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Lechen Dong, a Yao Wang a and Fang Liu *a

Advanced computational chemistry software packages have transformed chemical research by leveraging

quantum chemistry and molecular simulations. Despite their capabilities, the complicated design and the

requirement for specialized computing hardware hinder their applications in the broad chemistry

community. Here, we introduce AutoSolvateWeb, a chatbot-assisted computational platform that

addresses both challenges simultaneously. This platform employs a user-friendly chatbot interface to

guide non-experts through a multistep procedure involving various computational packages, enabling

them to configure and execute complex quantum mechanical/molecular mechanical (QM/MM)

simulations of explicitly solvated molecules. Moreover, this platform operates on cloud infrastructure,

allowing researchers to run simulations without hardware configuration challenges. As a proof of

concept, AutoSolvateWeb demonstrates that combining virtual agents with cloud computing can

democratize access to sophisticated computational research tools.
1. Introduction

Computational chemistry has signicantly advanced chemistry
research in recent decades, from revealing reaction mecha-
nisms1,2 and interpreting spectroscopy3 to generating training
sets for articial intelligence (AI) assisted design and
discovery.4,5 Advances in theoretical methods and soware
empower researchers to tackle increasingly complex problems,
yet learning to use these tools properly becomes increasingly
difficult. Computational chemistry packages, whether for elec-
tronic structure calculations or molecular simulations, invari-
ably demand the users' familiarity with the underlying theories
and package-specic options, alongside sufficient computing
resources for executing them. Many chemical processes neces-
sitate the synergistic usage of multiple packages, posing addi-
tional challenges for researchers across the broad chemical
science community.

The past decades have seen a growing trend of developing
open-source, automated workows to address this issue.
Quantum mechanical (QM) calculation workows, such as
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the user, all pages used in the

olvateWeb, scaling analysis, list of all
rce eld, lists of solutes used in the
bedded job queue, and the example

course design. See DOI:

64
Material projects,6 QCDB,7 and MolSimplify,8 have signicantly
enhanced data generation efficiency and soware interopera-
bility for data-driven research on solid-state materials and
molecules. In addition, the AutoSolvate toolkit9 has streamlined
themodeling of explicitly solvated molecules by synergizing QM
calculations, force eld tting, and molecular dynamics (MD)
simulations, allowing efficient computational investigations of
real-life solution phase chemical processes.

However, two major challenges remain. Firstly, crucial
simulation parameters must still be set manually, forcing the
users to delve into lengthy user manuals. Secondly, the work-
ows oen require high-performance computing resources that
are not readily accessible to non-computational researchers.
These barriers render the workows unfriendly to students and
experimental chemists. Consequently, experimental
researchers frequently struggle to simulate chemical processes
in realistic experimental environments, which require syner-
gistic utilization of multiple simulation packages. For example,
the solvent environment plays vital roles in synthesis, catalysis,
and energy storage, where fast and accurate descriptions of
solvents in the simulation are essential. However, available
automated computational workows are usually limited to gas-
phase or implicit solvent quantum chemistry calculations.
Learning to perform complex simulations that explicitly
describe solvents on high-performance computing clusters is
time-prohibitive for experimental researchers. Hence, a user-
friendly computation platform that requires minimal simula-
tion experience and hardware prerequisites is essential for
expanding access to computational chemistry within the
broader community.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Here, we introduce AutoSolvateWeb, a chatbot-assisted,
cloud-based computational platform for quantum chemistry
studies of explicitly solved molecules, as a proof of concept to
address the challenges concurrently. Having achieved automa-
tion through the AutoSolvate workow, AutoSolvateWeb further
addresses the accessibility challenge by integrating a chatbot
using the Google Dialogow CX framework.10 The chatbot
educates users through natural language conversations, guides
users to congure parameters for modeling explicitly solvated
molecules, triggers calculations in the backend, and retrieves
the results aer completion. In addition, AutosolvateWeb
fullls hardware requirements by conducting all calculations
on accessible cloud-computing resources, providing convenient
access for anyone with an internet-accessible device.

This work innovatively employs a chatbot to assist users of
scientic soware, potentially reshaping how scientists interact
with advanced research tools. AI chatbot frameworks such as
Google Dialogow CX,10 Microso Azure Bot service, and
Amazon Lex nd extensive applications in creating virtual
assistants for commercial usage, such as online banking11 and
customer service.12 Nevertheless, very few AI applications are
dedicated to enhancing the user experience of scientic
research tools.13–15 Exceptions include ChemVox16 for voice-
controlled xed-type quantum chemistry calculations and
Coscientist17 for GPT-4 assisted autonomous chemical experi-
ments. Most scientic soware users rely heavily on manuals
and expert guidance for multistep calculations. Through the
chatbot integration, AutoSolvateWeb enables non-expert users
to perform multistep simulations of explicitly solvated mole-
cules for the rst time without external aids. This convenience
empowers researchers from the broad community to efficiently
Table 1 A list of common molecular properties whose calculation relie
solvation configurations and MD simulation trajectories

Properties Target properties Whe

Solvation conguration Visualization,21 conformer
sampling22,23

Alwa

Ground state interaction H-bond,24 interaction energy25 Alwa

Thermodynamics Density, solubility, vaporization
enthalpy (DHvap),

26 solvation free
energy (DGsol)

27

H-bo

Spectrum UV/Vis,28 IR,29 VCD,30 Raman,31
1H/13C NMR32

H-bo

Excited state Redox potential,33 charge transfer34 H-bo

Nonadiabatic process Charge/exciton transfer rate,35

decay pathway, decoherence36
Solv

Chemical reaction Reaction pathway, catalysis
mechanism, activation energy37–39

H-bo
resp

© 2025 The Author(s). Published by the Royal Society of Chemistry
utilize complex functionalities of scientic computing tools,
which marks a signicant step forward in integrating AI into
scientic research.

2. Results
2.1 Overview of AutoSolvateWeb functionality

AutoSolvateWeb's primary functionality is to automate explicit
solvent simulations for an arbitrary user-specied organic
molecule solvated in arbitrary organic solvents. The outputs of
AutoSolvateWeb are solvation congurations sampled from
molecular dynamics simulations, representing 3D structures of
solute molecules immersed in a specic number of explicit
solvent molecules. These congurations are valuable to chem-
ists studying solute conformation in solvent environments or
exploring solute–solvent interactions (e.g., hydrogen bonding).
Additionally, these congurations serve as starting points for
quantum chemistry calculations to predict molecular properties
(e.g., redox potential), simulate molecular spectra (e.g., UV/Vis
and IR spectra), and investigate chemical reaction mecha-
nisms in the solution phase. Table 1 summarizes typical
computational studies requiring explicit solvation congura-
tions and, therefore, can benet from the simulations auto-
mated by AutoSolvateWeb.

AutoSolvateWeb's automation of simulations is achieved
through the command-line-based AutoSolvate backend, which
generates explicit solvation congurations through three steps:
force eld and solvent box generation (“Step-1”), MD simulation
(“Step-2”), and microsolvated cluster generation (“Step-3”). In
Step-1, a solvent box accommodating a user-provided solute
molecule surrounded by solvent molecules (water, methanol,
s on explicit solvent models can benefit from AutoSolvate-generated

n is the explicit solvent needed Further calculations

ys Visualization, MD trajectory
analysis, and conformational
distribution analysis

ys QM calculation, energy
decomposition analysis (EDA),
weak-interaction analysis,
visualization

nd, non-bonded QM calculation, thermodynamic
integration

nd QM excited-state calculation (UV/
Vis), Hessian (IR, Raman), or
chemical shi calculation (NMR)

nd, polar solvent QM optimization of the initial and
nal state, compute Hessian and
zero-point vibrational energy
(ZPVE), electronic coupling

ent participates in the reaction Generate initial geometry, then use
corresponding nonadiabatic
dynamic methods

nd, adsorption, dynamic
onse

ab initio MD (AIMD) or QM/MM,
cluster-continuum model, TS-
search, meta-dynamics

Chem. Sci., 2025, 16, 3852–3864 | 3853
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acetonitrile, chloroform, or NMA) is constructed, with themissing
General Amber Force Field (GAFF)18 parameters determined by
quantum chemistry calculations. Then, solvation congurations
are sampled in Step-2 using the AMBER19 molecular dynamics
package, with optional QM/MM simulations conducted with the
GPU-accelerated quantum chemistry package, TeraChem.20

Finally, in Step-3, users have the option to extract microsolvated
clusters of customized sizes from MD trajectories as inputs for
other quantum chemistry packages. More details about the so-
ware design, usage, and applications of the command-line-based
AutoSolvate toolkit are available in our previous publication.9

Although the original command-line-based AutoSolvate
Toolkit has automated the simulation workow, it still presents
challenges for users without a background in computational
chemistry. Each of the three steps requires a command with
multiple user-specied keywords, necessitating familiarity with
the Linux shell environment and additional time to learn the
command syntax. Furthermore, some backend soware pack-
ages integrated with AutoSolvate require specialized computing
hardware (e.g., TeraChem requiring GPUs), which demands the
correct conguration of both soware and hardware. These
challenges may deter many potential users, such as chemistry
undergraduates lacking computational training, from effec-
tively utilizing the tool. To address these challenges, we devel-
oped AutoSolvateWeb, a web-based interface that leverages
cloud computing resources to eliminate soware and hardware
conguration issues. A built-in chatbot gathers the necessary
keywords through natural language conversations with users
and automatically prepares the commands for the three steps,
freeing users from the need to learn complex command syntax.
Fig. 1 AutoSolvateWeb's chatbot design philosophy. The command–
line interface at the top is transformed into a chatbot-based interac-
tion. The chatbot combines a predefined dialog flow focusing on
collecting each keyword from users, some definition intents to answer
users' clarifying questions, and the generative fallback to avoid
conversational derailment.
2.2 The chatbot design philosophy for AutoSolvateWeb

We designed the chatbot for AutoSolvateWeb with the intention
to balance specialization with exibility, efficiency, and capa-
bility. Currently, two types of chatbots are commonly consid-
ered for scientic soware interfaces: traditional chatbots and
large language models (LLMs). Traditional chatbots are rule-
based or intent-driven, matching inputs to a limited set of
predened responses, such as, “If the user says X, respond with
Y”.40 Consequently, traditional chatbots oen struggle with
nuanced conversations and may indicate that they cannot
understand the query. In contrast, LLMs are built on advanced
architectures like Transformers41 (e.g., OpenAI's GPT, Google's
BERT) and can encode complex contextual relationships across
large amounts of data. Consequently, LLMs exhibit contextual
understanding and can generate responses to complex, open-
ended queries.42 While LLMs appear more capable than tradi-
tional chatbots, our specic goal of assisting users in setting
input keywords for a specialized scientic soware package
poses unique challenges. A disadvantage of LLMs for our task is
the complexity and overhead to deploy. Building an LLM from
scratch is computationally expensive, requiring substantial
resources for training, inference, and deployment.41 Fine-
tuning existing LLMs, such as ChatGPT, is also challenging
due to the lack of high-quality, domain-specic data. Auto-
Solvate, being a new computational package, has little readily
3854 | Chem. Sci., 2025, 16, 3852–3864
available data for training, and curating sufficient data would
require substantial effort. Additionally, LLMs may generate
inconsistent responses depending on the phrasing or context of
a query. In our use case, this inconsistency could result in the
generation of inconsistent input keywords for the same
molecular systems, compromising the reproducibility of
resulting simulations.

Based on these considerations, we design the chatbot using
the Google DialogFlow CX42 framework (Fig. 1), which combines
the advantages of lightweight, intent-driven chatbots with the
additional exibility provided by generative AI (LLMs). To
ensure that all necessary input keywords are collected consis-
tently, we have predened a dialog ow where the chatbot
proactively asks users questions to gather information about
the solvated molecules and select each keyword needed for
preparing input commands for the AutoSolvate backend
(Fig. 1). Users are generally expected to respond to these ques-
tions sequentially. However, experienced users can bypass
certain questions and proceed directly to another stage of the
simulation by providing instructions such as “Go to Step-3”
(more details available in Section 5.2 and ESI Text S1†). This
aspect of the chatbot design is intent-based, like traditional
chatbots.

Our chatbot also allows users to ask clarifying questions
about terminologies mentioned in its prompts. For example,
when the chatbot asks the user to specify the solvent, the user
can inquire: “What does solvent mean?” The chatbot rst
attempts to match such questions with a predened intent,
“UserQuestions”, which responds the user with standard de-
nitions of keywords and terminologies related to AutoSolvate
(Fig. 1, ESI Text S1 and Table S1†). This ensures that domain-
specic answers are delivered consistently, avoiding potential
inconsistencies or hallucinations commonly associated with
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 AutosolvateWeb workflow on the JetStream2 cloud computing platform. (1) The user communicates with the chatbot server through the
Ngnix server; (2) the chatbot retrieves the required structure from PubChem; (3) the chatbot server makes a REST API request to Google's Dialog
flow CX virtual agent; (4) the chatbot server sends the necessary information to the AutoSolvate Server and triggers calculations; (5) the
calculation results are returned to the Node Server for visualization and downloading; (6) the user downloads the calculation results through the
Ngnix reverse proxy.
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LLMs.43 If the user's question does not match any predened
intent or any parameter relevant to AutoSolvateWeb, the query
is handled by the generative fallback feature of Google's latest
generative LLMs. In such cases, the chatbot uses LLMs to
generate a response informing the user that their question is
out of scope and encourages them to address the chatbot's
previous query (Fig. 1). This approach mitigates the risk of
conversational derailment, a common issue with LLMs when
deployed in open-ended conversational systems. By integrating
intent-based design with generative AI capabilities, the chatbot
achieves a balance between deterministic and exible interac-
tion styles, meeting the specic requirements of scientic
soware assistance. More technical details of the conversation
ow are available in Section 5 and ESI Fig. S1.†
2.3 AutoSolvateWeb cloud server structure

With the aforementioned design philosophy, we implement
AutoSolvateWeb on the JetStream2 (ref. 44) cloud computing
platform. Fig. 2 illustrates the architecture of AutoSolvateWeb,
Fig. 3 Example conversation for running Step-1. Some dialogue has been
multiplicity of the solute; (2) the user provides the solvent box size.

© 2025 The Author(s). Published by the Royal Society of Chemistry
composed of four containerized services: the Node server, the
Nginx server, the chatbot server, and the AutoSolvate server,
orchestrated via the Docker containerization platform. The Node
server hosts the webpage with the chatbot frontend and neces-
sary scripts to initiate chat sessions via API calls to Google's
Dialog ow CX API through the chatbot server. Each user prompt
on the chatbot server triggers a REST API request for the virtual
agent, facilitating calculation setup via natural language conver-
sations. Once all input parameters are validated and conrmed
by the user, automated simulations will be triggered on the
AutoSolvate server, which executes the command–line-based
AutoSolvate toolkit on the CPU/GPU instances of JetStream2
(ref. 44) cloud infrastructure. Finally, the outputs (solvation
conguration) are returned to the Node server upon completion.
2.4 Chatbot-assisted explicit solvent simulation

Once the user conrms to proceed to generate solvation cong-
urations, the chatbot switches to the second stage of conversation
and sequentially guides the user through the three steps of
omitted for brevity, including (1) the user specifies the charge and spin

Chem. Sci., 2025, 16, 3852–3864 | 3855
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running AutoSolvate. Fig. 3 depicts a sample conversation for
Step-1 between the user and the chatbot. In the rst step, the user
provides the solute structure by uploading an XYZ or providing
the IUPAC name, prompting the chatbot to download the corre-
sponding structure from PubChem. The chatbot then navigates
the user through the parameter setup procedure via natural
language conversation. Suggested response buttons are provided
in the chat box to simplify this process further.

For example, specifying the solvent can be done by typing
“water”, “the solvent is water”, “use water”, or clicking on the
“water” button in the chat box (see ESI Table S2† for all sup-
ported solvents). Further, while prompting for a parameter, the
chatbot provides a link to a webpage with its denition for
further reading. Alternatively, the user can ask the chatbot with
the phrase, “What is the denition of.” and receive the answer
in the chat box. Once all parameters are set, the chatbot auto-
matically validates them before conrming with the user to
initiate the calculation. The validation includes checking the
type and range of each parameter (e.g., whether spin multi-
plicity is a positive integer) and whether the combination of
different parameters denes a valid chemical system (e.g., the
compatibility of the net charge and spin multiplicity for a given
molecule). At this step, the user can either conrm or reset the
input parameters. Upon user conrmation, the chatbot sends
all required information to the backend via the chatbot server,
initiating the AutoSolvate workow and awaiting calculation
completion. A compressed folder containing all essential
output les (descriptions available in ESI Table S3†) can be
downloaded by clicking the “Download” button on the web page
Fig. 4 Runtime for Step-1 of AutoSolvateWeb. The test systems
comprise the water solvent and selected small to medium-sized
solutes, with solute charge 0 and spin multiplicity 1. For each test
system, timings for the AM1-BCC46 charge fitting (default option for
closed-shell solutes) and RESP47 charge fitting are done separately.
Each solute's structure is shown in the inset, along with the number of
heavy atoms and basis functions.

3856 | Chem. Sci., 2025, 16, 3852–3864
or the “Download Step-1 Button” in the chat box. Clicking the
“Show output for Step-1” button will display the image of the
generated solvent box with JSmol.45

Typically, Step-1 takes less than 92 seconds for small to
medium-sized closed-shell solute molecules with up to 33 heavy
atoms (Fig. 4 and ESI Text S2†), meaning the users can get the
results almost instantly. For open-shell solute molecules (spin
multiplicity greater than 1) with up to 33 heavy atoms, Step-1
takes up to 774 seconds due to the requirement to evaluate
the restrained electrostatic potential (RESP)47 atomic partial
charges with the GAMESS quantum chemistry package (ESI
Table S4†). A built-in queue on the web interface allows users to
check their job status (ESI Fig. S3†). The queue will keep the
output les for up to 14 days, which allows the user to tempo-
rarily step away when waiting for a lengthy job to complete.

The chatbot then prompts the user to proceed to Step-2 by
asking, “Do MD simulation?” The user can proceed or redo the
previous step by typing in “restart Step-1” or terminate this
workow by saying “goodbye” or its synonyms. If the user
chooses to proceed to Step-2, the chatbot will guide them in
conguring input parameters for various types of classical
mechanics (MM) or QM/MM MD simulations, then automati-
cally generate the simulation input les and execution scripts
(Fig. 5). Specically, the workow assumes the sequential
performance of MM minimization, heating to a target temper-
ature, constant temperature constant volume equilibration
(NVT ensemble), constant temperature constant pressure
equilibration (NPT ensemble), and constant energy constant
volume simulation (NVE ensemble), followed by optional QM/
MM simulations (minimization, heating up, NVT, and NVE).
Aer specifying the simulation temperature and pressure, the
chatbot asks whether the simulations will be performed with
the “dry run” mode, meaning that only the input les will be
generated without actual MD simulations running on the cloud.
If the “dry run” mode is off, a short simulation will run on the
cloud for demonstration purposes only due to resource limita-
tions on JetStream 2. Simulation length is restricted to up to 100
steps for each stage of MM simulations and 10 steps for all QM/
MM simulation stages, with output trajectories included in the
download zip le upon job completion. If the “dry run”mode is
on, the chatbot asks the user to specify the length of each
simulation stage. Only the simulation input les will be
generated for download, which is useful for users intending to
run production simulations on their own computing clusters.
Finally, the user can proceed to Step-3 for microsolvated
molecule cluster extraction based on the trajectories generated
in Step-2. Users can download these les along with the outputs
of previous steps by clicking the “Download Step-3 Output”
button in the chat window.
2.5 Example: innovative laboratory course for
solvatochromism

AutoSolvateWeb allows chemists, including those without
a computational background, to conduct complex calculations,
thus making computational analysis more accessible for
undergraduate laboratory courses. Here, we present an example
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 An example conversation for running Step-2 and Step-3. Some dialogue has been omitted for brevity, including (1) the user specifies the
length of the MM heat up, NVT, NPT and NVE step; (2) the user provides the extraction interval and shell thickness for Step-3.

Fig. 6 Expected computational results for the solvatochromism lab.
(A) 2D structure of the Reichardt's dye. (B) Microsolvated cluster
extracted in methanol. (C) Microsolvated cluster extracted in aceto-
nitrile. (D) Average computed frontier orbital energies and HOMO–
LUMO gaps for 10 acetonitrile and methanol-solvated clusters. Values
in blue brackets are experimental absorptionmaxima in corresponding
solvents.51 (E) Close-up look of the HOMO orbital of a methanol
solvated cluster (isovalue 0.05 a.u.), focusing on the oxygen atom on
the Reichardt's dye. The solute and the methanol molecule forming
hydrogen bonds are drawn in sticks.
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of how AutoSolvateWeb can be used to design innovative labo-
ratory courses centered around the solvatochromic effect.

Solvatochromism is a photophysical phenomenon where the
color (wavelength) of light absorbed or emitted by a molecule
shis in response to changes in the solvent's polarity and other
intermolecular forces.48 This effect is particularly useful in
photochemistry for investigating solvent environments, as the
shis can indicate the nature of solute–solvent interactions,
such as hydrogen bonding and dipole–dipole interactions.
Solvatochromic shis are complex and inuenced by a range of
solvent effects, including polarization, structural modications,
and dynamic reorientation of the solvent around the solute in
excited states.

Solvatochromism introduces students to the complex solva-
tion concept and can be used to teach dye synthesis, UV/Vis
spectroscopy, solvent polarity, and molecular dipole moment.
Lab projects centered on solvatochromism have been adapted
to undergraduate lab courses in organic chemistry,49,50 analyt-
ical chemistry, and physical chemistry.51 However, most existing
lab projects only provide qualitative explanations of sol-
vatochromism, where the effect is described as the differential
stabilization of the HOMO and LUMO by polar solvents. A
quantitative computational investigation of the frontier
orbitals' energy changes in various solvents is not integrated
into the lab project, likely because it requires a complex
computational protocol involving the generation of solvation
congurations. For students with limited or no computational
chemistry training, completing these tasks within the lab
timeframe would be impractical, creating a barrier to directly
illustrate how the solvent environment impacts the solute's
electronic structure.

Here, we demonstrate the potential use of AutoSolvateWeb
to introduce a computational component in the
© 2025 The Author(s). Published by the Royal Society of Chemistry
solvatochromism lab. We take the lab project proposed by
González-Arjona et al. as an example, where UV/Vis spectra of
Reichardt's dye (Fig. 6), also known as Betaine 30, are recorded
in solvents of different polarities and hydrogen bond effects.51
Chem. Sci., 2025, 16, 3852–3864 | 3857

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc08677e


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
le

dn
a 

20
25

. D
ow

nl
oa

de
d 

on
 1

5.
02

.2
02

6 
6:

16
:3

0.
 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
The experimental UV/Vis spectrum peak of Reichardt's dye
signicantly blue shis from 620 nm to 520 nm when the
solvent changes from acetonitrile to methanol, despite their
similar relative dielectric constants (36.65 and 33.00, respec-
tively). Since implicit solvent models like the polarizable
continuummodel (PCM)52 mostly account for the solvent effects
through the solvent’ dielectric constant, they cannot distin-
guish the different impacts of acetonitrile to methanol. The
differences in computed HOMO–LUMO gaps between the two
solvents, together with the excitation energy computed by time-
dependent DFT (TDDFT)53 with both linear-response54 and
state-specic55 PCM, were insignicant, failing to reproduce the
experimental spectrum shi (ESI Text S3†). Hence, students
need to explore the explicit solvation congurations to under-
stand the origin of this blue shi. The students will use Auto-
SolvateWeb to obtain solvation congurations of Reichardt's
dye in acetonitrile and methanol and perform quantum
chemistry following our instructions below.

The rst part of the computational component is generating
solvation congurations of Reichardt's dye in acetonitrile and
methanol through conversations with the AutoSolvateWeb
chatbot, with a complete record of the conversations detailed in
ESI Text S4.† In Step-1, the name of the solute (“Reichardt's
dye”) and solvents are provided to the chatbot, which then
generates a 45 × 45 × 45 Å solvent box of a Reichardt's dye in
1193 methanols and another box of a Reichardt's dye in 1075
acetonitriles, together with classical force eld parameters. In
Step-2, MD samplings are performed for each solvent box,
resulting in a 1 ns long NPT production trajectory at 298 K and 1
bar. In Step-3, students would extract microsolvated clusters
with a 4.0 Å thick solvent shell from the MD trajectories and
obtain 10 solvation congurations with an interval of 100 ps.
Example clusters are shown in Fig. 6.

The second part is QM calculations on the solvated dye to
understand the solvatochromism shi from acetonitrile to
methanol. The students will performDFT (PBE0 (ref. 56 and 57)/
6-31G* (ref. 58 and 59)) calculations of the solvation congu-
rations, with an additional PCM model applied to the cluster to
account for the electrostatic effects of bulk solvents. The
calculations can reproduce the experimentally observed
absorption difference of 0.40 eV between methanol and aceto-
nitrile, which can bemainly attributed to the 0.26 eV decrease in
the HOMO energy. This is because the HOMO is localized
around the solute's oxygen atom (Fig. 6). The oxygen atom
forms hydrogen bonds with protic solvents like methanol,
changing the local electrostatic environment and lowering the
HOMO energy, thus affecting the absorption shi. With the
above computational experiment with AutoSolvateWeb,
students without computational chemistry backgrounds can
perform multistep calculations and intuitively understand the
solvatochromism through the computed results. The example
computation results are included in the ESI 3.†

This proposed computational component is appropriate for
an organic chemistry lab where students have learned basic
concepts like HOMO and LUMO but are not trained in elec-
tronic structure theory. For computational chemistry lab or
advanced physical chemistry lab, the proposed lab can be
3858 | Chem. Sci., 2025, 16, 3852–3864
extended by using excited-state electronic structure methods
[e.g., TDDFT or complete active space self-consistent eld60

(CASSCF)] for the quantum chemistry calculation part to obtain
calculated shis that agree with the experiment even better.
Regardless, the explicit solvation congurations are still the
foundation for the QM calculations.

3. Discussion

AutoSolvateWeb pioneers the integration of chatbots to
streamline complex computational workows in a user-friendly
manner, enabling cloud-based, easily operated solution-phase
chemistry data generation. Through interactions with Auto-
SolvateWeb's chatbot, users without prior experience inMD and
QC soware can perform multiple-step explicit solvent simula-
tions without delving into lengthy documentation, attening
the learning curve for new computational chemistry soware.
Moreover, AutosolvateWeb enables researchers to participate in
data generation and sharing without specialized computing
hardware, democratizing data-driven research in related elds.

As a proof-of-concept tool, AutosolvateWeb still has ample
room for improvement. This section highlights some current
limitations and discusses plans for future development.

3.1 Supported solvation systems

The current version of AutoSolvateWeb supports single organic
molecules as the solute. These solutes must contain only
elements compatible with GAFF, including hydrogen (H),
carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S),
and halogens uorine (F), chlorine (Cl), bromine (Br), and
iodine (I). Metals, other main-group elements, and noble gases
are not yet supported. Additionally, specic solutes with unique
bonding patterns not dened in GAFF are incompatible. For
example, the diphenyliodonium cation is unsupported because
its iodine atom forms two single bonds with two phenyl groups,
which deviates from the bonding patterns for iodine dened in
GAFF.

To expand the range of chemical systems that can be simu-
lated, we have already implemented new functionalities in the
development branches of the AutoSolvate command–line
interface. These updates support arbitrary organic solvents, an
arbitrary number of solvent/solute species, and transition metal
complexes as solutes. These functionalities will be integrated
into AutoSolvateWeb in the near future.

3.2 Accuracy of the explicit solvent simulations

The solvation congurations generated by the AutoSolvate
backend have been used to calculate various molecular prop-
erties. For instance, the thermodynamic integration approach
was employed to calculate the redox potentials of a diverse set of
165 organic redox couples using solvation congurations
generated by AutoSolvate.61 These calculations achieved a mean
absolute error (MAE) of 0.64 V compared to experimental
measurements, which was signicantly reduced to 0.19 V when
a machine learning-based error correction algorithm was
applied to mitigate systematic errors.61 Notably, only 3 out of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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165 explicit solvent calculations resulted in large-error outliers
(errors >1 V compared to experiments), a signicant improve-
ment over the corresponding implicit solvent calculations,
which yielded 11 outliers.61 Additionally, other research groups
have applied AutoSolvate to investigate solvation conformations
of natural products21,62,63 and to simulate Raman spectra.64

However, users should be aware of potential limitations in
accuracy arising from the method or computing resources. The
AutoSolvate backend relies on non-polarizable force elds, such
as GAFF and Amber force elds, for classical MD and QM/MM
simulations. While these force elds are computationally effi-
cient, they fail to accurately describe certain solvated systems
because they cannot account for dynamic polarization
effects.65,66 Complex solvation phenomena, such as ion pairing
in electrolyte solutions or solute-induced solvent structure
perturbations, are inadequately represented without polariza-
tion effects.67 In such cases, users can employ AutoSolvateWeb
to generate the initial solvated structures, but further sampling
with polarizable force elds, machine learning potentials, semi-
empirical methods, or even ab initio molecular dynamics is
necessary to incorporate dynamic polarization effects and
obtain higher-quality solvation congurations. We are also
extending the AutoSolvate backend's workow to include
additional sampling steps using semi-empirical or higher-level
methods.

Additionally, sufficiently long simulation trajectories are
required for publication-quality sampling. For instance, our
previous study indicates that 600 ps of NPT sampling is neces-
sary for calculating the redox potential of solvated small organic
redox couples.61 Due to resource limitations on the JetStream2
cloud computing platform, AutoSolvateWeb allows only
a limited number of steps for MM and QM/MM sampling when
executed directly through the platform, as mentioned in the
Result section. The web interface primarily serves to demon-
strate functionality and educate users about simulation
concepts. Therefore, users aiming to generate publication-
quality MD trajectories are encouraged to utilize AutoSolvate-
Web's “dry run” mode, which generates force eld parameters
and simulation input les without executing the simulations on
the cloud. These input les can then be used to run long
simulations (at the nanosecond time scale) on local computing
resources. We also plan to apply for additional computing
resources on JetStream2 to support AutoSolvateWeb, enabling
longer simulation steps for each user session.
3.3 Cyberinfrastructure

We have implemented several strategies to ensure the web
interface can handle high user traffic and manage computa-
tional workloads effectively. To evaluate the chatbot's perfor-
mance under heavy traffic, we conducted stress tests simulating
thousands of concurrent users accessing the website (ESI Tables
S5–S8†). The results demonstrated that the website successfully
loaded with 10 000 concurrent users and maintained a very low
probability (0.4%) of loading errors even with 25 000 concurrent
users (ESI Table S8†). However, the chatbot could handle only
up to 120 simultaneous users due to a limitation in the
© 2025 The Author(s). Published by the Royal Society of Chemistry
DialogFlow service, which allows a maximum of 1200 text
queries per minute (ESI Tables S6 and S7†). Beyond this
threshold, some users may experience chatbot failures in
responding to their queries. In such cases, users can retry
sending their query, and the chatbot will resume functioning
once the traffic peak subsides. Moreover, traffic exceeding 120
concurrent users is unlikely during the initial launch of this
specialized chemistry soware website. Therefore, we expect
users to experience smooth interactions with the chatbot under
typical conditions.

To manage the hardware resources for backend molecular
dynamics (MD) simulations, we implemented job queuing on
the Node server to prevent excessive server strain, as detailed in
the Section 5.4 and ESI Text S5.† Currently, the system allows
amaximum of four CPU jobs and one GPU job at any given time,
regardless of the number of active users. To ensure a single
user's lengthy simulation does not monopolize the queue, we
imposed limits on the number of simulation steps, as discussed
in the previous subsection. In future updates, we aim to secure
additional cloud computing resources, which will enable
a higher number of simultaneous jobs and reduce restrictions
on simulation steps.

To utilize cloud computing resources more efficiently,
AutoSolvateWeb can implement data storage and reuse func-
tionalities to ensure compliance with the FAIR data principles.68

The AutosolvateWeb chatbot can now clarify terminologies,
guide parameters setup, perform fact-checking, and initiate MD
and QM calculations. Nevertheless, due to chatbot architecture
limitations, users must adhere to a specic sequence of
conversations, as explained in the Result section. Despite
offering some exibility in language input, chatbots may still
misinterpret user requests if their phrasing deviates from pre-
dened patterns. Large language models (LLMs), featured by
the OpenAI's GPT, have consistently demonstrated remarkable
versatility in recent years. While training an LLM for eld-
specic tasks remains data-demanding and computationally
expensive, we expect that with advancements in AI, eld-specic
LLM will be more accessible in chatbot frontend design. Users
will be able to perform highly complex calculations using
natural language, bypassing predened steps and patterns.

4. Conclusions

In conclusion, AutosolvateWeb innovatively integrates a chatbot
frontend and cloud computing with automated workow,
signicantly reducing the knowledge and hardware barriers in
using computational chemistry packages and democratizing
data-driven research across the chemical science community.
We anticipate the adoption of analogous strategies to incorpo-
rate AI across various domains of basic science, transforming
the utilization of advanced scientic tools.

5. Methods

AutoSolvateWeb consists of four containerized applications:
a web application, a reverse proxy application, a virtual agent
proxy service, and an AutoSolvate cloud server application. Due
Chem. Sci., 2025, 16, 3852–3864 | 3859
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to robust containerization, all applications can be horizontally
scaled seamlessly on both traditional and elastic clusters. All
the containerized applications are currently deployed on
a single cloud instance (4 cores with NVIDIA A100 GPU) on
Jetstream2.

5.1 Web application and reverse proxy application

The web application engages with users to authenticate identity,
dene input parameters and les, and visualize molecular
geometry. This service also manages user-specic le storage
and facilitates inter-server calls to launch computation jobs.
Interactive visualization of input and output molecular geom-
etry les is enabled by the JSMol viewer.45 SSL ensures the
security of all communication between the web application and
the user's browser. In addition, strategically positioned
CAPTCHA verications from hCAPTCHA69 have been integrated
throughout the web application workow to prevent abuse by
spam bots. Since all four applications are currently deployed on
a single cloud instance, a reverse proxy application using
Nginx70 redirects requests to appropriate applications. Addi-
tionally, since a reverse proxy also acts as a load balancer, any
future scalability (i.e., deploying to multiple cloud instances) is
secured.

5.2 Virtual agent

We have employed Google's DialogFlow CX to develop the
virtual agent because of the extensive documentation, ease of
annotation, and exibility in designing agent responses. All the
interactions between the virtual agent and users rely on a virtual
agent proxy service. Apart from handling server–server authen-
tication with Google Cloud Platform (GCP), this proxy service
also acts as a gateway to restructure the virtual agent's
responses to deliver complex end–user interaction experiences
(such as loading visualizations on job completion and upload-
ing les as part of the conversation) on the webpage.

Conversation in DialogFlow CX is a collection of ows
embedded in a nite state machine (ESI Fig. S1†). Each ow
may bemade up of multiple pages. Each pagemay have an entry
fulllment (parameters to be lled in by the user during the
conversation) and a route that decides the transition to the next
page. Each route is either associated with an intent or some
condition (Boolean equation) based on the parameters lled by
the user or both. The virtual agent in AutoSolvateWeb has
a single ow of twelve pages and six intents. Each of the pages
represents a state in the conversation (ESI Table S9†), allowing
the user to (1) choose between uploading a solute le or
downloading from PubChem API; (2) specify the solute name;
(3) upload a geometry le; (4) choose the recommended
parameters for the solute in Step-1 if the solute is downloaded
from PubChem API; (5) set all the solute and solvent parameters
manually in Step-1; (6) conrm the inputs of Step-1; (7) choose if
Step-2 is to be run in the “dry run” mode; (8) set parameters for
MM minimization in Step-2; (8) choose to add QM/MM to Step-
2; (9) set parameters for QM/MM in Step-2; (10) conrm inputs
for Step-2; (11) set parameters for Step-3; (12) conrm inputs for
Step-3. Pages 2, 6, 10, and 12 post webhooks to the Autosolvate
3860 | Chem. Sci., 2025, 16, 3852–3864
web server as part of their fulllment. Currently, the six intents
are to: (1) recognize a successful task; (2) recognize a failed task;
(3) recognize a Boolean True input from the user; (4) recognize
a Boolean False input from the user; (5) recognize if the user
wants to upload the solute le; (6) recognize if the user wants to
download the solute le from PubChem. Additionally, there are
three more intents corresponding to restarting each of the
simulation steps, which are triggered in response to a phrase
fuzzy matching the following: (1) “Run Step-1” or “Restart Step-
1”; (2) “Run Step-2 [in dry run mode][ with QM]” or “Run Step-2
[in normal mode] [with QM]”; (3) “Run Step-3” or “Restart Step-
3”. It is worth noting that user prompts need not match the
exact phrase of an intent. DialogFlow CX can map a similar
phrase to their respective intents. More detailed explanation of
the intent-based conversations is available in ESI Text S1.†

Also, all the responses from the virtual agent have a “rec-
ommended response” for the user – except for prompts that ask
the user to set input parameters. The “recommended response”
aims to familiarize new users with the chatbot workow. The
users might also choose to input any of the above-discussed
intents to steer the conversation.
5.3 AutoSolvate cloud server

Finally, the Autosolvate cloud server application executes the
computation job only at the request of the web application or
the DialogFlow virtual agent through an authenticated web-
hook. The containerized image of this application has an
Autosolvate Conda environment, all the third-party soware
(AMBER,19 GAMESS71 and TeraChem20) orchestrated by the
Autosolvate framework and distributed computing frameworks
such as OpenMPI.72 Hence, this container may be deployed
seamlessly on any traditional cluster or a cloud computing
instance. The server application has four workers to handle job
requests, which are processed synchronously. Each job request
spawns a new process to execute the job. Further, the GPU
drivers are exposed only to this application.
5.4 Job queue

When a job is requested by the user, it is queued and will be
executed when a computing resource is available. The job status
and outputs are accessible from the web interface. A user can
have up to two jobs in the queue at any time: one job of either
Step-1 or Step-3 and one job of Step-2. The implementation of
the job queue is discussed in ESI Text S5 and Fig. S3.†
5.5 Computational details

For Step-1 force eld tting, the partial charges are determined
by GAMESS at the HF/6-31G* level of theory if the RESP47 charge
method is selected, or by AmberTools' Antechamber module to
obtain the semi-empirical AM1-BCC46 charges otherwise. For
Step-2, the classical molecular dynamics simulations use the
GAFF force eld for the solute and well-established force elds
for the ve supporting solvents summarized in ESI Table S2.†
The QM/MM simulation treats the solute as the QM region at
HF or B3LYP level of theory based on the user's selection, using
© 2025 The Author(s). Published by the Royal Society of Chemistry
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either the 6-31G* basis set or LANL2DZ effective core potentials
for the transition metals, Iodine, and Bromine.
Data availability

AuotSolvateWeb (https://
autosolvate.che230059.projects.jetstream-cloud.org) is
available as a web server and can be directly used without
installation (ESI Text S6 and Fig. S2†). The source code of the
AutoSolvate backend is available as open source on GitHub
(https://www.github.com/Liu-group/AutoSolvate). A video
tutorial for interacting with the chatbot on AutoSolvateWeb is
available on YouTube (https://youtu.be/kBhugQ6cbc0).
Instructions about reproducing the demo shown in the video
tutorial are also available in ESI Text S6 and S7 and ESI 1.† All
output les of an example AutoSolvateWeb job
(Supplementary_Data1), the Cartesian coordinates of solute
molecules used for scaling analysis (Supplementary_Data2),
and the example results for the innovative course design
(Supplementary_Data3). See https://gshare.com/s/
2bcfa0860bbecf8467f6.
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