing

MXene polymer composites offer great promise for 3D/4D
printing applications, integrating MXene's exceptional proper-
ties of high electrical conductivity and mechanical strength with
the versatility and tunability of polymers.******® Enabled by 3D/
4D printing technology, these composites showcase dynamic
and shape-changing capabilities in response to external stimuli,
paving the way for advanced engineering and smart
applications.?*"3%®

Programmable micro-supercapacitors can be developed
using 3D printing of a composite ink consisting of PEDOT:PSS/
MXene/ethylene glycol (PME).>* In Fig. 15a, the design and
preparation procedure of 3D printed PME gel composites for
micro-supercapacitors is illustrated. By mixing MXene and
ethylene glycol (EG), and PEDOT:PSS solution, an ink was
prepared. During the fabrication process, the ink was trans-
ferred to a syringe and extruded under pressure through a nee-
dle to construct thick interdigitated electrodes for MSCs. To
achieve controlled solidification and form a highly inter-
connected 3D framework, a cold plate-based freezing technique
was applied during the printing process. In this process,
PEDOT:PSS (Fig. 15b) plays a significant role, and by appropri-
ately bridging the PEDOT structures, an integrated porous
structure is created for the optimization of ion/electron trans-
port kinetics in the fabricated gel (Fig. 15c).

In addition to the development of 3D printing, 4D printed
hydrogels using MXene and PEDOT:PSS have been developed,
showcasing high-efficiency pseudocapacitive energy storage
capabilities.?*

MXene hydrogels were prepared via self-assembly by mixing
Ti;C,T, MXene suspension with PEDOT suspension, followed

This journal is © The Royal Society of Chemistry 2025
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by sonication. A solution containing DMSO, sulfuric acid,
sodium r-ascorbate, and deionized water was added and stirred.
The mixture was then poured into molds and heated to form
Ti;C, T, MXene hydrogels. These hydrogels were further treated
with sulfuric acid to improve mechanical strength and washed
to remove impurities. The optimization involved adjusting the
MXene content, DMSO volume, sulfuric acid concentration, and
sodium r-ascorbate ratio. The method offers numerous advan-
tages, especially remarkable versatility and feasibility in
synthesizing various MXenes such as Nb,CT,, Ti;C,T,, and
Mo0,Ti,CsTy.

An approach to 3D printing using MXene and poly(vinyl
alcohol) (PVA) composites using MXene-surfactant ink has also
been proposed for energy storage applications. Through the
controlled deposition of highly conductive MXene particles
onto a PVA matrix, the fabricated sample exhibited conductive
behavior.®* In a separate study, Li et al demonstrated the
production of elastic nanocomposites by encapsulating 3-(tri-
methoxysilyl)propyl methacrylate-modified MXene nanosheets
within a photocurable polyurethane acrylate resin (PAR) matrix
using digital light processing 3D printing. By adjusting the
MXene content in the PAR, the mechanical properties of the
elastomers were tailored. The resulting MXene-PAR nano-
composites, containing 0.1% w/w fillers, exhibited a remarkable
tensile strength and elongation at a break of 23.3 MPa and
404.3%, respectively, representing a significant increase of
100.8% and 37.8%, compared to the control.*’® Some other
reports on MXene-polymer composites in 3D/4D printing are
also available in the literature.>*”**

7.4 MXene-polymer nanocomposites in EMI shielding

EMI shielding is the most extensively explored area among the
applications of MXene-polymer nanocomposites. These
composites offer several advantages in the field of EMI shield-
ing.>*>3 MXene-polymer composites exhibit lightweight,
conductivity, and improved mechanical properties, making
them highly suitable for EMI shielding applications.*'**'* Poly-
mers provide the advantage of tunability in MXene-polymer
composites, allowing the customization of EMI shielding
performance for specific applications or requirements.>»*'* By
selecting appropriate polymers with specific dielectric proper-
ties, the composite's overall electrical conductivity and imped-
ance matching can be tailored to provide optimal shielding
performance within desired frequency ranges.***** Polymers in
MXene-polymer composites provide chemical resistance and
durability, enhancing the longevity and performance of EMI
shielding materials. The polymer matrix acts as a protective
layer, shielding the MXene flakes from environmental factors
such as moisture, chemicals, or oxidation.?*

Different structures of MXene/polymer composites offer
distinct mechanisms for EMI shielding depending on various
factors.*®> In multilayer MXene/polymer composites, multiple
MXene layers are stacked within the polymer matrix (Fig. 16a).
The interlayer spacing and alignment influence the EMI
shielding. Electromagnetic waves penetrate the composite and
get reflected or scattered at the interfaces between the MXene
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Fig. 15 3D/4D printing applications. (a) A schematic illustration of the preparation of 3D printable PME gel composite inks and interdigital
electrodes is depicted. (b) The morphology and electronic structure transition of PEDOT:PSS within the PME gel composites. (c) A schematic

illustration of the gelation process and the mechanism for enhancin

g electron/ion transport in the PME gel composites. Reproduced with

permission from ref. 26. Copyright 2023, Wiley. (d) Composite inks comprising MXenes, PEDOT:PSS, and additives are utilized for 3D printing
designed patterns. Through a self-assembly process, these inks transform into MXene hydrogels.**®

layers and the polymer. This multiple reflection and scattering
lead to effective EMI attenuation. Porous MXene/polymer
composites have voids or pores within the material (Fig. 16b).
These voids can trap and dissipate electromagnetic waves,
reducing their propagation. The interconnected porous network
of MXene also enhances the electrical conductivity, further
improving the EMI shielding efficiency. In segregated MXene/
polymer composites, MXene and polymer phases exist as

1080 | J Mater. Chem. A, 2025, 13, 11050-11113

distinct domains within the material (16¢). The MXene domains
act as conductive pathways, while the polymer regions provide
structural support. This phase separation enhances electrical
conductivity and enables effective EMI shielding by creating
a conductive network to dissipate electromagnetic energy. Some
MXene/polymer composites include magnetic particles or other
conductive additives (Fig. 16d). MXene/polymer composites
with conductive and magnetic fillers show excellent EMI-

This journal is © The Royal Society of Chemistry 2025
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Fig. 16 EMI shielding mechanisms vary among different structures of MXene/polymer composites. (a) Multiple MXene layers lead to reflection
and scattering, effectively attenuating EMI. (b) The interconnected MXene network and voids trap and dissipate electromagnetic waves, reducing
their propagation. (c) Separate MXene and polymer domains create conductive pathways, ensuring efficient EMI shielding. (d) The inclusion of
magnetic or conductive fillers enhances impedance matching, improving EMI absorption.®* (e) Diagram depicting electromagnetic microwave
dissipation in the MXene/AgNW/PEDOT:PSS coating. Reproduced with permission from ref. 316. Copyright 2023, Elsevier Ltd.

shielding performance. The conductive network induces an absorption. These additives enhance the electromagnetic
impedance mismatch at the composite/air interface, leading to  absorption and scattering properties of the composite.

high reflection. Magnetic materials enhance impedance To address the challenges posed by harsh freezing and high-
matching at the conductive filler/air interface, increasing EMW  humidity environments for polymeric EMI shielding materials,
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Chang et al. developed ultrathin, flexible MXene/Ag nanowires/
PEDOT:PSS composite coatings.**® Fabricated via drop-casting
and hydrophobic spraying, these coatings achieve an EMI
shielding effectiveness of 31.5 dB at ~10 pm thickness. These
nanocomposite coatings also offer excellent electro/photo-
thermal properties, water repellency, interfacial adhesion, and
mechanical durability, making them suitable for cold and damp
conditions. The shielding mechanism of the MXene/AgNWs/
PEDOT:PSS coating is shown in Fig. 16e.

As an electromagnetic wave strikes the MXene/AgNWs/
PEDOT:PSS coating, most of it reflects due to impedance
mismatch. The penetrating portion interacts with dense charge
carriers, leading to significant polarization and conduction
losses. The 1D AgNWs bridge the gaps between MXene nano-
sheets, creating conduction networks that enhance electron
hopping and migration, thus increasing conduction losses.
Additionally, the lamellar microstructures cause the wave to
bounce between MXene layers, further dissipating energy due to
impedance mismatch at the PEDOT:PSS/MXene interfaces.

In a recent study, Ti;C,T, MXene composite films were
developed for efficient EMI shielding, featuring photothermal
healing, stretchability, and high conductivity.>"* By increasing
the MXene content in waterborne polyurethane (WPU), natural
rubber, and MZXene-based composite (WNM) films, the
conductivity increased sharply, which led to high EMI shielding
for the WNM composite, exhibiting an EMI shielding efficiency
(SE) of 76.1 dB at a thickness of 336 + 15 pm for the X-band,
whereas, for the Ku-band, the EMI SE value is ~80 dB. The
EMI shielding mechanism in the composite films is based on
induced polarization due to the MXene functional groups. The
local dipoles between Ti and surface groups (-F and -OH),
especially -F on MXene surfaces, induce dipole polarization,
leading to attenuation of penetrated EMWs through interfacial
polarization loss. Additionally, polarized interfaces between the
honeycomb-like MXene network and the polymeric matrix
enhance polarization loss, further improving EMI shielding
performance. The honeycomb-like MXene network structure
contributes to the exceptional EMI shielding performance of the
WNM films across a wide frequency range.

These advantages of MXene-polymer composites in EMI
shielding make them highly attractive for various industries,
including flexible electronics,*” telecommunications,*® and
aerospace,*'® where effective protection against electromagnetic
interference is crucial.®*® The synergistic effects between
MXenes and polymers enable the development of lightweight,
flexible, and high-performance EMI shielding materials with
improved properties and capabilities.

7.5 MXene-polymer nanocomposites for anti-corrosion
applications

The exceptional characteristics of Ti;C,Ty, such as its unique
layered structure and large specific surface area, along with
remarkable electrical and mechanical properties, make it highly
promising for anti-corrosion applications.®***"*?*> To utilize the
inherent anticorrosion properties of pristine Ti;C,T, nano-
sheets, these were incorporated in the form of single- to few-
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layer TizC,T, nanosheets into a waterborne epoxy coating
(WEC) through simple physical mixing. Zhang et al. conducted
a study on the surface functionalization of Ti;C,T, and its
application in aqueous polymer nanocomposites to enhance
corrosion protection.*”” In this approach, they utilized [3-(2-
aminoethyl)aminopropyl] trimethoxy silane (AEAPTES), a silane
coupling agent, to modify the Ti;C,T, MXene. This modification
aimed at adjusting the wettability of Ti;C,T, to improve its
compatibility with the polymer matrix in the nanocomposites.

In another study, a few-layer amino-functionalized Ti;C,T,
nanosheets (k-Ti;C,) were combined with an interpenetrating
polymer network (IPN) to create k-TizC,/IPN composite coatings
and the tribological characteristics of these coatings were
examined®* (Fig. 16a). The wear rates of the k-Ti3C,-0.75 (0.75
wt% amino functional Ti;C,T,) composite coating decreased by
82.41% before UV aging and 74.55% after UV aging, compared
to the pure IPN coating, under dry friction conditions. Addi-
tionally, during the tribo-corrosion test in a 3.5 wt% NaCl
solution, the k-TizC,-0.75 composite coating exhibited the
highest open circuit potential (OCP) and the lowest coefficient
of friction (COF) among all coatings, both before and after UV
aging.

In a recent study, the anticorrosion and anti-wear behavior of
an inorganic-organic multilayer protection system consisting of
an epoxy coating incorporating Ti;C,T, MXene was investi-
gated. The researchers designed and prepared this protective
system to enhance its effectiveness against corrosion and
wear.*® The hydrophilic nature of Ti;C,T, allowed it to maintain
stable dispersions within the epoxy matrix. This characteristic
played a vital role in creating an effective physical barrier for
anti-corrosion purposes. Ti;C,/epoxy coatings with different
Ti;C, contents (0.5, 1, and 2 wt% Ti;C,T,/epoxy) were obtained
via the curing reaction of epoxy resin with an amine curing
agent (Fig. 17a). The mechanism of protection from corrosion
with Ti;C, content was proposed as demonstrated in Fig. 17b
and c. With no MXene content, the corrosion probability is high
and as the MXene content increases, the corrosion inhibition
efficiency increases. But as the TizC, content was increased to
2.0 wt%, irregular corrosion particles began to accumulate once
more and corrosion inhibition efficiency decreased. This indi-
cates that beyond the optimal content, MXene tends to
agglomerate, adversely impacting the anti-corrosion perfor-
mance. Hence, Ti;C, nanosheets can effectively enhance the
corrosion resistance of the coatings, but only when added in the
optimal amount. The Tafel plots display the corrosion behavior
of the uncoated Q345 sample (polished steel), pure epoxy, and
Ti;C,T,/epoxy composites with different Ti;C,T, ratios
(Fig. 17d).

Following a 96-hour immersion in a 3.5% NaCl solution, it
was observed that the Ti;C,T, provided enhanced corrosion
protection on steel substrates compared to pure epoxy coatings.
This improvement in anti-corrosion properties was attributed to
MXene flakes in an optimized concentration, acting as thin film
barriers that hindered the diffusion of electrolytes and provided
effective corrosion protection to the substrate. The anti-
corrosion performance can also be achieved through well-

This journal is © The Royal Society of Chemistry 2025
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Fig. 17 The anti-corrosion performance of MXene-polymer composites. (a) Synthesis of k-TisC,/IPN coatings. Reproduced with permission
from ref. 323. Copyright 2021, Elsevier Ltd. Schematic representation of the corrosion process in two scenarios: (b) without a TizC, containing
epoxy coating and (c) with a TizC, containing epoxy coating. (d) Tafel plots of the samples immersed in 3.5% NaCl for 96 hours. Among the
uncoated and coated samples, the 1 wt%-coated sample exhibited the most superior protection. This was evident from the substantial positive
shift in the potential value (E.or) and the lowest corrosion current (/o). The potential was measured relative to the saturated calomel electrode,
utilized as the reference electrode. Reproduced with permission from ref. 66. Copyright 2019, Elsevier Ltd.

dispersed MXene-polymer composite coatings, made possible
by covalent modification and ambient electron-beam curing.”*

7.6 MXene-polymer nanocomposites in biomedical
applications

Polymer-functionalized MXenes exhibit exceptional properties
that make them highly valuable for various applications in the
medical sector. The big advantage is that polymers have better
compatibility and hence these nanocomposites can also be
applied to numerous biomedical applications.”®***** The appli-
cations include antimicrobial treatments, photothermal
therapy (PTT), drug delivery systems, diagnostic imaging tech-
niques, biosensors, and bone regeneration processes. MXene
polymer nanocomposites have shown great promise in
biomedical applications. These nanocomposites combine the
unique properties of MXene materials, such as excellent
conductivity, high surface area, and antibacterial activity, with

This journal is © The Royal Society of Chemistry 2025

the versatility and biocompatibility of polymers. They hold
potential for various biomedical uses, including tissue engi-
neering,””*** cancer therapy,****** drug delivery systems,**"**®
biosensors,*** and antimicrobial coatings.**"**> MXene polymer
nanocomposites offer exciting opportunities for advancing
medical technologies and improving healthcare outcomes.
7.6.1 Antimicrobial applications. The hydrophilic nature
and anionic surface properties of MXenes enhance their inter-
action with bacterial cell membranes. Through hydrogen
bonding, the functional groups of MXenes interact with lipo-
polysaccharide molecules on the cell membrane, leading to cell
inactivation. This interaction hinders nutrient intake, effec-
tively inhibiting bacterial growth. Additionally, the formation of
a conductive bridge over the lipid bilayer facilitates the transfer
of reactive electrons from the bacterial cell to the external
environment, ultimately causing cell death.”*”* The application
of Ti;C,T,, a high aspect ratio material, as a coating on PVDF
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membranes resulted in notable improvements in hydrophi-
licity, as evidenced by a reduced contact angle of 37°. Addi-
tionally, the presence of large pores in the membrane was
mitigated. As a result, the viability and growth of E. coli (Gram-
negative bacteria) were reduced by approximately 73%, while B.
subtilis (Gram-positive bacteria) experienced a growth inhibi-
tion of around 67%.7

A study on the tunable antibacterial activity of a poly-
propylene (PP) fabric coated with TizC,T, MXene flakes,
coupling the nano-blade effect with reactive oxygen species
(ROS) generation, was conducted.” In this study, an antibac-
terial medical fabric using a straightforward self-assembly
process was developed, wherein delaminated Ti;C,T, MXene
flakes were arranged on the surface of PP fibers (Fig. 18a). By
varying the amount of MXene in the coating solution from 1 to
32 mg mL ', edge-on assembly of MXene flakes on the PP
surface was achieved, allowing the monitoring of band gap
evolution for a restacked structure. Characterization of the
PP/Ti;C,T, nanocomposite revealed highly effective antibacte-
rial properties, a robust coating, and excellent chemical/
thermal stability. In vitro microbiological studies against both
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Gram-positive Staphylococcus aureus and Gram-negative
Escherichia coli demonstrated that PP/Ti;C,T, reduced bacte-
rial viability by up to 100%. This effect was attributed to
a synergistic combination of physical contact causing
membrane stress and light-induced ROS generation. The anti-
bacterial mechanism in PP/Ti;C,T, fabrics involved synergistic
membrane stress mediated by the physical contact of sharp
edges (nano-blade effect) of MXene flakes, along with the
generation of ROS (Fig. 18b). Before this, TizC,T, MXene
exhibited antibacterial properties. Rasool et al. investigated
Ti;C,T, against E. coli and B. subtilis using bacterial growth
curves and agar plates.” Ti;C,T, showed higher antibacterial
efficiency against both E. coli and B. subtilis compared to gra-
phene oxide. The concentration-dependent antibacterial activ-
ities of TizC,T, in aqueous suspensions are shown in Fig. 18c.
The top frame (right side-top, Fig. 18c(A-F)) shows photographs
of agar plates, where after a 4-hour treatment, the E. coli
bacterial cells were subjected to recultivation with different
concentrations of TizC,T,: 0 pg mL ™" (A), 10 ug mL™" (B), 20 pg
mL ™" (C), 50 ug mL ™" (D), 100 ug mL ™~ * (E), and 200 ug mL " (F).
The bottom frame (right side-down, Fig. 18c(A-F)) shows

Fig. 18 Antibacterial activity of MXene—polymer nanocomposites. (a) lllustration showing a facile approach to obtaining TizC,T,-modified PP
medical fabrics (PP/TisC,T, nanocomposites) with exceptional antibacterial properties, adjustable optical characteristics, and impressive thermal
and chemical stability. (b) Schematic diagram showcasing the antibacterial activity of PP/TizC,T, nanocomposites, highlighting the synergistic
effect of the physical nanoblade action and the generation of reactive oxygen species. Reproduced with permission from ref. 75. Copyright 2022,
American Chemical Society. (c) Concentration-dependent antibacterial activities of TizC,T, in aqueous suspensions. The top frame (right side-
top, figure (A—F)) shows photographs of agar plates, where after a 4-hour treatment, the E. coli bacterial cells were subjected to recultivation with
different concentrations of TizCoTy: 0 ug mL™ (A), 10 pg mL™ (B), 20 ug mL™ (C), 50 pg mL~* (D), 100 ug mL™* (E), and 200 pg mL™* (F). The
bottom frame (right side-bottom, figure (A—F)) displays photographs of agar plates with B. subtilis bacterial cells treated similarly. The study
utilized bacterial suspensions in deionized water as a control, without the presence of TizC,T, MXene. Reproduced with permission from ref. 74.
Copyright 2016, American Chemical Society.
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photographs of agar plates with B. subtilis bacterial cells treated
similarly. At a concentration of 200 ug mL ™", Ti;C, T, resulted in
over 98% bacterial cell viability loss within 4 hours of exposure,
as validated by regrowth curve analysis and colony forming unit
(CFU) assays. Electron microscopic analysis and lactate dehy-
drogenase (LDH) release assay revealed damage to the cell
membrane, leading to the release of cytoplasmic materials.
MXenes can be utilized for their antibacterial properties, as
shown in a study where micrometer-thick Ti;C,T, MXene
membranes were prepared by filtration onto a polyvinylidene
fluoride (PVDF) support.**® To assess their bactericidal effects,
the modified Ti;C,T, membranes were tested against E. coli and
B. subtilis using two methods: bacterial growth on the
membrane surface and exposure of the membrane to bacterial
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—
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suspensions. The results showed that the fresh Ti;C,T, MXene
membranes exhibited an antibacterial rate of over 67% against
E. coli and 73% against B. subtilis, compared to the control PVDF
membrane, under the same conditions. Interestingly, the aged
Ti;C,T, membrane displayed even higher efficacy, with over
99% growth inhibition observed for both bacterial strains.
7.6.2 Drug delivery and photothermal therapy. MXene-
polymer nanocomposites have promising applications in drug
delivery, anticancer, antibacterial biofilms, etc.>***** Rabiee
et al. developed an innovative nanocarrier using inorganic
MXene/MOF-5 (metal-organic frameworks) nanostructures for
co-delivery of the drug doxorubicin (DOX) and gene pCRISPR.***
This study presents a nanocarrier approach for efficient co-
delivery of drugs and genes for biomedical applications. To
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Fig. 19 Biomedical applications of MXene polymer nanocomposites in drug delivery and photothermal therapy. (a) Schematic illustration of
MXene/MOF-5 and its alginate and chitosan nanostructures. The modification process involves the integration of chitosan and alginate onto the
nanocarriers, resulting in stimuli-responsive properties and the incorporation of a capping agent. Reproduced with permission from ref. 335.
Copyright 2021, American Chemical Society. (b) The trimodal bacterial killing strategy of Nb,C@TP. This strategy involves biofilm resistance,
intrinsic bactericidal effects, and thermal ablation of bacteria. Additionally, Nb,C@TP demonstrates promising in vivo tissue regeneration
properties. Reproduced with permission from ref. 336. Copyright 2021, American Chemical Society. (c) The schematic illustration of injectable
PLEL-based micellar hydrogels co-delivered with CA4 and TizC, for synergistic NIR-1I photothermal and vascular disrupting therapy. Reproduced
with permission from ref. 337. Copyright 2020, American Chemical Society.
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enhance bioavailability and interaction with pCRISPR, the
nanomaterial was coated with alginate and chitosan. The
doxorubicin delivery and cytotoxicity of the polymer-coated
nano-systems were evaluated on HEK-293, PC,,, HepG,, and
HeLa cell lines. The chitosan-coated nanocarriers demonstrated
superior cell viability, with over 60% relative cell viability in all
tested cell lines. The alginate-coated nanocarriers ranked
second, showing more than 50% relative cell viability across all
cell lines. The cytotoxicity was dose-dependent, with longer
treatment times, leading to reduced cell viability. The nano-
carriers were modified to become suitable, stimuli-responsive,
and equipped with a capping agent. To achieve this, chitosan
and alginate were used to modify the nanocarriers (Fig. 19a).
Polymer solutions of alginate and chitosan were prepared and
reacted in the dark for 7 hours. The resulting suspensions were
mixed with drug-free (MXene/MOF-5) and drug-loaded (MXene/
MOF-5-DOX) nanocarriers for 6 hours at room temperature.
After 24 hours on various cell lines, MXene/MOF-5 showed cell
viabilities of 38.7-14.3% at 0.1 pg mL~ " and 27.6-9.9% at 10 ug
mL ", with a drug payload efficiency of 35.7%. Chitosan-based
nanocarriers achieved a green fluorescent protein (GFP)-
positive efficiency of 25.8% in gene delivery studies. Yang
et al. developed a clinical implant based on a Nb,C MXene/
titanium plate (Nb,C@TP) for bacterial infection removal and
for regeneration of tissues.**® This implant offers practical
multimodal anti-infection functions. The Nb,C nanosheets
(NSs) were decorated onto amidated TPs (TPs-NH,) via elec-
trostatic interactions, resulting in the formation of Nb,C@TP.
Nb,C@TP plays a crucial role in suppressing bacteria through
multiple modes (Fig. 19b). When bacteria attempt to attack the
implant surface, Nb,C@TP activates the accessory gene regu-
lator (Agr), which prevents bacterial adherence and promotes
biofilm detachment. Nb,C@TP directly induces bacterial death
by regulating the essential metabolic pathways such as the
tricarboxylic acid (TCA) cycle and the phosphotransferase
system (PTS) pathway. These combined mechanisms effectively
combat bacterial infection.

Researchers have created a biodegradable nanocomposite
micellar hydrogel delivery system with unique functionalities of
NIR-II photothermal ablation and vascular disruption, enabling
minimally invasive antitumor therapy using Ti;C,T, and pol-
y(p,L-lactide)-poly(ethylene glycol)-poly(p,.-lactide) (PDLLA-
PEG-PDLLA, PLEL) triblock copolymer micelle.**” Ti;C, and
CA4 (natural polymer) were selected as the photothermal
therapy (PTT) agent and vascular disrupting agent (VDA),
respectively, for the development of the nanocomposite
micellar hydrogel with dual functionalities in minimally inva-
sive antitumor therapy (Fig. 19c).

The micellar hydrogel system exhibits an impressive photo-
thermal conversion efficiency (41.4% in the 1064 nm window,
utilizing a laser power of 1.0 W cm™?). Additionally, the
hydrogel demonstrates prolonged retention at the tumor site,
enabling sustained release of therapeutic agents, thereby facil-
itating comprehensive and effective treatment.

Additionally, MXenes can also be used to create smart 3D
network nanoplatforms by integrating Ti;C, MXene with cellu-
lose  hydrogels,  showcasing  light-induced  bimodal
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photothermal/chemotherapy anticancer activity.*” When incor-
porating the anticancer drug doxorubicin hydrochloride (DOX),
the cellulose/MXene hydrogels exhibit a remarkable ability to
enhance the release rate of DOX, significantly accelerating its
delivery. Dai et al. designed composite nanosheets based on
Ta,C; MXene for multiple imaging-guided photothermal tumor
ablation. The rational selection of MXene composition and
surface functionalization facilitated the achievement of this
innovative approach.’”® In the study, a redox reaction was initi-
ated on the surface of Ta,C; MXene, leading to the in situ growth
of manganese oxide nanoparticles (MnO,/Ta,C;). This growth
was facilitated by the reducing properties of the nanosheets.
Through careful selection of the MXene composition and addi-
tional functionalization, the resulting MnO,/Ta,C3;-SP composite
nanosheets served as high-performance contrast agents. They
enabled simultaneous use in computed tomography (CT) for
tantalum-based imaging, tumor microenvironment-responsive
T1-weighted magnetic resonance imaging (MRI) using the
MnO, component, and photoacoustic imaging.

The advantages of MXene-polymer nanocomposites in
photothermal therapy enable more efficient, targeted, and
controlled treatment of diseases, particularly cancer. The
combination of the photothermal properties of MXenes with
the tunability, biocompatibility, and targeting capabilities of
polymers opens new possibilities for non-invasive, localized,
and personalized therapeutic approaches.

7.7 Water desalination and purification membranes

MXene-polymer composites offer many advantages in water
purification and desalination applications over MXene.* These
composites can be easily synthesized, coated onto membranes,
or formed into filters or adsorbents.**® Polymers can provide
a porous and interconnected network within the composite,
increasing the surface area available for adsorption.”**3%°
Numerous studies have provided evidence that laminar
membranes exhibit anomalous transport phenomena, such as
ultrafast and precise ion selectivity, when the d-spacing is
comparable to the diameter D of hydrated ions.**

MXene-polymer nanocomposites can be utilized to create
a super-hydrophilic and underwater super-oleophobic TizC,T
MZXene-based composite membrane. This can be achieved
through vacuum-assisted self-assembly of MXene nanosheets
on a porous polyvinylidene fluoride (PVDF) substrate, followed
by in situ mineralization of the photocatalyst f-FeOOH on the
membrane surface.” The resulting membrane was treated with
HCI and dried under vacuum. The MXene@CS/TA membrane
was prepared by mixing chitosan and tannic acid solutions at
pH 3, immersing MXene in the solution for 12 hours and then
rinsing and drying at 30 °C under vacuum. The membrane was
subsequently mineralized in FeCl; solution, resulting in the
MXenes/TA-FeOOH membrane, which exhibited high perme-
ation flux and superior separation efficiency for various oil-in-
water emulsions.

Wang et al. demonstrated a novel approach to stabilizing the
Ti;C,T, laminar architecture using alginate hydrogel pillars.***
A hybrid SA-Ti;C,T, membrane with a lamellar structure was

This journal is © The Royal Society of Chemistry 2025
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Fig. 20 MXene—polymer nanocomposites in water purification/filtration membranes. (a) Fabrication process of the sodium alginate (SA) and
TizC,Tx membrane. Initially, the SA solution was mixed with the TizC,T, colloidal solution, leading to firm and homogeneous attachment of SA
molecules onto the nanosheet surface through hydrogen bonding. Subsequently, the composite SA-TizC,T, nanosheets were assembled into
a hybrid membrane with a lamellar structure. Finally, the SA-TisC,T, membrane was immersed in various multivalent Mn* cross-linking solutions
(Ca®*, Ba%*, Mn?*, and Al**) to obtain a cross-linked membrane with hydrogel pillars in the interlayer spacing.3** (b) Schematic of the fabrication
process for MXene/nylon substrates. It involves brush-coating MXene onto the surface of commercial nylon membranes, creating a thin MXene
layer on the nylon substrate. Subsequently, a polyamide membrane is fabricated on top of the MXene/nylon substrate, resulting in the final
MXene/nylon/polyamide composite membrane. Reproduced with permission from ref. 338. Copyright 2020, American Chemical Society.

prepared by mixing sodium alginate (SA) solution with a diluted
Ti;C,T, colloidal solution and filtered using a PVDF membrane.
Subsequently, the SA-Ti;C,T, membrane was immersed in
various multivalent Mn" cross-linking solutions for 4 hours to
obtain a cross-linked membrane having hydrogel pillars in the
interlayer spacing (Fig. 20a). The flexible membrane was then
dried at room temperature under a vacuum, peeled from the
PVDF support, and stored under a vacuum. Pillaring the
membrane with Ca-alginate results in the nanochannel with
diameters of 7.4 + 0.2 A, resulting in a membrane that exhibited
exceptional permeation cut-off and outstanding sieving

This journal is © The Royal Society of Chemistry 2025

properties for different cations of varying valencies. The
membrane exhibited high promise for acid recovery due to its
outstanding H'/Fe®" selectivity, making it useful for traditional
ion exchange membranes. Additionally, an ultrathin Mn-
alginate pillared membrane with the same d-spacing dis-

played 100% Na,SO, rejection along with high water
permeance.
Additionally, MXene-polymer nanocomposites can be

utilized to develop a high-performance forward osmosis (FO)
membrane by interlayering Ti;C,T, MXene with polyamide.***
The fabrication process involved a scalable and straightforward
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Fig.21 MXene—polymer-based solar cells. (a) PEDOT:PSS—Nb,C hybrid HTL device construction. (b) The chemical structure of various NFAs and
the polymer donor PM6, L8-BO, Y6, and BTP-eC9. (c) J-V properties and (d) EQE spectra obtained for the solar cells using the PM6:BTP-eC9
binary active layer with varying Nb,C MXene doping ratios in PEDOT:PSS. Reproduced with permission from ref. 346. Copyright 2023, Wiley. (e)
Diagram of the PSC device architecture showing the chemical structure of PM6, Y6, ETL, HTL, and Nb,CT,. (f) Nb,CT, is utilized as the ETL and
HTL in the schematic energy level diagram of solar cells. (g) Using Nb,CO; ,0Hg g as the ETL and (h) Nb,CO; 360Hg » as the HTL, charge transfer,
and extraction in solar cells. Reproduced with permission from ref. 348. Copyright 2021, American Chemical Society.
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brush-coating of MXene on nylon substrates, followed by an
interfacial polymerization step (Fig. 20b). The resulting FO
membrane exhibited high water permeability and low specific
salt flux when tested with a sodium chloride draw solution. It
also demonstrated exceptional performance in organic solvent
forward osmosis, showing a significant flux with low specific
salt flux using a lithium chloride draw solution. Additionally,
the membrane proved effective for seawater desalination and
industrial textile wastewater treatment applications.

All in all, the incorporation of polymers into MXene-based
materials for water purification and desalination offers
improved adsorption capacity, selectivity, stability, membrane
performance, antifouling properties, scalability, and environ-
mental compatibility®***.*'***3, These advantages make MXene—
polymer composites promising candidates for addressing water
scarcity, ensuring clean water supply, and advancing sustain-
able water treatment technologies.

7.8 MXene-polymer nanocomposites for solar cell
applications

MXene integrated with polymers can be ideal for solar cell
applications due to their ability to preserve inherent electronic
properties and ensure strong interaction with polymer
matrices.*** This compatibility enhances electrical conductivity,
making MXene-polymer composites highly promising for
advancing flexible electronics and photovoltaic devices. Nb,CT,
is a significant member of the MXenes family, which exhibits
distinct chemical and physical characteristics as well.**> Deng
et al. reported a PEDOT:PSS-Nb,C hybrid hole transport layer
(HTL) to improve the device performance of organic solar cells
(0SCs).*** They employed PEDOT:PSS-Nb,C hybrids with
varying doping MXene ratios (0.05, 0.10, and 0.15 wt%) by
directly mixing the Nb,C colloidal aqueous solution with
PEDOT:PSS. A 40 nm-thick HTL layer was produced by spin
coating the ITO/glass substrates with PEDOT:PSS aqueous
solution or the PEDOT:PSS-Nb,C hybrid solution for 60 seconds
at 3000 rpm, followed by deposition of the active material,
electron transport layer (ETL), and electrode, respectively.
Fig. 21a and b present the schematic layout of the fabricated
device and the chemical structures of various non-fullerene
acceptors (NFAs) and the polymer donor PM6. A higher WF
was observed in the case of the PEDOT:PSS-Nb,C hybrid film
(5.3 eV), as compared to the PEDOT:PSS film (5.0 eV). It is clear
that the increased WF better fits the WF of PM6 (5.5 eV), which
decreases leakage current by suppressing charge recombination
and facilitating hole extraction.*”” Fig. 21c and d show J-V
characteristics and external quantum efficiency (EQE) spectra
acquired for the OSCs with different Nb,C MXene ratios in
PEDOT:PSS employing the PM6:BTP-eC9 binary active layer.
Through the use of solution-processable Nb,C MXene and by
using different NFAs (PM6:Y6, PM6:BTP-eC9, and PM6:BTP-
eC9:L8-BO), surface treatments have improved PCE for OSCs
based on binary and ternary systems of active layers. It was
proposed that Nb,C MXene added to PEDOT:PSS HTL may
efficiently aid in PEDOT and PSS phase separation, enhancing
PEDOT:PSS's conductivity. For OSCs based on the ternary active

This journal is © The Royal Society of Chemistry 2025
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layer of PM6:BTP-eC9:L8-BO, the doping ratio of Nb,C MXene in
PEDOT:PSS was tuned to reach a maximal PCE of 19.33%, which
is currently the highest value among those of single junction
OSCs employing 2D materials. The hybrid HTL improves
performance by reducing interface recombination, enhancing
hole mobility, and boosting charge extraction efficiency.

A similar study by Huang et al. reported the use of Nb,CT,
that investigated the use of additional MXenes in the photo-
voltaic area by treating Nb,CT, with alkali and annealing
treatments to modify its WF by controlling the surface func-
tional groups.**® Following a KOH treatment, -F in pure Nb,CT,
may be substituted with —-OH, lowering the WF from 4.62
(Nb,CO, ,0H, ¢F,) to 4.32 eV (Nb,CO,,0H,g). The WF
increased to 5.03 eV (Nb,CO, 360H, ) as a result of the removal
of some -OH groups and the transformation of others into -O
groups upon annealing at 500 °C. Additionally, this is the first
time that these Nb,CT, groups have been used as the ETL and
HTL in PM6:Y6-based polymer solar cells (PSCs), achieving
a stellar PCE of 15.22% (ETL) and 15.03% (HTL). These Nb,CT,
are applied to PSCs based on PM6:Y6 as a buffer layer, where
Nb,CT, with KOH treatment is used as the ETL, and Nb,CT,
with annealing treatment is used as the HTL. Fig. 21e shows the
schematic of the PSC structures with tuned Nb,CT, (Nb,CO; »-
OH, g and Nb,CO; 360H, ) used as the ETL and HTL. Fig. 21f
shows the energy level diagram with Nb,CT, used as the ETL
and HTL. From this, it can be seen that Nb,CO;,0H,g (or
Nb,CO; 360Hj ;) exhibits a well-matched energy level compared
to Nb,CO; ,0H, ¢Fy, in PSCs, which reduces the electron (or
hole) barrier height. Moreover, for Nb,CO; ,0H, s, the dipolar
interlayer induced by -OH will form an electric field pointing
from the active layer toward Nb,CT,, which will facilitate the
transport of electrons but block the transport of holes (Fig. 21g).
On the other hand, with Nb,CO; 3,0Hj ,, the dipolar interlayer
created by -O will provide an electric field that points from
Nb,CT, in the direction of the active layer, facilitating the
movement of holes but preventing the motion of electrons
(Fig. 21h).

V,C MXene has also demonstrated great potential for solar
cell applications due to its exceptional electrical properties,
superior mechanical qualities, and high transmittance.” V,C
MXene exhibits excellent hydrophilicity, adjustable work func-
tion, strong electrical conductivity, and better transparency. Gu
et al. improved the properties of organic solar cells by placing
a layer of V,C material between ITO and PEDOT:PSS, signifi-
cantly improving the performance of PM6:BTP-eC9-based
devices.” Using a 2D nanosheet material V,C in combination
with PEDOT:PSS, a high-performance V,C/PEDOT:PSS
composited HTL was created, offering superior transmittance
and strong electrical conductivity. In addition, the V,C/
PEDOT:PSS composite HTL outperformed the pure PEDOT:PSS
interface layer in terms of device performance and photovoltaic
properties. In comparison to the 17.41% efficiency of the pure
PEDOT:PSS interface device, the V,C/PEDOT:PSS-based
composite interface device exhibited a notable rise to 18.17%.
According to the carrier dynamics study, the addition of the V,C
layer increased the number of charge-transfer paths with
PEDOT:PSS, which enhanced charge transfer and collection and
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even reduced the performance of charge combinations. The
findings showed that adding 2D material V,C, which has
excellent conductivity and permeability, offers an efficient way
to improve the performance of solar cells.

8. Limitations of MXenes in polymer
nanocomposites for various
applications

There is no doubt that MXenes when added to polymers can
improve the overall properties of the resulting nanocomposites.
However, their practical implementation across diverse appli-
cations is hindered by inherent limitations such as MXene
oxidation susceptibility, brittleness of polymer at higher MXene
concentrations, color change due to MXene, and poor disper-
sion of MXenes in many solvents. These challenges are partic-
ularly critical when MXenes are combined with polymers for
specific applications, where uniform distribution and long-term
stability are essential. The limitations of MXenes in polymer
nanocomposites for various applications are as follows:

(1) Energy storage: oxidation degradation in MXenes affects
their conductivity and electrochemical characteristics, reducing
the overall energy storage performance. Higher MXene
concentration may lead to brittleness of the nanocomposite,
which can limit mechanical flexibility, impacting stability
during cyclic stability studies. Poor dispersion in polymers may
also result in non-uniform coatings, lowering the specific
capacitance and energy density.

(2) Sensors: oxidation of MXenes can reduce sensitivity and
selectivity due to reduced conductivity. MXene concentrations
beyond optimized range may impact the mechanical durability
of sensors, thereby limiting their sensitivity and flexibility. Poor
MXene dispersion in polymers may result in non-uniform
sensing layers, affecting the reliability and repeatability of
Sensors.

(3) 3D/4D printing: the brittleness of MXene-polymer
composites restricts their flexibility and printability, posing
challenges for fabricating complex structures. MXene oxidation
during post-processing can further compromise the mechanical
strength and structural stability of these nanocomposites. Poor
dispersion of MXenes within polymer matrices impairs resolu-
tion and uniformity, which can limit the controlled precision
and performance of printed architectures.

(4) EMI shielding: when MXenes are incorporated into
polymers, oxidation-induced degradation, mechanical brittle-
ness, and poor dispersion can negatively impact EMI shielding
performance. Oxidation at the MXene-polymer interface can
reduce conductivity, lowering shielding effectiveness. Despite
polymer flexibility, MXenes may still contribute to brittleness,
weakening the composite under stress. Poor dispersion of
MXenes leads to uneven conductivity, resulting in inhomoge-
neous shielding layers and reduced EMI performance. Proper
dispersion and oxidation control are crucial for maximizing the
effectiveness of polymer-MXene composites in EMI shielding
applications.
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(5) Anti-corrosion applications: in anti-corrosion applica-
tions, oxidized MXenes can degrade their protective barriers,
reducing efficiency. Poor dispersion of MXenes can cause
uneven coatings, leading to defects and corrosion pathways.
High concentrations of MXenes can lead to fragility that can
result in cracks, compromising the protective performance.
Effective dispersion and oxidation control are crucial for
maintaining the integrity of MXene-based coatings.

(6) Flexible electronics: in MXene-polymer composites for
flexible electronics, the overconcentration of MXenes in poly-
mers may lead to brittleness of MXenes, which limits flexibility,
affecting stretchability and durability. Oxidation-induced color
changes alter optical properties, restricting their use in trans-
parent or visual devices. Poor dispersion of MXenes within the
polymer matrix leads to reduced conductivity and structural
inconsistencies, which degrade performance. Effective disper-
sion and oxidation control are crucial for enhancing the prop-
erties of MXene-based polymer composites in flexible electronic
applications.

(7) Antimicrobial applications: when MXenes are mixed with
polymers for antimicrobial applications, their susceptibility to
oxidation degradation may reduce antibacterial efficacy over
time. Poor dispersion in the polymer matrix leads to uneven
distribution, compromising the uniformity of the antimicrobial
effect. Proper dispersion and oxidation control are crucial to
maintaining the long-term effectiveness of MXene-polymer-
based antimicrobial composites.

(8) Drug delivery and photothermal therapy: when MXenes
are added to polymers for drug delivery and photothermal
therapy, their oxidation sensitivity reduces photothermal effi-
ciency and chemical stability, affecting target delivery precision.
Limited biocompatibility requires surface modifications, which
may alter the structural integrity of MXenes. Dispersion chal-
lenges of MXenes in the polymer matrix hinder uniform drug
loading and controlled release, impacting therapeutic effec-
tiveness. Proper surface modification and dispersion control
are essential to optimize the performance of MXene-based drug
delivery and photothermal therapy systems.

(9) Water desalination and purification membranes: when
MXenes are added to polymers for water desalination and
purification membranes, MXene oxidation can impact ion
selectivity and permeation performance, limiting their reli-
ability and durability. The higher concentration of MXenes may
lead to brittleness of the membranes under operational condi-
tions. Limited solvent compatibility results in poor dispersion
within the polymer matrix, reducing uniform pore formation
and compromising membrane performance. Effective disper-
sion, oxidation control, and solvent compatibility are crucial for
enhancing the long-term performance of MXene-based water
desalination and purification membranes.

(10) Solar cells: MXene oxidation lowers conductivity and
stability, affecting solar cell efficiency. High concentrations
cause agglomeration, disrupting charge transport, while poor
solvent compatibility results in non-uniform films, compro-
mising light absorption and carrier mobility. Enhanced
dispersion, oxidation resistance, and solvent compatibility are
crucial for improving solar cell performance.

This journal is © The Royal Society of Chemistry 2025
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9. Challenges and opportunities in
MXene—-polymer nhanocomposites
9.1 Challenges

Synthesis of MXene-polymer nanocomposites poses several
challenges, which can impact the final properties and perfor-
mance of the materials.

(1) Uniform dispersion of MXenes in the polymer matrix: as
MXenes tend to agglomerate due to their high surface energy, it
can ultimately lead to poor interfacial interactions and reduced
mechanical properties of the nanocomposite.

(2) Stability: dispersion stability is another issue that needs
to be addressed. MXene-polymer nanocomposites can be
sensitive to environmental factors as MXenes are prone to
oxidation, leading to potential degradation or loss of function-
ality over time.

(3) Interface compatibility: achieving strong interactions and
uniform dispersion of MXene nanosheets within polymer
matrices is crucial for optimizing the properties of nano-
composites. Surface functionalization for proper interaction is
itself a challenging task.

(4) Scalability and reproducibility: large-scale synthesis of
MXene-polymer nanocomposites with consistent properties
remains challenging, hindering widespread commercial appli-
cations. Processing technique selection for uniform MXenes
dispersion is necessary for high-quality nanocomposites. High-
cost instruments may be required for large-scale mixing.

(5) Mechanical properties: optimizing the ratio of MXenes
and polymers is crucial for any property. MXene-polymer
nanocomposites may face limitations in achieving high
mechanical strength and toughness, especially in certain
applications that demand robust materials if optimization is
not suitable for that application.

9.2 Opportunities

Once perfect compatibility between MXenes and polymers is
achieved, MXene-polymer nanocomposites may offer enhanced
mechanical, thermal, electrical, and optical properties in versatile
materials, making them compatible with diverse applications.

(1) Multifunctionality: the unique properties of MXene-
polymer hybrids open up opportunities for developing new
nanocomposites with multiple functionalities, enabling versa-
tile applications.

(2) Biomedical applications: MXene-polymer hybrids, due to
their biocompatibility and antibacterial properties, hold
promise in drug delivery systems, tissue engineering, and
medical implants.

(3) Energy-related applications: MXene-polymer nano-
composites, due to their porous structures, can be employed in
energy storage devices to enhance performance and stability.

(4) Environmental applications: MXene-based
composites have potential in environmental remediation,
sensing, and water purification membranes owing to their
better adsorption and catalytic traits.

(5) New-age technology integration: the combination of
cutting-edge technologies, such as nanocomposite fabrication,

nano-
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the Internet of Things (IoT), and artificial intelligence (AI),
holds tremendous potential in designing and developing
future smart materials with enhanced properties and
functionalities.

(6) Hence, MXene-polymer nanocomposites offer exciting
prospects for addressing various challenges and capitalizing on
their unique properties to explore novel applications in diverse
industries. However, further research is needed to overcome
existing limitations and fully unlock their potential for practical
utilization.

10.

The future of MXene-polymer nanocomposites is exceptionally
promising, with vast potential across multiple domains.
MXenes offer numerous beneficial properties, but these
advantages are contingent on preventing oxidation. By
addressing this challenge, the full spectrum of MXene's capa-
bilities can be harnessed by integrating these with polymers,
paving the way for groundbreaking applications and advance-
ments in various fields. Ongoing advancements in MXene
synthesis, functionalization, and nanocomposite fabrication
are likely to yield innovative materials with enhanced properties
such as lightweight structures, improved mechanical strength,
superior electrical conductivity, and increased thermal stability.
These developments could revolutionize industries from aero-
space to electronics. Additionally, MZXene-based nano-
composites show great promise in sustainable technologies,
potentially leading to more efficient and eco-friendly solutions
in energy storage, water purification, and environmental
remediation. In the biomedical field, the biocompatibility and
antibacterial properties of MXene-polymers hold potential for
breakthroughs in drug delivery systems, tissue engineering
scaffolds, and bioactive coatings for implants. The tunable
properties of these nanocomposites also pave the way for the
creation of smart materials capable of responding to external
stimuli, which could transform applications in sensors, actua-
tors, and adaptive coatings. Moreover, the integration of
multiple functionalities within a single MXene-polymer mate-
rial opens exciting possibilities for multifunctional devices that
perform various tasks simultaneously. Combining MXene-
polymers with other nanomaterials, such as graphene, metal
nanoparticles, or quantum dots, may lead to new synergistic
effects and advanced functionalities. Furthermore, the inter-
section of nanocomposite fabrication technologies with artifi-
cial intelligence and the Internet of Things holds great promise
for enhancing the design and deployment of advanced smart
materials. As research and interdisciplinary collaboration
continue, MXene-polymer nanocomposites are set to address
global challenges and drive significant innovations across
a range of industries.

Future perspectives

11. Conclusions

In conclusion, this comprehensive review emphasizes the
synthesis methods and diverse applications of MXene-poly-
mer nanocomposites while keeping in mind the serious issue
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of MXene oxidation. The various fabrication techniques, such
as solution blending, in situ polymerization, LBL assembly,
and electrospinning, offer opportunities to tailor the proper-
ties of these nanocomposites for specific applications.
MXenes can be easily hybridized with various polymers such
as PVA, PDMS, PPy, PEDOT:PSS, polyaniline, polypropylene,
polyurethane, and many biopolymers. MXene-polymer nano-
composites exhibit conductivity, stability, flexibility, biocom-
patibility, and ion diffusion, leading to enhanced
performance and durability in various devices. The incorpo-
ration of polymers in MXene-based sensors enhances sensi-
tivity, selectivity, flexibility, and response time, enabling more
accurate and efficient detection of target analytes. MXene-
polymer composites provide EMI shielding effectiveness,
lightweight, and flexible characteristics, making them suit-
able for applications in the electronics, telecommunications,
and aerospace industries. The combination of MXenes with
polymers offers flexibility, stretchability, and improved
mechanical properties, enabling the development of flexible
electronic devices. MXene-polymer composites induce higher
porosity in the nanocomposite, which can increase the charge
storage capacity. MXene-polymer composites offer enhanced
photothermal conversion efficiency, controlled drug delivery,
enabling effective cancer treatment, and wound healing.
MXene-polymer composites provide enhanced adsorption
capacity, selective adsorption, improved stability, membrane
performance, antifouling properties, scalability, and envi-
ronmental compatibility, making them effective materials for
water purification and desalination processes. These advan-
tages highlight the potential of MXene-polymer composites in
addressing various challenges and advancing technological
applications. The unique properties and synergistic effects
resulting from the combination of MXenes and polymers
create exciting opportunities in various fields, enabling the
development of efficient, sustainable, and functional mate-
rials and devices. This advancement ensures that MXene
oxidation will not hinder the progress toward innovative
solutions.
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