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tically verifying chemical
structures: the powerful combination of 1H NMR
and IR spectroscopy

J. Benji Rowlands, b Lina Jonsson,a Jonathan M. Goodman, b Peter W. A. Howe,c

Werngard Czechtizky,a Tomas Leeka and Richard J. Lewis *a

Human interpretation of spectroscopic data remains key to confirming newly synthesised chemical

structures. Whilst there have been advances in automated spectral interpretation, the false positive and

false negative rates remain too high to replace human interpretation. One approach, Automated

Structure Verification (ASV), scores observed nuclear magnetic resonance (NMR) spectra against

predicted NMR spectra. We describe a method to extend this approach to infrared (IR) spectra and apply

it alongside proton NMR spectra to distinguish between a challenging set of 99 similar isomer pairs.

Based on relative scores, we classify each as correct, incorrect or unsolved. Our results show that IR can

be used as an efficient automated method to distinguish similar isomers with an accuracy close to that

of proton NMR. We further introduce a method to combine NMR and IR results and show that the

combination significantly outperforms either technique alone. At a true positive rate of 90%, unsolved

pairs are reduced to 0–15% using NMR and IR together compared to 27–49% using individual

techniques alone. At a true positive rate of 95%, they are reduced to 15–30% from 39–70%. These

results are a significant step towards efficient automated structure verification based on easily measured

spectroscopy data.
Introduction

Identifying and verifying molecular structures is key to organic,
synthetic, and medicinal chemistry. NMR spectroscopy is by far
the most widely used method for structure elucidation.1 This is
owing to the wealth of information that NMR spectra provide
about a molecule and because the spectral information content
follows rules that link directly to specic features of a molecule.

Improved automated methods of conrming new structures
are needed to match the increasing speed and throughput of
organic synthesis. Automated methods for interpreting NMR
spectra fall broadly into two categories: Automated Structure
Verication (ASV)2,3 and Computer-Assisted Structure Elucida-
tion (CASE).4,5 The former tests candidate structures against
experimental data whereas the latter approach generates the
structure from the analytical data alone. The ASV approach uses
less data but relies more on non-analytical information (for
example the list of candidate structures proposed from
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knowledge of the synthetic route). The two approaches can be
thought of as lying on a continuum with the same aim – to
provide the user with a single structure with a high probability
of being correct. In the context of synthetic chemistry, ASV can
be thought of as a similar process to a chemist running a well
characterized reaction and relying on a 1H NMR spectrum to
conrm the product.

Among the best-established methods in the ASV category are
the DP4 and DP5 probabilities.6,7 These methods involve using
density functional theory (DFT) to calculate NMR chemical
shis for each molecule in a list of candidates supplied by the
user. The probability of each molecule being correct is deter-
mined via an analysis of the observed differences between the
experimental and calculated chemical shis. The DP4 proba-
bility and derivatives are regularly used to assist with structure
elucidation in challenging cases.8–11

A related area of current research is the application of
machine learning to automated structure elucidation.12–15 These
methods have the potential to be much faster than methods
involving DFT calculations but require training with large
amounts of (oen simulated) data. Whilst early results are
promising, it remains to be seen what impact machine learning
will have.

Previous work has focussed on applying automated inter-
pretation methods to NMR data.16–18 But these may also be
applied to data which a human cannot easily interpret. IR would
© 2025 The Author(s). Published by the Royal Society of Chemistry
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seem a particularly suitable technique to apply to structure
determination. From a practical viewpoint, IR spectra can be
collected quickly with sub-milligram amounts of material. From
an information viewpoint, IR spectra originate in bond vibra-
tions, including of bonds involving atoms not observed by
NMR. Some absorptions, especially carbonyl absorptions,
provide specic information about functional groups, but most
of the spectrum (the ngerprint) cannot be easily related to
specic functional groups. A complete structure cannot be built
from an IR spectrum by following a set of simple rules, however
the ngerprint can be matched against a calculated spectrum
obtained from a proposed structure. In contrast, NMR spectra
provide atom-focussed information because the chemical shi
is dominated by relatively short-range effects such as hybrid-
ization, covalent structure and the electronegativity of neigh-
bouring groups. Given the difference in the origins of the
information in NMR and IR we might expect them to provide
complementary information about molecular structure. ASV
methods which combine such complementary information
have previously been proposed for 1D 1H NMR and 2D 1H–13C
HSQC spectra.19 Separately, the use of IR for structure deter-
mination has been reported recently for building up molecules
in a fragment-based approach,20 determining regio- and
stereochemistry by matching experimental and calculated IR
spectra,21 in machine-learning models that can generate
complete structures by supplementing NMR data with func-
tional group identication from IR22 or from IR data alone.23,24

A key but challenging use for ASV is to correctly determine
reaction products. For this application, we assume that the
molecular weight can be determined in a straightforward
manner, and the challenge is to distinguish between two or
more similar regio- or stereo-isomeric products. The similarity
of the potential products presents a challenge in distinguishing
them by traditional scoring methods because the spectra are
usually similar, leading to similar scores which cannot be
distinguished by a binary correct/incorrect classication.

In this ASV proposal, we focus on testing two hypotheses.
Firstly, that comparing the scores of candidate structures is
a more robust approach to ASV than scoring a single compound
in isolation, and secondly that IR and proton NMR chemical
shis contain complementary structural information so that
ASV benets from the combination of both. The list of candi-
date structures could be generated by reaction prediction so-
ware,25 a fast developing eld. The proposal overall mimics the
workow of a synthetic chemist who uses knowledge of the
possible reaction products to assess against the analytical data
collected.

Based on these assumptions, we propose and assess
a method for ASV comparing the scores of candidate structures
using a combination of 1H NMR chemical shis and IR data. We
introduce an algorithm (IR.Cai) to match and score experi-
mental and calculated IR spectra. For NMR data analysis, we
modify the peak-matching algorithm of DP4 to automatically
exclude outlying shis from the analysis, circumventing the
unpredictability of the chemical shis of exchangeable protons.
Such peaks are sometimes highlighted with an asterisk, so we
call this modied version DP4*. We found this modication to
© 2025 The Author(s). Published by the Royal Society of Chemistry
be necessary to obtain chemically reasonable results for mole-
cules with labile protons. We also analyse 1H NMR using
a commercial ASV soware package (ACD/Labs).

Using a set of highly similar isomeric test structures, we test
the hypothesis that the candidate structure that scores highest
(by IR, NMR or by a combination of the scores) is more likely to
be correct, and that the larger the score difference, the greater
the probability that the highest scoring structure is correct. Any
pair of candidate structures that is not differentiated by a suffi-
ciently large score naturally is le unsolved indicating that more
data or manual interpretation is required.

We also test the hypothesis that IR and NMR chemical shis
contain complementary information. As an example, consider
compound 2 and the incorrect isomers 1 & 2 (Table 1). The DP4*
scores are 0.53, 0.47 and 0 and the IR.Cai scores 0.74, 0.65 and
0.62 respectively. The DP4* results exclude incorrect isomer 2 by
virtue of the value of zero but only show a slight preference for
the correct structure over incorrect isomer 1 (0.53 vs. 0.47).
Conversely the IR.Cai results do not exclude incorrect isomer 2
as strongly as DP4* but show a similar small preference for the
correct structure over incorrect isomer 1. Given that IR and
NMR are independent methods, using both gives greater
condence that the correct structure has been identied
compared to NMR or IR alone.
Results and discussion
Verifying one of a choice of structures

Verifying a single structure as correct or incorrect, without any
context or additional information is not straightforward, nor
representative of everyday tasks for most chemists. In most real-
world structural elucidation problems, there is additional
information to take advantage of. For example, knowledge of
the structures of the starting materials signicantly narrows the
range of possible products in a predictable way. Therefore,
comparing or scoring alternative products against analytical
data (the ASV approach) is not only a simpler and easier task,
but also closer to what a chemist would do in practice.
Furthermore, by scoring and comparing similar compounds
systematic errors may partially cancel (for example, inaccurate
calculation of spectroscopic data).26
Dataset of test compounds

To evaluate the performance of different methods for structure
verication, a dataset of 42 drug-like molecules with molecular
weights between 182 and 430 (average of 300) was assembled.
For each molecule, two or three isomers representing a range of
reasonable transformations were constructed manually. The
isomers were chosen to include a range of transformations
including changes in stereochemistry (∼10%) changes in
aromatic (∼35%) or aliphatic (∼25%) regiochemistry and
changes in heteroatom position (∼10%). The result of these
changes was to enrich the test set with highly similar isomeric
structures, which would be expected to give similar NMR
chemical shis. These were arranged into 99 pairs of the correct
molecule structure and one incorrect isomeric structure.
Chem. Sci., 2025, 16, 21590–21599 | 21591
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Table 1 Four example molecules from the test set used to evaluate the use of IR and NMR in ASV

Compound Correct structure Incorrect isomer 1 Incorrect isomer 2

1

2

3

4
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Table 1 shows a sample of molecules and their incorrect
isomers from the dataset. The full list can be found in the SI
(Table S1).
Receiver operating characteristic (ROC)

The IR.Cai matching algorithm, DP4* and the 1H ASV tool from
Advanced Chemistry Development, Inc. (ACD/Labs)27 give
numbers between 0–1 related to how well the experimental
spectrum matches the calculated one. As our base comparison,
we investigated the performance of DP4*, the ACD proton ASV
tool and our IR algorithm as binary classiers – that is to set
a threshold and classify a molecule “correct” if its score is above
the threshold, and “incorrect” if not. Note that the similarity of
the incorrect isomers to the correct compounds makes this
21592 | Chem. Sci., 2025, 16, 21590–21599
a particularly challenging task. Fig. 1 shows the ROC curves for
ACD, DP4* and IR. As anticipated due to the similarity of correct
and incorrect structures it is difficult to distinguish between
them using a binary classier method. The area under the curve
(AUC) is a metric for how well the method is working, with
a random process scoring 0.5 and a perfect method 1.0. The
AUC values at best are only halfway between a random and
perfect method with a true positive rate of, for example, 0.8
coming at the expense of a false positive rate of 0.5–0.6. This is
too inaccurate for routine automatic use.
Structure classication characteristic (SCC)

Faced with the poor performance revealed by the ROC plots
above, we focused on the difference in scores between candidate
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 ROC plot based on the 42molecules in the test set showing the
performance of DP4* and IR.Cai for classifying structures as correct or
incorrect. Note that the DP4*metric is comparative, i.e. it requires a list
of possible candidate structures and scores them relative to one
another, unlike IR.Cai and ACDwhich generate singlemolecule scores.
Hence the result for DP4* is not directly comparable to the results for
IR.Cai and ACD.
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structures. For DP4* considering a list of candidate structure is
already part of the process, but this is not the case for ACD or
IR.Cai. For these metrics, our hypothesis was that the isomer of
each test pair which scores higher is more likely to be correct,
and that the score difference relates to the condence level. To
reach an acceptable level of condence in the higher-scoring
isomer, we evaluated results at different thresholds of the
score difference. The pair was deemed as unsolved if the
difference was lower than the chosen threshold. If the differ-
ence was above the threshold, then the pair was correctly clas-
sied (true positive) if the correct compound scored higher,
otherwise it was incorrectly classied (false positive). As ex-
pected, a trade-off is seen between the true positive rate and the
unsolved rate. Thus, if we wanted to be correct 95% of the time,
we would choose a higher threshold which would result in
a higher proportion of compound pairs unsolved. If our
requirement was to correctly classify 80% of the time, we would
choose a lower threshold and expect to classify more compound
pairs. In a real-world scenario this choice would be dictated by
the costs of being wrong about a structure and the resources
required to manually evaluate unclassied pairs. Fig. 2a illus-
trates the process, taking as an example compound 1 and its
rst incorrect isomer from the test set. For this specic mole-
cule, it is challenging to distinguish between the correct struc-
ture and its incorrect regioisomer using 1H NMR shis alone.
This is therefore a good illustration of the benets of using IR
data in addition to NMR data.

To examine the trade-off, we adapted the “Receiver Oper-
ating Characteristic” (ROC) visualization to include the unsolved
category. We call this visualization the Structure Classication
Characteristic (SCC). The curve is formed by plotting the two key
indicators of performance (the true positive rate and the
proportion of compound pairs unsolved, both a function of the
threshold) against each other. The ideal performance is a point
in the top le, where no compound pairs are unsolved, and the
correct structure always scores highest (unsolved proportion is
0 and true positive rate is 1). The performance of a particular
method can be compared to others according to how closely it
© 2025 The Author(s). Published by the Royal Society of Chemistry
reaches this point. Fig. 2b shows a schematic of an SCC plot,
showing that a curve which is closer to the top le-hand corner
of the plot achieves better performance for structure verica-
tion. The area under the curve (classication area, CA) is
a numerical measure of performance. The ideal SCC curve
would have a CA of 1, meaning that the correct structure would
be classied as “correct” for all compound pairs tested. As
analogous to the AUC for a ROC plot, a random process would
have a CA of 0.5.
Combining multiple data types

When using a single data type (NMR or IR) the data can be used
directly to generate the SCC plot. Combining data types,
however, is non-trivial if the match scores have different
distributions and scales. In such cases, there is precedent for
using a ranking-based method instead of the raw scores to
combine multiple different metrics. So-called ‘consensus’
scoring of various different scoring functions has been reviewed
in relation to virtual screening of ligands.28

To combine IR and NMR data, we used a percentile-rank
combination procedure similar to that described by Hsu and
Taksa.29 These authors noted that combination using ranks
performs better than combination using raw scores if the raw
scores have different distributions. The procedure rst ranks
each candidate structure using the relevant IR and NMR match
scores from highest (top scoring structure) to lowest (bottom
scoring structure). These ranks are then converted to percentile-
ranks using the formula:

pi ¼ N � ri

N � 1
;

where N is the length of the candidate list and pi and ri are the
percentile and absolute ranks respectively of candidate i. This
has the effect of converting the absolute ranks (which are not
comparable between lists of different length) to a score on a 0–1
scale. For each candidate structure, the mean of the percentile-
ranks of both spectroscopic modalities is calculated to give
a combined percentile-rank in which both data types are
weighted equally. If a structure is correct, we would expect it to
achieve a relatively high NMR match score as well as a relatively
high IR match score, and it should therefore rank highly in both
lists. The average percentile-rank method should be effective at
highlighting those structures which rank well with both data
types, as well as giving lower scores to structures which score
highly with one data type but poorly with the other.

A limitation applying to small list sizes is that several
candidates may have the same average percentile-rank. To
distinguish these candidates, we add a small additional term to
the average percentile-ranks, given by:

Di = 3$�zi,

where 3 = 10−8 is a small parameter and �zi is the mean z-score
for candidate i. The z-score is given by:

zi ¼ xi � m

s
;

Chem. Sci., 2025, 16, 21590–21599 | 21593
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Fig. 2 (a) Scheme showing how DP4* and IR.Cai scores are used to classify a pair of isomers, where one of them is known to be correct.
Information from the DP4* and IR.Cai scores is aggregated using the average percentile-rank method described in the text. (b) Illustration of the
structure comparison characteristic (SCC) plot. The green line is more useful for structure classification than the blue line, as the green method
can correctly classify a higher proportion of molecules. The ideal result would be a point in the top left corner of the plot, denoted by the blue
circle. This ideal SCC curve would have a CA (classification area) of 1.
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where xi is the raw score, m is the mean score and s is the
standard deviation of the scores. The effect of the additional D
term is simply to break ties using raw score information; the
parameter 3 is chosen so that the term is too small to affect the
rank order of untied candidates. The specic value of 3 does not
alter rank order, provided that it is small relative to the
percentile-rank scores (i.e. 10−3 or lower).
Compound pairs evaluated using IR spectra

The IR.Cai algorithm compares the calculated IR spectrum for
each test structure against the relevant experimental spectrum.
This is achieved by calculating the IR spectrum for a given test
structure using DFT, applying Lorentzian line broadening with
21594 | Chem. Sci., 2025, 16, 21590–21599
full-width at half-maximum (FWHM) of 12 cm−1 to simulate the
broad peaks found in experimental spectra.30 The match score
between the experimental and calculated spectra is then found
by using the formula:

IR:Cai ¼
P
i

cieiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

ci2
P
i

ei2
r ;

which gives a convenient match score in the range 0–1. A score
closer to 1 indicates a better match between the calculated and
experimental spectra, and therefore a higher probability that
the suggested structure is correct. Whilst manual analysis of IR
spectra usually focuses on key peaks above 1500 cm−1, this
© 2025 The Author(s). Published by the Royal Society of Chemistry
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algorithm can look at the whole spectrum, including the details
of the ngerprint region. DFT calculations were performed at
two levels of theory (B3LYP/6-31G* and B3PW91/cc-pVTZ
including a PCM model for DMSO; hereinaer referred to as
lower and higher theory levels respectively). Details of the
approximate runtime of the DFT calculations may be found in
the Section 1.5 of the SI. A xed scaling factor of 0.97 (low level
theory) and 0.98 (high level theory) was used as these were
found optimal in our earlier work.31 A Lorentzian line broad-
ening with a full width at half maximum (FWHM) of 12 cm−1

was used.30 Values of 8, 10 or 12 cm−1 were found to make little
difference to the results (SI, Fig. S1). Whilst the IR.Cai algorithm
can examine the whole wavenumber range, in this work the
region examined was 1250–1600 cm−1. This region contains the
portion of the ngerprint information in an IR spectrum that
usually contains most peaks. The strong absorbance of DMSO-
d6 at 1100 cm−1 precludes the use of the lower wavenumber
ngerprint region. No improvement was found in extending the
range to higher wavenumbers even though many of our test
compounds included carbonyl groups; we believe this may be
because H-bonding and other interactions make it difficult to
accurately calculate the stretching frequencies. The scores from
the IR.Cai algorithm for all compounds and isomers are shown
in the SI, Tables S6 (high level) and S7 (low level).

For each of the 99 test pairs formed by comparing a correct
structure with each of its incorrect isomers individually, the
score difference was calculated. Analysis using the methods
described above results in the SCC curves shown in Fig. 3.

The SCC curves show two broadly parallel lines at low level
and high levels of theory with the higher level of theory per-
forming better as dened by the CA. This is likely a reection of
better IR prediction at the higher theory level. Indeed the
average IR.Cai values for the correct isomers was 0.8098 (high)
vs. 0.7844 (low). This algorithmic method of comparing isomers
based simply on the comparison of experimental and calculated
IR spectra is effective for distinguishing isomers. For example,
applying the criterion of being correct 90% of the time, the
Fig. 3 Structure classification characteristic (SCC) curve based on the
42 molecules in the test set using IR.Cai scores measuring the degree
of overlap between calculated and experimental spectra. IR.Cai_high
and IR.Cai_low here refer to IR.Cai scores calculated with IR spectra
computed at the B3PW91/cc-pVTZ (high level) and B3LYP/6-31G*
(low level) levels of theory respectively. The position of the SCC curve
and higher CA indicates better performance for the higher theory level.
We therefore use the higher level of theory for the results in the rest of
this work.

© 2025 The Author(s). Published by the Royal Society of Chemistry
method can distinguish 55–70% of the isomer pairs depending
on theory level. If we wish to be correct 95% of the time, the
method can still distinguish 40–50% of the isomer pairs. Noting
that the CA for the SCC curves is a measure of performance as
AUC is for the ROC curves, the CA scores of 0.936 and 0.882 (for
high- and low-level theory respectively) are a signicant
improvement on value of 0.694 obtained for the absolute ASV
method shown in the ROC curves in Fig. 1. This supports the
hypotheses both that IR spectra contain sufficient information
to be able to distinguish many similar molecules and that
comparing compounds is a more effective method for ASV. A
strength of the IR analysis is that there is no need to peak pick
the spectrum. NMR analysis is sensitive to the peak-picking
algorithm, but for the analysis of IR spectra the broader peaks
mean that an overlap integral suffices to score the match
between the spectra.

To those unfamiliar with IR, it may come as a surprise how
well this simple and sensitive technique is able to distinguish
between structural isomers. This is however in keeping with our
own observations and those reported by others. For example,
Cotter et al.32 reported the successful identication of reaction
products of amines and isocyanates using experimental and
calculated IR spectra. It was not possible to distinguish the
products using regular NMR methods. Nolvachai et al.33 re-
ported the identication of several small isomeric reaction
products also by matching experimental and calculated IR
spectra.
Compound pairs evaluated using 1H NMR data

We adapted DP4 to allow for labile protons (which are chal-
lenging for DFT methods to predict) to give a metric we name
DP4* (see SI Section 3). 1H NMR spectra were evaluated by DP4*
and by ACD/Labs' ASV program.27 As peak picking was not part
of our evaluation, we peak picked the spectrum manually
ignoring minor impurities and solvent and picking peaks close
to the residual DMSO and water resonances. In a few cases,
peaks were completely hidden by solvent and no allowance was
made for this – i.e. they are missing from our peak picked
spectrum. The peak listing aer manual peak picking is given in
Section 10 of the SI. We note that using the automated peak
picking routine available in the ACD/Labs soware resulted in
only a moderate degradation in performance. This suggests that
the approach of using just the chemical shis to perform the
DP4* analysis is amenable to automation in combination with
a suitable automatic peak-picking routine. The scores from
DP4* and ACD (automatic and manual peak picking) for all
compounds and isomers are shown in the SI, Tables S5, S8 and
S9.

The results using DP4* and ACD are shown on the SCC curve
in Fig. 4. The performance of DP4* and ACD is similar to that of
IR.Cai with both methods achieving similar levels of accuracy at
a given unsolved proportion. The CA values of 0.949 and 0.896
for ACD and DP4* respectively are similar to the values obtained
for high and low level IR.Cai scores.

Only 1H chemical shis and relative integrals were used for
structure verication. Proton NMR spectra also contain rich and
Chem. Sci., 2025, 16, 21590–21599 | 21595
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Fig. 4 Structure classification characteristic (SCC) curve based on the
42 molecules in the test set using raw DP4* and ACD scores. Some of
the ACD scores were identical for the correct structure and an
incorrect isomer, so it was not possible to classify all pairs. The dotted
section of the line for ACD therefore represents the expectation of
random guessing to choose the correct isomer for molecules which
had the same score. Results using ACD's automatic peak-picking
procedure are shown (ACD_auto) as well as results using manually
peak-picked spectra (ACD_manual). Note that using ACD's automatic
peak picking results in only a mild degradation in performance.
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possibly complementary information from proton–proton J-
couplings, but these are currently much harder to interpret
automatically. First, second-order effects (so-called strong
coupling) make it challenging to measure couplings between
protons with similar chemical shis. Second, J-couplings can
only be calculated from accurate 3D structures using develop-
ments of the Karplus equation34 or DFT calculations,35 far more
resource-demanding than shielding constant calculations.36,37

Recent progress with machine learning methods suggests they
can deliver DFT accuracy for 3JHH

38 and, assuming this can be
extended to 2JHH and 4JHH, it may be possible to incorporate this
into ASV methods by combining them with spectral tting and
density-matrix calculations to resolve second-order effects.
Compound pairs evaluated using a combination of 1H NMR
and IR data

Data combination using the previously described percentile-
rank procedure produces the SCC curves shown in Fig. 5.
Fig. 5 SCC curve based on the 42 molecules in the test set for high-
level IR, DP4*, ACD and the combinations of DP4* and ACD with IR.
The combination lines are obtained using the percentile-rank proce-
dure described in the text. Corresponding SCC curves for combination
with low-level IR are shown in the SI (Fig. S5).

21596 | Chem. Sci., 2025, 16, 21590–21599
Recalling that a perfect performance is a point in the top le
corner (all pairs classied correctly and no pairs unsolved), the
combination of IR.Cai with 1H NMR DP4* or ACD moves the
performance approximately half way towards that goal as eval-
uated visually and by the CA metric. For example, IR.Cai (high)
solved around 73% of isomer pairs at a 90% true positive rate,
achieving a CA of 0.936. When combined with DP4* or ACD this
improves to 85% (DP4*) to 100% (ACD) solved at the same true
positive rate. The CA improves accordingly to 0.966 (IR.Cai +
DP4*) and 0.979 (IR.Cai + ACD). Similarly, at a true positive rate
of 95%, IR.Cai solved 50% of isomer pairs, rising to 70–85%
when combined with DP4* or ACD. Combining NMR and IR
data therefore improves the structure verication performance
by a factor of 2 to 3, based on the difference to the ideal CA score
of 1, compared to using NMR or IR data alone.

This valuable improvement to the structure verication
procedure suggests that the information provided by the two
spectroscopic methods is complementary. If the methods were
providing similar information, we might expect the SCC curve
of the combination to lie between the performance of the two
methods individually. As a control and as expected we nd that
neither IR (low) and IR (high) nor ACD and DP4* can be
combined to show an improvement (SI, Fig. S5 and S6). We also
nd that we can achieve similar results by combining the raw
scores for DP4*, ACD or IR.Cai without using the percentile-
rank method (SI, Fig. S7 and S8). We believe, however, that
the percentile-rank combination procedure is the most appro-
priate and least arbitrary way of combining data. Further details
are given in the SI.
Case study: choosing from a large set of incorrect isomers

To investigate the generality of the proposed system, we applied
it to a larger set of incorrect isomers. A pipeline was designed
using REINVENT4 (ref. 39) to obtain structures with high
Tanimoto similarity (calculated using Morgan ngerprints of
length 2048 and radius 2) to an input molecule. Full details and
all structures are given in the SI. In our case, we performed this
procedure using one of the larger molecules from our test set
(molecule 43, MW367) to augment the number of incorrect
isomers. The 18 additional incorrect isomers which had the
highest Tanimoto similarity to the correct structure were
selected. Calculations were performed using the same settings
as described earlier in the text to obtain DP4*, IR.Cai and ACD
scores for all of the new structures. The structures of the top 3
candidates ranked by DP4* and IR.Cai are shown in Table 2; the
full results for all the isomers are shown in the SI (Table S4). The
percentile-rank combination procedure was used to combine
the information from the DP4* and IR.Cai scores. This proce-
dure identied the correct structure as the most likely one,
whereas it ranks 3rd for both DP4* and IR.Cai when used alone.
The average combined percentile-rank is highest for the correct
structure (0.909 compared to 0.864 for the next best candidate)
as the correct structure scores relatively highly for both DP4*
and IR.Cai. Although incorrect structures may score higher than
the correct structure for one of themethods, for orthogonal data
it is unlikely that an incorrect structure would score higher for
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The top 3 candidates as ranked by DP4* and IR.Cai for the expanded compound 43 test set, sorted by descending average percentile-
rank. The average percentile-rank procedure ranks the correct structure (candidate 0) the highest, despite its diastereoisomer (candidate 3) being
ranked highest by DP4*

Candidate Structure
Tanimoto similarity to
correct structure (Morgan ngerprints)

DP4*
rank/23 IR.Cai rank/23

Average percentile
rank

0 (correct) 1.0 3 3 0.909

3 1.0 1 7 0.864

5 0.72 7 1 0.864

22 0.59 18 2 0.818

12 0.60 2 21 0.750
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both methods. The percentile-rank method identies the
structure that scores well for both types of spectra as the most
likely candidate.

Whilst it is difficult from the structures shown in Table 2 to
identify structural features that inuence the performance of
NMR or IR identication, it is interesting to note that both
techniques can distinguish between diastereoisomers. Note
that the ACD soware does not score these compounds well
likely due to the unusual geminal J-coupling of the methyl-
enedioxy groups (peak listing in Section 10 and ACD scores in
Table S10 of the SI).
Conclusions

We present a method for ASV using a combination of IR and
NMR data to score compounds and focusing on differences
between the scores. The similarity metric between calculated
and experimental IR spectra, IR.Cai, is combined with the DP4*
© 2025 The Author(s). Published by the Royal Society of Chemistry
score for NMR assignment to create a new measure of the
correspondence between spectra and candidate molecules that
may have produced them. Testing the method on a challenging
dataset of 42 drug-like compounds and 99 closely related
incorrect isomers demonstrates that IR data can improve the
performance of ASV. 100% of the potential comparisons
(correct structure vs. incorrect isomer) could be solved with an
85% true positive rate when using a combination of NMR and
IR data, with a CA score of 0.966. This is an improvement on the
CA score of 0.936 using IR data alone and represents a signi-
cant step towards the ideal case of CA = 1. This result demon-
strates that combining IR and NMR data allows a higher
proportion of similar isomers to be distinguished while main-
taining the same condence in each classication. We validate
these results on a larger set of automatically-generated candi-
date molecules and show that the consensus choice of molecule
of DP4* and IR.Cai picks the correct isomer when either tech-
nique alone fails. While the relative contributions of NMR and
Chem. Sci., 2025, 16, 21590–21599 | 21597
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IR to distinguishing isomeric structures will naturally be
inuenced by the test set chosen, these results clearly demon-
strate the complementarity of the two forms of spectroscopy.
The ease with which IR spectra can be collected from small
amounts of material makes it an attractive proposition for use
in the ASV approach. This contrasts with 13C NMR spectra,
which increase the time required for data acquisition and are
likely to be a bottleneck in the workow. The use of IR and 1H
NMR data together should avoid this potential bottleneck.
Although DFT calculations are currently required to simulate
NMR and IR spectra, advances in machine learning methods
are beginning to address this.38,40–44 Similarly advances in
synthesis prediction tools means that the automatic generation
of a realistic set of possible reaction products is becoming
a reality. Our process to combine low-cost inputs: 1D 1H NMR
and IR spectra, provides a foundation for even faster structure
verication by extracting useful information from multiple
inexpensive techniques, and will enable the acceleration of
chemical discovery.
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