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Measuring the rheology of liquids typically requires precise control
over shear rates and stresses. Here, we describe an alternative route
for predicting the characteristic features of a power-law fluid by
simply observing the capillary spreading dynamics of viscous droplets
in a wedge-shaped geometry. In this confined setting, capillary and
viscous forces interact to produce a spreading dynamics described by
anomalous diffusion, a process where the front position grows as a
power-law in time with an exponent that differs from the value 1/2
found in classical diffusion. We derive a nonlinear diffusion equation
that captures this behavior, and we show that the diffusion exponent
is directly related to the rheological exponent of the fluid. We verify
this relationship by using both experiments and simulations for
different power-law fluids. As the predictions are independent from
flow-specific details, this approach provides a robust tool for inferring
rheological properties from the spreading dynamics.

The spreading of droplets on solid surfaces is a ubiquitous
phenomenon, observable in everyday events such as raindrops
falling on a window, as well as in a variety of biological,
geological, and physical systems. In these contexts, it can serve
as a mechanism for delivering nutrients to living cells," oxidat-
ing substances to minerals,” or forming fluid pathways within
complex geometries.>* The spontanoeus spreading of fluids
depends on the wetting properties and geometry of the medium
through which it spreads.>® However, it also depends crucially
on the rheology of the liquid, as is well known from the everyday
application of non-Newtonian fluids, such as toothpaste, corn
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starch, paint, yogurt and shampoo. Controlling fluid rheology is
also topical in industrial applications and in food science,'®™”
where it covers everything from cooking recipes to consumer
satisfaction.'® In this study, we show that the spreading
dynamics of a droplet of a power-law liquid can be used to
predict the fluid’s rheological properties.

The rheology of a power-law fluid is characterized by the fact
that the shear stress is given by a power of the strain rate. The
spreading of such a liquid in a wedge-shaped geometry is
anomalous in the sense that it is described in the same way as
anomalous diffusion. Mathematically, it is captured by a non-
linear diffusion equation that yields analytical solutions with a
spreading rate which is given by an anomalous diffusion
exponent.'®?* As an interesting by-product, we obtain a relation-
ship between the exponent governing the rheology and the
diffusion exponent. As this relationship depends only on the
conservation of fluid mass and a non-linear Darcy law, which
relates the volume flux to the pressure gradient, it is independent
of other details of the flow structure. The rheological exponent
may thus be obtained solely on the basis of the spontaneous
(capillary driven) fluid motion, without any type of force- or shear-
rate control, as needed in commercial rheometers.

The analysis and findings presented here complement the
extensive literature on anomalous diffusion. Pattle®® noted, already
in 1959, that the seepage of a liquid into a cloth or porous body
could be described by a nonlinear diffusion equation, yielding sub-
diffusive spreading of the fluid. In the 1980s, there was a large
effort to understand the nature of anomalous diffusion, particularly
in the context of transport in disordered and porous media. In
porous media flows, strong confinement often gives rise to regimes
where transport occurs through corners and thin films. In these
cases, the balance between capillary and viscous forces plays a key
role and can enable persistent, long-range transport™**>” such as
when connecting otherwise disconnected fluid clusters.>*>® Qur
solution, which pertains to a viscous flow driven by capillarity as a
droplet spreads in an idealized (sharp) wedge, see Fig. 1a, with a
constant solid-liquid contact angle, may thus serve as a baseline
model for more complex flow geometries.

This journal is © The Royal Society of Chemistry 2025
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Fig.1 (a) Liquid droplet spreading in a wedge. (b) The cross-sectional

area A and the local height h of the spreading droplet, which both vary
along the wedge. Here, o = 30° is the opening angle of the wedge, and @ is
the contact angle at the liquid—solid—air contact line. (c) Snapshot of the
experiment, where the green and blue vertical lines denote the left and
right tip position, and the red arrows indicate the spreading direction. (d)
Diagram illustrating the Scotch tape (red) and PDMS layer (cyan) employed,
which lead to an effective finite radius of curvature hg in the corner
(exaggerated in the figure for clarity). Note that the main difference
between the idealized (sharp) wedge and the experimental setup is a finite
curvature where the plates meet.

A key finding in our study is the fact that the position of the
tip of a droplet spreading in a wedge geometry scales with time
as Xgp oc t', where the exponent 7 is directly linked to the
rheological exponent n characterizing the power-law fluid. By
contrast, when the spreading of a shear-thinning fluid happens
in radial fashion on a plane,*””*® rather than along a corner line,
the exponent governing the spreading rate has been shown to
depend very weakly on the rheological exponent.*® Our theore-
tical prediction and measurements of the Newtonian spreading
exponent 7 & 0.4 are consistent with the value 7 = 1/3 that has
been measured for Newtonian flow of different liquids that
imbibe along a corner from an infinite reservoir.*>*° This
suggests that the hydrodynamics is strongly governed by the
dynamics at the tip and less sensitive to the boundary condition
where the fluid is supplied.

A droplet of a power-law fluid spreading in a wedge is
characterized by the stress-strain relationship ¢ oc 7" over a
certain range of the strain rate y, which is frequently described
by the Ostwald-de Waele model."™ The viscosity is then given by

-\ n—1
p=noi"" = no (l> , 1)
Yo
where u, and u are in units of Pa s, the exponent n = 1
corresponds to a Newtonian fluid, and 7, is a reference strain
rate at which the liquid is non-Newtonian. We shall take j, =
10 s~ for the fluids employed in this study (see the rheological
characterization of the fluids in the ESIT). Many polymer melts
and solutions exhibit a value of 7 in the range 0.3-0.7, depend-
ing upon the concentration and molecular weight of the
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polymer.*"*> Even smaller values of the power-law exponent
(n = 0.1-0.15) are encountered with fine particle suspensions
like kaolin-in-water, bentonite-in-water, etc. By using polyacry-
lamide solutions of different concentrations, Ansari et al.*®
measured a range of power-law indices n = 0.26-0.47, which
were obtained for shear rates in the range 10-1000 s . See also
Jouenne and Levache* for a comprehensive dataset on the
rheology of acrylamide-based polymer solutions.

We shall obtain a prediction for the height A(x, t) of a droplet
of a power-law fluid when spreading along the wedge geometry,
as shown in Fig. 1. Our power-law liquid wets the surface inside
the wedge and spreads due to the capillary forces, as illustrated
in Fig. 1a. Its shape is described by the height A(x, ¢). When the
wetting angle ©® < (1 — «)/2, o being the opening angle of the
wedge (see Fig. 1b), the capillary pressure will be negative, and
the minimal energy will be reached when the solid-liquid
contact area is maximized. This occurs when the liquid spreads
out as far as possible along the wedge. The negative capillary
pressure drives the flow and increases in magnitude towards
the tips of the drop as 1/A, since the radius of curvature of the
liquid-air interface R oc %, see Fig. 1b. In Fig. 1c we show a
snapshot of the experiment, where the red arrows denote the
spreading direction. It is worth noting that in the experimental
setup, the wedge is not perfectly sharp as in the idealized
model. Instead, a small radius of curvature h, exists along the
bottom edge, see Fig. 1d. This curvature arises from the
procedure employed to build the setup, which involves coating
the glass slides that form the wedge walls with a PDMS film.
Further details are provided in the ESL¥

In the ESI, T we show that the volumetric flow rate g across a
surface normal to the corner line may be written

—0P/0x 1/n
0= 0, (7/) i, @)

Mo

where P is the capillary pressure, x is the coordinate along the
wedge, K(x) is the height of the liquid in the normal direction, and

Lin 14n
2720 n? (O()W

&=y D3n+1)\2

: ()
is a dimensionless average of the flow field, which is dependent on
our choice of flow geometry, but not its length scale. See also
Guyon et al.*® for further details on lubrication flows and complex
fluids.

In order to obtain an analytical solution, our theoretical
approach ignores: (1) the effects of gravity and inertia, (2) the
finite initial droplet width and the interface curvature in the
x-direction, (3) the cut-offs in shear rates where the non-
Newtonian behavior becomes Newtonian, (4) the finite curva-
ture of the corner geometry, and (5) dynamic variation of the
contact angle @ and pinning effects.

Approximating the contact angle by @ = 20°, the curvature of
the liquid interface 1/R sets the capillary pressure difference
across this interface to be

_cos(O@ +a/2)0

PO = 0y s @
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where ¢ is the liquid-air surface tension and we have applied a
simple geometric argument to replace R by /& and the relevant

angles shown in Fig. 1b.
The relative magnitude of gravitational to capillary forces is

estimated as the ratio between the hydrostatic pressure drop
pgh and the capillary pressure drop given in eqn (4). Ignoring
the cosine term in this expression yields the ratio

pgh’
o

sin(er/2) ~ 0.15 (5)

for all the experiments. The fraction is well below unity,
justifying the neglect of gravity in the theory. Here we have
set 1 = 2 mm, which is a typical maximum value during the
observation time of the experiments, and the opening angle of
the wedge is o = 30°. The fluid density p and surface tension o
do not differ significantly from pure water.

In order to estimate the relative importance of inertial
forces, we calculate the Reynolds number for each experiment,
that is, the ratio of the steady inertial and viscous terms of the
Navier-Stokes equation. The quantity u,, represents a charac-
teristic mean tip velocity, measured as the ratio xp/t in the late-
time regime of the experiment, where the scaling xg, oc ¢
holds. While the actual velocity decreases over time, u,, serves
as a useful reference for the typical velocity observed during the
experiment. Calculating a relevant Reynolds number requires
some care, as the viscous term oc V?u is dominated by the
shear forces from the wall and thus governed by the width of
the droplet, while the inertial term oc u-Vu is governed by
variations along the flow and hence the droplet half-width x;,.
As a result we define the relevant Reynolds number as

L
Re = Um Leff (6)

*

v

with the effective length Leg = (2/2)*/xgp &~ 10~° m when the
typical value for the droplet half-width is x;, ~ 2 cm. Here, v* is
the kinematic viscosity which we shall extract from Fig. S1
(ESIT) as the value in the Newtonian regime. In Table 1 the
values of Re for the different experiments are given, showing
that inertia is indeed negligible, and more so for the higher XG-
concentrations.

Assuming the fluids to be in the non-Newtonian regime is
clearly not correct everywhere. Since the shear rate will be close
to zero at x = 0, there will always be regions of slow Newtonian
flow. However, since the capillary forces and viscous dissipa-
tion take on their maximum values at x = +x,, the spreading
process is likely to be strongly dominated by the hydrody-
namics right at the droplet tips. For that reason, we compare
the shear rate there to the critical crossover shear rate j., where
the rheology becomes Newtonian. Taking %, to be the only
relevant length scale for the flow at the tips, we estimate the tip
shear rate as jp = Um/(0h9/2). Table 1 shows the typical shear
rate, j«p, and how it compares with the crossover shear rates j.
obtained from Fig. S1 (ESIf). Note that in all cases }4, > 7o,
although only by a small margin for the largest concentrations.
We will include the influence of a finite corner curvature in our

7016 | Soft Matter, 2025, 21, 7014-7020

View Article Online

Communication

Table 1 Characteristic values of the flow velocity u,, shear rate at the
droplet tips jyp, and Reynolds number Re. The threshold shear rate j., at
which non-Newtonian behavior sets in, is shown in parentheses alongside
Jtip- The values of j. are obtained from Fig. S1 (ESI), which also provides the
corresponding kinematic viscosity values v* = /p. The Reynolds number is
calculated as Re = upLer/v*, where the effective length Leg & 10> m

XG[gL™]  um[ms™] o [m’sT] jup () [sT] Re

0 1x1072 5x10°° 70 (0) 2 x 107
0.5 1x 1072 1x107° 70 (3) 1x 107
1 6 x 107 4x10°° 40 (2) 1x107°
2 1x 1073 2 x107* 7 (0.8) 5x107°
3 5x107° 2x10°° 0.35 (0.2) 1x1077
4 4x107° 4 %107 0.3 (0.1) 1x 1077
6 2x107° 2 x 1072 0.15 (0.08) 1x10°°

numerical solutions by setting the volumetric flow rate to g = 0
when £ falls below a threshold #,, see Fig. 1d.

It is the variations in %(x) that will cause a pressure gradient
along the wedge, and we may invoke eqn (2) to get the mean
flow. The cross-sectional area in the direction normal to
x, A(x) ~ (2/2)h?, and the amount of liquid volume is a
conserved quantity, so that

0A 0Oq

o + I 0. (7)
Expressing 2 by A in eqn (2) and using eqn (4), the volume
conservation may then be written on the form

04 O ( ap( 04\
o~ P 06x<A Ox ’ (8)

where the ‘diffusion coefficient’

n-() (r5e) e o

has dimensions of m"" s~ ™.

Since the solution A(x, t) is symmetric around x = 0, we will
only consider x > 0, so that 0P/0x < 0. By taking the initial
condition to be A(x, 0) = V,d(x), where V, is the droplet volume,
we shall follow® and seek a scaling solution of the form

_rw)
A(x, 1) =T (10)
where
“= 70 (1)

This solution has the property that [dxA(x, ¢) = [dup(u) =
Vo. In order to insert eqn (10) in eqn (8), we need the derivative,
aa/ot = (£ (0)/f(©)*)d(up)/du, which allows us to write eqn (8) in
the form

(2 (—dpjan ")
B —d(up)/du -4

J'(1)
Dof ~\/2-1/n

(12)

This journal is © The Royal Society of Chemistry 2025
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where we have separated the « and ¢-dependent terms with the
separation constant /. Integration of the f(¢)-part of eqn (12) is
straightforward and yields

10 - (2. (13
with
2n
T (14)

The p-part of eqn (12) takes the form, ((d/du)(p®> -
(—=dp/du)”™ — Jup) = 0, which may be integrated to give
3/2—1/n / 1/n _ : ! —

p (=p'(W)"™ — Aup = K. Since, by symmetry, p’(0) = 0 and
p(0) must be finite, the integration constant K = 0, and the
above equation may be rearranged to give p™* 'p’ = 2"u". This

may be integrated to give

2/n
p(u) =2 (ﬁ) (Ln+l _ u:1+1)2/!’l7 (15)

where the normalization condition yields the integration constant
L = 2 (VolAn)™ with A, = 2(n/(2(n + 1)) [idp(1 — yr+1)",
Inserting this L-value in A(x, t) = p(w)/f(t), A cancels out, and so
we are free to choose 4 = /D, in order to make

) A
70 = ()
dimensionless. Then, L(D;) = ((Do/i0)(VolA,)"?), where the

dimension of u is m and that of p(x) is m? Inserting / in
eqn (15) finally yields

plu) = (SL)Z (ﬁ) " (L (Dg) — )",

Requiring that p(u) be real restricts this solution to the
™1™ > 0, 0r |u| < L. Outside

x-domain where L™ — u
Vo\ Dot
Xuip(1) = Lf (1) = ((A) - |

A(x, t) then vanishes exactly, so that 2x,(¢) is the extent of the
droplet.

The fact that x,;, oc t* is a key result as it provides the link
between the spreading rate and the diffusion exponent 7, and
by eqn (14), the rheological exponent n. The t = 0.4 value for
n =1 agrees with the result found by Hansen et al.,>! who solved
eqn (8) in the special case of a Newtonian liquid. The
T-exponent is simply obtained by plotting the experimental
Xp(t)-values on a log-log plot. Having obtained the t and n-
values from x;,(t) in this way, the scaling function f(¢) is known
and may be used to obtain a data collapse for the experimental
values of A(x, t) f(¢) versus x/f(¢) as predicted by theory. With this
experimental data collapse, fitting eqn (17) to the data using D,
as a fitting parameter gives D,. The rheological prefactor y, may

(16)

17)

(18)
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then in principle be obtained by solving eqn (9) with respect to
Ho = 1oje" " as

(2" ocos(O +/2) (0" 41
Fo=1\4 2sin(2/2) \Dy) °

(19)
provided a constant contact angle. However, as is well known,
the static contact angle, which we measure to be @ ~ 20°, will in
general be replaced by a dynamic contact angle Oy, once the
contact line is moving. Hoffmann*® showed that the difference
between Og,, and O is governed by the local capillary number
Ca via a general scaling relation. Later, Sheng”” and Kokko-
Latva and Rothmann*® showed that this relation is well approxi-
mated by cos(@) — cos(@gyn) o Ca with a prefactor of order
unity. The capillary number Ca is the ratio of viscous to capillary
forces, so in our case Ca ~ 1, since these are the dominating
forces that govern the flow, in particular close to Xp.

Also, since the analytic theory ignores the corner curvature
hy, an experimentally measured value of A(x, ¢) (the distance
from the curved corner to the meniscus) will be associated with
an overestimated value of the capillary pressure that drives the
flow. This will predict a faster overall spreading rate than what
is actually observed. This effect thus has the opposite influence
of the dynamic contact angle increasing above the static one,
which will lead to a slower spreading. For these reasons p,
cannot be obtained from eqn (19) unless Ogy, is measured
independently and used instead of ©, and the corner is made
sufficiently sharp.

The mathematical model can be solved numerically, and the
solutions provide testable predictions. To test these predic-
tions, we design an experimental system consisting of two thin
transparent plates, arranged at an angle « = 30° and securely
held by a support mechanism (see Fig. 1). Standard microscope
glass slides (dimensions 76 mm x 26 mm X 1 mm) were used.
One critical experimental aspect was to ensure a high level of
wettability with the wedge and minimize impurities that may
affect the contact-line motion. As such, the plates were coated
with a thin polymeric layer of PDMS, modified with a hydro-
philic agent (methyl-terminated poly(dimethylsiloxane-b-
ethylene oxide)). The coating was further treated with nitrogen
plasma to enhance the wettability."” We tested a range of
different fluids, including mixtures of xanthan gum (XG)*°
and water at varying concentrations, as well as a glycerol-water
mixture to represent the Newtonian case. The XG concentration
in water was systematically varied from 0.5 g L™ " to 6 g L. For
further details about the coating procedure and fluids prepara-
tion, see the ESL.t

In the experiment the wedge’s corner is not infinitely sharp,
rather it has a radius of curvature 4, ~ 0.6 mm due to the finite
thickness of the PDMS coating, see Fig. 1d. To mimic the
experiments, we solve eqn (7) numerically, introducing a Gaus-
sian initial profile for A(x, ¢) and a cut-off corresponding to the
corner curvature. This cut-off arises because the capillary
pressure changes sign approximately at the point where
h(x, t) becomes smaller than A, see Fig. 1d. We set the radius
of curvature %, = 0.6 mm and the initial profile half-width

Soft Matter, 2025, 21, 7014-7020 | 7017


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sm00286a

Open Access Article. Published on 07 ervence 2025. Downloaded on 04.02.2026 12:14:37.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

Wy = 0.8 mm throughout in the numerical calculations, similar
to the experiments. This may be represented mathematically by
imposing ¢ = 0 in eqn (7), where k(x, t) < hy. Eqn (8) can then
be integrated numerically using centered spatial derivatives
and an explicit first-order time stepping scheme.

Fig. 2a shows the temporal evolution of the droplet spread
Xtip, measured as half of the distance between the left and right
tips of the droplet, marked in Fig. 1b, for seven experiments
going from the Newtonian case (leftmost curve) to the most
shear-thinning case (rightmost curve). Arbitrary horizontal shifts
have been applied to the curves for better visualization. The
linear range in the x;;, plot allows the determination of 7 by use of
eqn (18). Fig. 2b shows a comparison between the measured
t-values against their theoretical predictions. The experimentally
and numerically measured exponents are denoted .y, and t,
and the theoretical values 7y, are computed from eqn (14). The
errorbars shown are due to the uncertainty in the fitting of the
data from Fig. 2b. We notice that the experimental data tends to
gather under the one-to-one 7y,-line. We attribute this divergence
to the fact that in the experimental setup we do not have a sharp
wedge. However, the numerically estimated exponents for which

a)
)
9,
&
&
b)  gas[ + n=1011 / n=0353 |
* n=0.721 v n=0.303
04+ n=0.629 > n=0.227 1
n = 0.480 = = simul
&~ 0.35 1
503
<
0.25 1
0.21 1
0.15 : : : : : :
015 02 025 03 035 04 045
Tth
Fig. 2 (a) Experimentally measured droplet spread x:(t). The curves are

shifted horizontally by arbitrary values to aid visualization. The leftmost
curve corresponds to the Newtonian fluid, while the others are from XG
fluids with XG concentrations of 0.5, 1, 2, 3, 4 and 6 g L~* increasing from
left to right. (b) Comparison between the experimental exponent ey,
(symbols) and numerical exponent 7. (dashed line), as well as the theore-
tical slopes 1y, computed from eqn (14) (full line). The numerical results
take the finite corner curvature hg = 0.6 mm and initial profile half-width
wp = 0.8 mm into account. The errorbars account for deviations from a
perfect power-law fit from the data in (a).
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this finite curvature radius 4, is taken into account, agree with
the experimental measurements from Fig. 2b within the error bar
in these data, except for the smallest and largest t-values.

At the largest t-value (the Newtonian case) the discrepancy is
still moderate and may be linked to the difference in the
Newtonian and non-Newtonian behavior near the contact line.
On the other hand, the discrepancy at the smallest t-value is
likely caused by a departure from the non-Newtonian domain
of the power-law fluid, which happens at sufficiently small
shear rates. In the ESI,{ we show how the numerical t-values
depend on %, and converges to the analytical result as z, — 0.
Variations of the initial half-width w, in the 0-2 mm range has
less than a 1% effect on the t-values as initial Gaussian profiles
converge quickly to the profiles of eqn (17) (see ESIt).

Fig. 3a shows the experimental profiles h(x, ¢) for the
spreading of a drop at a XG-concentration of 2 ¢ L' and V, =
19 mm?®, while Fig. 3b shows the data collapse implied by
eqn (10) and (11) outside the domain where the corner curva-
ture introduces a cut-off. The numerical results capture this
behavior, while also showing a close agreement between the
analytic and numerical results in the central region. Note that
the collapse also verifies the scaling xy,oct” while the agree-
ment between the analytic and numerical results implies a very
fast relaxation towards the analytical prediction.

For the experimental determination of the cross-sectional
area A(x, t) employed in Fig. 3b, a correction due to the

Time [s]

b) s

. Experiment
Analytical p(u) | ]
-------- Simulation 10

w
T

b [d
- o N o»
: T T T

A(z,t) f(t) and p(u) [mm?]

o
o
T

915 -10 -5 0 5 10 15
u [mm]

Fig. 3 (a) Droplet profiles for an experiment with XG concentration of
2 g L7 for 9 different times in the range t = 2.0-12.4 s shown in the
colorbar. (b) The dots show the experimental values of Alx, t) f(t). The
analytical result for the function p(u) of egn (17) using the value n = 0.48 is
plotted as a gray line, while the simulations that take the finite corner
curvature hg = 0.6 mm and initial profile half-width wg = 0.8 mm, are
shown for the initial and final times. The diffusion constant resulting from
the data fit is Dg = 200 mm*" s7%,

This journal is © The Royal Society of Chemistry 2025
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curvature radius %, along the corner of the wedge is used so
that the normalization [dxA(x,t) =V, is verified. This is
achieved by subtracting from the approximately triangular
cross section of the ideal wedge a smaller triangular area that
represents the empty region beneath the curved segment, see
Fig. 1d. This correction is further described in the ESL¥

Having shown that the spontaneous spreading of a droplet
of a power-law fluid in a wedge is governed by a non-linear
diffusion equation, we have proceeded via an analytic solution
of this equation to obtain the rheological exponents of several
power-law fluids by simple experimental measurements. In
classical (Fickian) diffusion, the position of the diffusing front
grows in time as x oc tY2 In our system, by contrast, the
exponent differs from 1/2, a hallmark of anomalous diffusion.
Specifically, the spreading follows x, oc t°, where t was
typically found to be smaller than 0.3 for the shear-thinning
fluids tested (sub-diffusive behavior). The connection between
the anomalous diffusion exponent 7 and the fluid rheology
exponent 1 is expressed in eqn (14), a key result of our work and
the theoretical basis for our experiments.

In our corner geometry the t-exponent depends sufficiently
strongly on the rheological exponent n so as to make it
experimentally possible to determine 7 from 7. The measured
t-values are in the range ~0.16-0.42. By contrast, comparable
experiments®® that study xanthan gum fluids spreading on a
flat surface obtain 7 values that are limited to the range ~0.05-
0.1. These values are too small, or too limited in range to allow
for the determination of n. From a physical perspective this
difference in sensitivity is likely linked to the difference in the
nature of the driving forces between the two geometries: in a
wedge of small opening angle the capillary pressure, which
drives the flow, is negative and increases as 1/% as the film thins
down towards the tip. On a flat surface (« = n), on the other hand,
the driving mechanism is the moving contact line where the
capillary pressure is set by some dynamic contact angle without a
similar 1/A-increase. In a sharp corner the contact line motion is
primarily normal to the flow direction, at least when |0h/0x| « 1,
while it is along the flow direction on a flat plane. In our
theoretical description we have taken the capillary pressure to
be governed by the curvature in the transverse direction, ignoring
the smaller contribution due to the curvature in the flow direc-
tion. At the critical value o = ©1 — 26, the fluid surface has no
curvature in the direction transverse to the flow. As o is increased
past this critical value the capillary pressure due to this curvature
changes sign. This signals the transition to a different flow
regime, where the capillary pressure of the sharp corner geometry
is replaced by a weaker pressure. In the case of spreading on a flat
substrate, the pressure is entirely controlled by the curvature in
the flow direction.

Carrying out the experiments for a range of different liquids,
we have observed robust behavior in the sense that experi-
mental artifacts like inertial effects, gravity, corner curvature,
pinning effects, variability in the contact angle, and finally the
crossover to Newtonian behavior at small shear rates, do not
dominate in the end the measurements of the rheological
exponent.

This journal is © The Royal Society of Chemistry 2025
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