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2

22 Abstract

23 This research aims to advance the field of vanadium redox flow batteries (VRFBs) by 

24 introducing a pioneering approach to optimize the microstructural characteristics of carbon cloth 

25 electrodes. Addressing the traditional challenge of developing high-performance electrode 

26 materials for VRFBs, this study employs a robust, generalizable, and cost-effective data-driven 

27 modeling and optimization framework. A novel sampling strategy using low-discrepancy Latin 

28 Hypercube and quasi-Monte Carlo methods generates a small-scale, high-fidelity dataset with 

29 essential space-filling qualities for training supervised machine learning models. This study goes 

30 beyond conventional methods by constructing two surrogate models: a random forest regressor 

31 and a gradient boosting regressor as objective functions for optimization. The integration of a 

32 non-dominated sorting genetic algorithm II (NSGA-II) for multi-objective optimization 

33 facilitates exhaustive exploration of the surrogate models, leading to the identification of 

34 electrode designs that yield enhanced energy efficiencies (EEs) under specific operating 

35 conditions. The application of NSGA-II in exploring surrogate models not only facilitates the 

36 discovery of realistic design combinations but also adeptly manages trade-offs between features. 

37 The mean pore diameter was reduced compared to the tested carbon cloth electrodes while 

38 maintaining a similar permeability value based on the results obtained using the developed 

39 algorithms. Based on this suggestion, a new type of carbon cloth electrode has been fabricated 

40 by introducing a carbonaceous binder into the woven fabric to make carbon cloths with more 

41 complex pore structures and reduced mean pore diameter. The new electrode demonstrates 24% 

42 and 66% reduction in average ohmic and mass transport resistances, respectively, validating the 

43 machine-learning recommendations. This research highlights the critical role of improved 

44 electrical conductivity and porosity in carbon materials, showing their direct correlation with 
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45 increased EE. Overall, this study represents a significant step forward in developing more 

46 efficient and practical VRFBs, offering a valuable contribution to the renewable energy storage 

47 landscape.

48 Keywords: Multiple-objective optimization, porous carbon electrode, regression, supervised 

49 learning, surrogate model, vanadium redox flow battery

Page 5 of 55 Energy Advances

E
ne

rg
y

A
dv

an
ce

s
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
er

ve
nc

e 
20

24
. D

ow
nl

oa
de

d 
on

 1
7.

07
.2

02
4 

0:
49

:5
2.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4YA00248B

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ya00248b


4

50 1. Introduction

51 The current climate crisis has underscored the need for net-zero carbon emission policies, 

52 both in the United States and globally [1]. Following the United States’ re-entry into the Paris 

53 Agreement in 2021, a long-term strategy was established with the goal of reaching net-zero carbon 

54 emissions by 2050. A critical milestone of this strategy is the 50-52% reduction in greenhouse gas 

55 emissions by 2030, necessitating a shift away from fossil fuels across all economic sectors. This 

56 decarbonization milestone is expected to increase electricity demand by approximately 50% over 

57 the next 10 years [1]. The surge in electricity demand poses significant challenges due to (i) the 

58 complex and failure-prone architecture of current electrical grid systems and (ii) the fact that 60% 

59 of electrical energy is currently supplied by fossil fuels [2-4]. Therefore, addressing the rise in 

60 electricity demand is crucial for sustaining the energy requirements necessary for a transition to a 

61 cleaner future [5].

62 In recent decades, renewable energy technologies such as wind and solar, have experienced 

63 significant market growth. Despite their increasing popularity, these low-carbon alternatives are 

64 sometimes considered unreliable for long-duration demands due to their intermittent nature [6]. 

65 To address this issue and balance the energy supply and demand, cost-effective, large-scale energy 

66 storage capabilities are essential [7, 8]. 

67 Among the potential candidates for large-scale stationary energy storage are lead-acid 

68 batteries, lithium-ion (Li-ion) batteries, pumped storage hydropower (PSH), compressed air 

69 energy storage (CAES), and redox flow batteries (RFB) [9]. Li-ion batteries, predominant in 

70 consumer electronics and electric vehicles (EVs), face obstacles in grid-scale energy storage 

71 implementation due to their limited natural abundance and high cost for long-duration solutions 

72 [9-12]. PHS and CAES, while effective, require specific conditions for safe operation and are 
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73 geographically restricted due to the necessity for suitable topography. These challenges are 

74 extensively discussed in review studies [4, 6, 8, 13, 14]. 

75 The search for a highly efficient, reliable, large-scale, and modular energy storage system 

76 continues to be a focus of active research [15]. Among various options, RFB technology has 

77 received considerable attention due to its scalability, efficiency, safety, and cost-effectiveness for 

78 long-duration storage [16-19]. VRFBs, where vanadium serves as the electroactive species that is 

79 dissolved in the electrolyte, are the most common RFB technology [20]. In RFBs, energy is 

80 attributed to the charged active species in the electrolytes; enabling decoupled power generation 

81 and energy storage – a key feature that underscores the promise of RFBs for grid-scale and long-

82 duration energy storage [18, 21-23]. Figure 1 illustrates the structure of a RFB setup, with the 

83 negative and positive half-cells are separated by an ion exchange membrane. The negative and 

84 positive electrodes, critical for facilitating electrochemical reactions and providing pathways for 

85 reactant/product transport, are shown.
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86

87 Figure 1. Schematic of a RFB – A and C represent the redox active materials in the negative and 

88 positive electrolytes, respectively. In a VRFB, the negative electrolyte has V2+/V3+ and the 

89 positive electrolyte has V4+/V5+ redox couples.

90
91 The major obstacle to the global implementation of VRFB technology is their high capital 

92 cost. Large-scale commercialization will remain unrealistic until the capital costs of VRFBs are 

93 reduced to meet the DOE’s cost target of $100 per kWh [24]. Performance improvement, achieved 

94 by increasing power-density and reducing resistances, will lead to reduced system costs [25, 26]. 

95 Enhancing power density involves research focused on performance diagnostics at the cell level 

96 and improving the functionality and efficiency of components [27]. 
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97 The porous electrode plays a crucial role in key functions such as facilitating ion/charge 

98 transfer, providing reaction sites for electrochemical reactions, and distributing liquid electrolytes 

99 [27-32]. Positioned adjacent to current collectors, which typically have flow channels machined 

100 within, porous electrodes benefit from interdigitated flow channel designs that increase average 

101 velocity and enhance overall battery performance [30, 33, 34]. Amongst other cell-level 

102 components, porous carbon electrodes are yet to be fully customized specifically for RFB 

103 applications. Operating conditions such as current density, flow rate, temperature, and electrolyte 

104 composition heavily impact the functionality of the porous carbon electrode, meaning that there is 

105 no singular optimal electrode design; performance will vary significantly based on operating 

106 conditions. Research aimed at improving the morphology of porous carbon electrodes has focused 

107 on maximizing active surface area for redox reactions and enhancing pathways for effective 

108 electrolyte transport [35-38].

109 Recent studies have made significant contributions to understanding and improving 

110 electrode materials for VRFBs. For example, Zhou et al. Zhou et al. explored highly permeable 

111 carbon cloth electrode materials for VRFBs, investigating the activation of carbon cloth with KOH 

112 to increase active surface area. This study demonstrated that woven carbon fiber arrangements 

113 enhance mass transport, with the KOH-activated carbon-cloth electrode achieving notable 

114 performance metrics: at a current density of 400 mA/cm2, the VRFB displayed an energy 

115 efficiency of 80.1% and electrolyte utilization of 74.6% [39]. The improved performance seen in 

116 the VRFB with carbon cloth electrodes could be attributed to the low tortuosity, low pressure 

117 drops, and high ionic conductivity associated with the larger pore sizes [39]. Furthermore, Forner-

118 Cuenca et al. conducted a thorough investigation of three commonly used carbon fiber-based 

119 electrode materials: carbon paper, carbon felt, and carbon cloth to understand the influence of 
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120 carbon cloth microstructure on electrode performance through microscopic, analytical, and 

121 electrochemical methods under fixed operating conditions [40]. The research presented by Nourani 

122 et al. aligns with the conclusions made by Tenny et al., indicating that while all three carbon fiber 

123 materials have benefits and drawbacks, the structured, ordered arrangement of fibers in carbon 

124 cloth can be strategically modified or tuned [41, 42]. Thus, it can be concluded that significant 

125 performance improvements can be achieved with fabric, carbon cloth electrodes due to their 

126 tunable microstructure and ability to create structured woven patterns. 

127 Previous investigations have identified key microstructural characteristics that affect the 

128 functionality of porous carbon electrodes, such as porosity, fiber diameter, and active surface area 

129 [27, 43-45]. However, the expenses associated with laboratory-scale testing are often impractical, 

130 leading most studies to include limited experimental results supplemented with synthetic data that 

131 is collected numerically or computationally via zero-to-three-dimensional modeling [46-51]. To 

132 augment sparse datasets, it has become customary to incorporate machine learning (ML) 

133 techniques to aid the data generation process. Wan et al., for instance, proposed a coupled machine 

134 learning and genetic algorithm approach to design porous electrodes for RFBs [52]. By created a 

135 dataset of 2,275 fibrous electrode structures using a stochastic reconstruction method to generate 

136 three-dimensional fibrous structures, and then applying the Lattice Boltzmann method and a 

137 morphological algorithm to calculate specific surface area and hydraulic permeability, the authors 

138 were able to use a genetic algorithm to screen and pinpoint morphological traits of 700 porous 

139 electrode candidates. Results showed that fiber diameter (𝑑𝑓) and porosity (𝜀) are impactful 

140 structural properties, and that tuning these properties can increase hydraulic permeability and 

141 specific surface area by 50% and 80%, respectively, thus improving overall energy efficiency [52].
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142 As an emerging technology, much remains to be discovered about the electrochemical and 

143 physical properties of carbon cloth electrodes in VRFBs. This research highlights that improved 

144 electrode designs can be uncovered using interpretable ML methods to develop cost-effective and 

145 generalizable surrogate models. While the methodology is focused on vanadium chemistries, it 

146 can be extended to various flow battery chemistries, offering a versatile approach for researchers 

147 to apply to their specific conditions. This modeling and optimization framework will reveal 

148 improved electrode designs that can be mapped back to the physical domain, providing insight and 

149 quantifiable metrics that can be associated with specific and ordered fiber arrangements. The 

150 sequential steps taken to reach improved electrode properties within the modeling and optimization 

151 framework are outlined below:   

152 • Baseline experimental microstructure characterization and performance results are obtained 

153 to gain a physical understanding of structure-property-performance linkages. 

154 • Experimental results are used to enhance a 2D COMSOL Multiphysics® model of a VRFB. 

155 This model is used for data-generation. 

156 • A high-fidelity sampling plan is designed with Latin Hypercube Sampling (LHS) using Quasi-

157 Monte-Carlo methods. This modified LHS strategy uses low-discrepancy methods to 

158 uniformly distribute an arbitrarily small number of samples (𝑛 < 500) throughout the design 

159 domain. The space-filling quality of this plan is not compromised when implemented in high-

160 dimensions. 

161 • The data-generation process consists of acquiring responses for each sample (electrode 

162 design) in the modified LHS plan. The charge-discharge curves produced by the 

163 computational model are used to calculate the response information for each sample. Three 

164 response values are calculated: energy efficiency (EE), coulombic efficiency (CE), and 
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165 voltage efficiency (VE). This computational data-generation step will result in training data 

166 to support the data-driven modeling. 

167 • Supervised regression techniques are utilized to produce an ML-based surrogate model with 

168 high prediction accuracy. Multi-output gradient boosting regression models and multi-output 

169 random forest regression models result in the lowest prediction error. A multi-output regressor 

170 is crucial to develop a surrogate model that accurately maps the relationships between the 

171 input design variables and the three target values.

172 • Multi-objective optimization then explores the surrogate model to obtain a Pareto set of 

173 design solutions. A nondominated genetic sorting algorithm-II (NGSA-II) is an elite multi-

174 objective optimization algorithm that will maximize the efficiency targets while managing 

175 tradeoffs between the three target efficiencies to produce a set of the most advantageous 

176 designs. 

177 • Combining the well-defined design constraints, accurate ML based surrogate modeling 

178 process, and optimization with NSGA-II increases likelihood that one of the designs in the 

179 Pareto set will be manufacturable.
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180 The overall structure of this study and the elemental steps taken to develop this framework 

181 are highlighted in Figure 2. 

182 Figure 2. Workflow diagram illustrating the multi-stage framework development process.

183 2. Methodology

184 2.1 Experimental Benchmarking

185 Carbon cloth electrode samples with different woven patterns, provided by AvCarb 

186 Material Solutions in Lowell, MA, are tested in the laboratory. The following AvCarb carbon 

187 fabric samples are assessed: 1698, 1615, 7497, 1185, 1698, 1070 [53]. The experimental setup is 

188 a single tank symmetric cell, where the negative electrolyte is circulated through both sides of an 

189 interdigitated flow field at 80 mL/min. The cell is assembled with zero gap architecture and a 5-

190 cm2 geometrical area. Nafion 212 is selected as the membrane which separates two layers of carbon 

191 cloth electrodes that are placed on either side of the cell. With the use of a Bio-Logic SP-240 

192 potentiostat coupled with EC-Lab software, electrochemical impedance spectroscopy (EIS) is 

Baseline Experimental Results

Computational Data-Generation

Data-Driven Machine Learning

Surrogate Model Construction

Optimization

Improved Electrode Designs
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193 performed on a symmetric, single tank VRFB cell with electrolyte composition of 1.5M vanadium 

194 (V2+/V3+) and 3M sulfuric acid at 50% SOC. To mitigate potential oxidation of V2+, nitrogen gas 

195 is flowed constantly within the electrolyte storage tank. A  200 mV overpotential is applied for 

196 24 hours with EIS experiments carried out every 4 hours [44]. With the use of data from EIS, the 

197 resistances associated with the electrodes can be quantified and used as a benchmark for electrode 

198 performance. Figure 3 depicts the experimental test setup. The insights gained from the baseline 

199 experimental results are directly or indirectly mapped to global parameters in the computational 

200 model to support and enhance the data-generation process.

201

202 Figure 1. Schematic of the experimental setup: A single tank symmetric VRFB cell.

203 2.2 COMSOL Multiphysics® Model for Computational Data-Generation

204 Due to the intensive time and resource demands of testing critical structural properties of 

205 porous carbon electrodes, an experimentally validated computational model supports the data-
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206 driven modeling approach. This computational model, detailed in previous studies [28, 29, 54], 

207 was validated experimentally, and the transient, isothermal computation model in COMSOL 

208 Multiphysics® simulation software incorporates vanadium crossover and water transport through 

209 the membrane, along with all the corresponding losses. The baseline experimental microstructure 

210 characterization and performance data enhance the computational model and guide the initial 

211 feature selection process. 

212 2.3 Feature Selection Process

213 Identifying microstructural characteristics that enhance the performance of porous carbon 

214 electrodes requires extensive laboratory-scale testing. However, due to time and resource 

215 constraints, experimental data may be limited, thus serving as benchmark results that guide the 

216 incorporation of a computational model for data generation. These outcomes also play a crucial 

217 role in the feature selection process, where an initial set of design parameters or features 

218 (microstructural traits of porous carbon cloth media) that influence electrode functionality is 

219 identified. The primary stages of this process are illustrated in Figure 4.

220

221 Figure 2. Schematic outlining the four primary stages in the feature selection process.

222
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223 2.3.1 Stage 1: Selecting an Initial Set of Electrode Features

224 Selecting the initial set of electrode features is heavily influenced by the experimental 

225 observations. The initial set of features will be further analyzed in Stage 2. The following 

226 measurements were obtained from the laboratory experiments and used to influence the feature 

227 selection process: 

228 i. Pore size distribution, tortuosity, specific surface area, and porosity measurements. 

229 ii. Electrolyte flow resistance measurements. 

230 iii. Charge transport resistances are measurements. 

231 iv. Mechanical properties and surface feature characterization is achieved. 

232 v. Flow cell performance is evaluated by collecting polarization curves, charge/discharge 

233 curves for cycling analysis to determine area specific resistance (ASR) and energy 

234 efficiency (EE). 

235 The initial features are displayed in Table 1 along with their units in the computational 

236 model. Each feature has a lower bound, upper bound, and recommended step size that were 

237 defined based on the baseline experimental setup and physical limitations of the materials or 

238 operating conditions that are being used in the lab. The full set of features that were initially 

239 considered and their subsequent ranges are displayed in the table below. 
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240 Table 1. Initial set of selected electrode features that are defined as global parameters in the 

241 computational model.

Parameter Description Units Lower Bound Upper Bound Step Size

Porosity % 0.7 0.97 0.03
Electrical Conductivity of 

the Electrode S/m 66.7 66.7 ---

Current Density A/m2 1,000 1,500 100
Permeability of the 

Electrode m2 1.0 ×  10―10 5.0 ×  10―10 0.01 ×  10―10

Mean Pore Diameter m 1.0 ×  10―4 1.2 ×  10―4 0.001 ×  10―4

Average Fiber Diameter m 1.0 ×  10―5 2.0 ×  10―5 1.0 ×  10―7

Reaction Rate Constant 
for Reaction 1 m/s 1.0 ×  10―8 9.0 ×  10―8 0.1 ×  10―8

Reaction Rate Constant 
for Reaction 2 m/s 1.0 ×  10―8 9.0 ×  10―8 0.1 ×  10―8

Flow Rate m3/s 10 200 5

Electrical Conductivity of 
the Current Collector S/m 750 1200 50

242

243

244 2.3.2 Stage 2: Preliminary Dataset Generation 

245 Initially, a random sampling plan is generated to collect a wide range of electrode design 

246 combinations. The responses (predicted outcomes) for these initial design combinations result in 

247 a preliminary dataset with fully labeled data-pairs, which is then used to identify a set of critical 

248 electrode design variables and computational limitations of the Multiphysics® model. A 

249 systematic approach to collecting and processing the raw cycling data from the computational 

250 model is established in Stage 2. The computational model supplies cycling data, which refers to 

251 charging and discharging curves. The raw data output by the computational model is in the form 

252 of comma separated values that have electric potential measurements at given timestamps. A semi-

253 automatic process is used to clean the data-files exported from COMSOL Multiphysics® [55]. 
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254 The semi-automatic cleaning of the raw csv files involves removing unnecessary columns 

255 or default outputs from COMSOL Multiphysics® and renaming headers for integration into 

256 MATLAB® [56]. A custom MATLAB® peak finder algorithm facilitates manual peak selection, 

257 and the charging, discharging, and oscillating peak data are saved as a .mat file. A MATLAB® 

258 function then calculates the coulombic efficiency (CE), voltage efficiency (VE), and energy 

259 efficiency (EE) using the saved peak data. The efficiency values can be obtained from the cycling 

260 data and are good measures of electrode and cell performance, therefore they will be used as the 

261 target or response variables in the data-driven modeling process. These efficiencies can be 

262 calculated using the Equations (1) through (3), where charging and discharging are denoted by 

263 the subscripts 𝑐 and 𝑑, respectively. For each cycle, the coulombic efficiency (CE) calculation 

264 requires the charging and discharging time are represented as 𝑡𝑐 and 𝑡𝑑, respectively. 

265 CE =  
𝑡𝑑 

𝑡𝑐

266 The voltage efficiency (VE) calculation requires the average charging voltage (𝑉𝑎𝑣𝑒,𝑐) and 

267 average discharging voltage (𝑉𝑎𝑣𝑒,𝑑) for a given cycle.

268 VE =  
𝑉𝑎𝑣𝑒,𝑑

𝑉𝑎𝑣𝑒, 𝑐
(2)

269 The overall energy efficiency is represented by EE and calculated using the voltage 

270 efficiency (VE) and coulombic efficiency (CE).

271 EE = (3)

272 2.3.3 Stage 3: Screening-Stage 

273 This stage is essential to eliminate non-active and non-critical electrode properties, 

274 reducing the number of features to avoid the curse of dimensionality which refers to the 

275 computational costs and limitations that arise when working with high-dimensional feature spaces. 
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276 After generating the preliminary dataset (using a random sampling plan), a thorough sensitivity 

277 analysis is performed to determine the significance of the initial features. Visualization techniques 

278 such as scatterplots, histograms, kernel density estimates (KDEs) and Pearson correlation 

279 coefficients help quantify feature-to-feature correlations and feature-to-target correlations, serving 

280 as a statistical sanity check before deploying the ML models [57, 58].

281 2.3.4 Stage 4: Feature Selection

282 Results from the screening stage quantify the impact of each feature on the voltage, 

283 coulombic, and energy efficiencies. Operating conditions, such as current density, directly relate 

284 to these targets; hence, including fixed operating conditions could overshadow microstructure-

285 performance relationships. The final set of features is selected by isolating key geometric 

286 parameters of a porous carbon electrode and fixing the operating conditions, which can be shown 

287 in Table 2. 

288 Table 2. Final selected features and their corresponding ranges.

Design Space
Fixed Operating Conditions: Current Density = 1000 [A/m2] and Flow Rate = 3.3333E-7 [m3/s]

Index Parameter Description Lower Bound Upper Bound

1 Porosity 0.7 0.97

2 Electric Conductivity of the 
Electrode [S/m] 60 110

3 Permeability of the Electrode 
[m2] 1.0 E-10 5.0 E-10

4 Mean Pore Diameter [m] 1.0 E-4 1.2 E-4

5 Average Fiber Diameter [m2] 1.0 E-5 2.0 E-5

6 Cycle Number 2 6

289
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290 The mean pore diameter in the Multiphysics model accounts for a 30% compression ratio. 

291 Compression and permeability are the two key components of mass transport in porous carbon 

292 electrodes. Energy efficiency will increase or decrease depending on how well the geometrical 

293 features of the carbon cloth electrode perform. 

294 2.4 Sampling Plan Design 

295 2.4.1 Latin Hypercube Sampling using Quasi Monte-Carlo Methods

296 A common sampling strategy for surrogate modeling is Latin Hypercube Sampling (LHS). 

297 This plan takes an arbitrary number of samples and distributes them uniformly throughout the 

298 design space [59]. The LHS plan proves to be successful for lower dimensional problems. The 

299 LHS plan is expensive and often inefficient for multi-dimensional problems as a minimum number 

300 of samples, 𝑛𝑑, must be specified for each dimension. As the number of dimensions increases, the 

301 minimum number of required samples will increase to uniformly distribute samples throughout 

302 each dimension of the feature space [59-61]. The optimal space-filling properties that LHS plans 

303 achieve in a single dimension can be maintained in multiple dimensions by combining the LHS 

304 strategy with Quasi-Monte-Carlo methods, also referred to as low-discrepancy sampling methods, 

305 [59, 62]. The minimum number of samples needed for the modified LHS plan will not necessarily 

306 increase if the number of features increases.

307 LHS with Quasi-Monte-Carlo methods is used to create a set of samples that are uniformly 

308 distributed throughout the multi-dimensional feature space. This plan randomly selects 𝑛 

309 uniformly distributed points within the constrained feature space. The constraints refer to the lower 

310 and upper bounds for each feature. Reducing the number of samples will reduce computational or 

311 experimental expenses but may lead to a less robust training dataset. The following notation can 

312 be used to represent the sampling plan, where 𝑚 is the features and 𝑛 is the number of samples.
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313 𝑋 =  
𝑥1

1 𝑥2
1 … 𝑥𝑚

1
𝑥1

2 𝑥2
2 … 𝑥𝑚

2
⋮ ⋮ ⋱ ⋮

𝑥1
𝑛 𝑥2

𝑛 … 𝑥𝑚
𝑛

(4)

314 𝑋 = [𝑥1 𝑥2 … 𝑥𝑚](5)

315 𝑋 ∈ ℝ𝑛×𝑚(6)

316 𝑥𝑖 ∈ ℝ𝑛(7)

317 2.5 Supervised Machine Learning Techniques

318 Supervised ML strategies, also referred to as instance-based learning, are employed to 

319 model the dynamic behavior of VRFB system. The supervised ML algorithm learns from the data 

320 that is generated from the computational model. The model complexity is then increased to develop 

321 multiple-output regression models that accurately imitate system behavior with respect to three 

322 target values (EE, CE, VE) as opposed to the single output energy efficiency models. 

323 All machine learning models aim to learn a function, 𝑓, that maps observed data, 𝑥, to the 

324 corresponding response, 𝑦. 

325 𝑓:x→𝑦

326 Typically, engineering design problems are multi-variate, meaning they contain multiple 

327 design variables. Design variables are also commonly called features or predictors. This results in 

328 a design variable vector, also called a feature vector, where the number of features is denoted as 

329 𝑚. The number of features also defines the dimensionality of the problem where a 𝑚-dimensional 

330 problems contain 𝑚 number of features. 

331 Tree-based methods are based on an application called decision-trees, which are algorithms 

332 that can solve both classification and regression problems for single output and multiple output 

333 problems [57]. The following characteristics of tree-based methods make them desirable for the 

334 application of this paper; (1) Tree-based methods are interpretable and typically do not require 
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335 feature standardization since these methods do not weigh the magnitude of feature vector values , 

336 (2) outliers are managed well in both the target and the features space, (3) these methods are able 

337 to be computationally scaled for larger datasets, (4) tree-based methods provide a good balance 

338 between model complexity and model [63]. Figure 5 illustrates the phases of building a ML model.  

339

340 Figure 3. Machine learning workflow.

341 The generated data is broken into subsets for training, validating and testing the ML model. 

342 Figure 6 depicts how the dataset is typically split into the three subsets. Before tuning the ML 

343 model on all the data, it is customary practice to split the data into training, validation, and testing 

344 sets (samples of the larger dataset). The model trains on approximately 70% of the data. The model 

345 is then validated using the validation subset of data that it has never seen before. The process of 

346 training and validation is repeated for a defined number of iterations.
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347

348 Figure 4. Training, validation, and testing split.

349 Occasionally, when ML models learn from small datasets (<1000), hyperparameter tuning 

350 can quickly lead to overfitting or underfitting. This is especially true for tree-based methods trained 

351 on small datasets. 𝑘 ― 𝑓𝑜𝑙𝑑 cross validation is used in the hyperparameter tuning stages to prevent 

352 overfitting. 𝑘 ― 𝑓𝑜𝑙𝑑 cross validation repeats the process of splitting the dataset into training, 

353 validation, and testing five times; each iteration uses a different subset of data for training and 

354 validation. This method of cross validation assures that your dataset is generalizable. Referring to 

355 the ML flow diagram, the dataset is split into a training, testing, and validation data set. The 𝑘 in 

356 𝑘 ― 𝑓𝑜𝑙𝑑 cross validation refers to the number of validation folds (typically 5 or 10). 

357 2.6 Machine Learning Model Evaluation

358 The evaluation metric best suited for the applications in this paper is Mean Absolute 

359 Percentage Error (MAPE) which is defined in the following equation, where yi is the predicted 

360 value of the ith sample and nsamples is the number of samples [64].

361 The mean absolute percentage error (MAPE) is another risk metric used to evaluate 

362 regression problems. In the Python module scikit-learn, MAPE falls between zero and one. Values 

363 outside of this range suggest that the model is overfitting, underfitting, or the selected model may 

364 not be appropriate for the dataset and other models should be explored [64].

365 𝑀𝐴𝑃𝐸 (𝑦, 𝑦) =
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠―1

𝑖=0

|𝑦𝑖 ―  𝑦𝑖|
max(𝜖,|𝑦𝑖|)

(10)
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366 This equation will be used in the model evaluation process to determine how well the ML 

367 model will respond to new or unseen data. Lower errors mean that it is highly probable that the 

368 model will make good predictions on new data. High error metrics suggest that it is unlikely that 

369 the ML model is making accurate predictions on new data. 

370 2.7 Constructing a Machine Learning Based Surrogate Model

371 Surrogate modeling serves as a vital tool for approximating complex, non-interpretable 

372 (black box) ML or deep learning models, providing an affordable and interpretable alternative, 

373 denoted 𝑓. In the realm of engineering surrogate modeling, the strategy involves employing a 

374 comprehensible ML model to approximate an unknown function 𝑓. This approximation is achieved 

375 using a judiciously chosen subset of high-fidelity samples that effectively encapsulate the 

376 intricacies of the design space.

377 The machine learning methods utilized in surrogate modeling are not universally 

378 interpretable, and their complexity tends to escalate with an increasing number of features. Despite 

379 this, the application of surrogate models remains crucial in situations where understanding the 

380 underlying mechanisms is paramount.

381 Akin to the steps involved in developing a conventional ML model, surrogate modeling 

382 comprises several integral stages, each contributing to the overall efficacy of the process.

383 2.7.1 Computational Data Collection Benchmarked with Physical Laboratory Results

384 The initiation phase involves the collection of computational data, aligning it with physical 

385 laboratory results for benchmarking. This ensures a congruence between simulated and real-world 

386 outcomes, laying a robust foundation for subsequent modeling.
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387 2.7.2 Preliminary Data-Generation and Feature-Screening

388 Following data collection, preliminary steps encompass data generation and feature 

389 screening. This involves generating an initial dataset and screening features to identify those 

390 wielding significant influence on the target function, thereby streamlining subsequent analyses.

391 2.7.3 Data Analysis and Final Feature Selection

392 A meticulous data analysis procedure is then conducted to further refine the feature set. 

393 This stage aims to discern the most pertinent features, optimizing the model's accuracy and 

394 interpretability.

395 2.7.4 Sampling Plan Design

396 A critical aspect of the surrogate modeling process involves the design of an effective 

397 sampling plan. This entails planning the selection of data points, ensuring a judicious 

398 representation of the design space while maintaining computational efficiency.

399 2.7.5 Data-Generation

400 Subsequent to the sampling plan, additional data points are generated to augment the 

401 dataset. This augmentation bolsters the model's capacity to capture complex relationships within 

402 the design space.

403 2.7.6 Machine Learning Modeling and Evaluation

404 The crux of surrogate modeling lies in the application of ML techniques. Models are trained 

405 using the collected data to approximate the target function. Rigorous evaluation ensures the 

406 resultant model's accuracy and reliability.
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407 2.7.7 ML Model Selection and Surrogate Model Construction

408 The concluding phase involves the judicious selection of a suitable ML model, followed 

409 by the construction of the surrogate model (𝑓. ).This step is pivotal in developing an interpretable 

410 model that effectively approximates the complex behavior of the original non-interpretable model 

411 𝑓.

412 2.8. Multi-Objective Optimization to find a Pareto Set of Improved Electrode Designs 

413 2.8.1 Multi-Objective Optimization and Pareto Sets

414 After constructing an efficient and reliable ML based surrogate model, multi-objective 

415 optimization is employed to explore the surrogate model to find a Pareto set of optimal electrode 

416 designs. As discussed earlier, multi-objective optimization problems often have competing 

417 objectives. This problem maximizes VE, EE, and CE, which are calculated according to Equations 

418 1-3. Next, the reasoning behind why a Pareto set of solutions is necessary for this specific problem 

419 is explained using a select few design parameters. For example, previous studies proved that cell 

420 efficiency can be improved by maximizing porosity and maximizing active surface area. With that 

421 said, increasing porosity inherently decreases active surface. This is due to the competing 

422 properties of the parameters causing a necessary tradeoff between the two. An increased porosity, 

423 while decreasing the mass transport resistance, has an indirect relationship with surface area 

424 causing an increased charge transfer resistance. Multi-objective optimization will account for the 

425 interactions between porosity, energy efficiency, coulombic efficiency, and voltage efficiency and 

426 provide a set of solutions that balances the tradeoffs between porosity and surface area. 

427 2.8.2 Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

428 A non-dominated genetic sorting algorithm II (NSGA-II) is a variation of the genetic 

429 algorithm that is best suited to find a Pareto set of optimal solutions for multi-objective 
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430 optimization problems. Similar to a traditional genetic algorithm, NSGA-II will begin with an 

431 initial population. The best design combinations in the initial population will move onto the second 

432 generation and this process will repeat until convergence. The main nuance to this approach is that 

433 each design combination is evaluated on its fitness score and the combinations are also ranked 

434 based on their location in the design domain. This eliminates the chance of having repetitive 

435 offspring in future generations as well as assuring that the entirety of the design space is explored.

436 2.9 Fabricated Electrodes and Their Performance Characterization

437 The microstructure of the base carbon cloth electrode (AvCarb 1071 HCBA) displays a 

438 bi-modal pore size distribution [44], which is a critical feature allowing for lower mass transport 

439 resistances. Because of this, power density is improved, and pumping losses are reduced [40]. 

440 There are negligible effects of pumping power losses on the cell, leading to the omission of their 

441 effects in efficiency calculations. Larger pores of the electrode are responsible for delivering the 

442 electrolyte through convection, resulting in lower pumping power losses and the smaller pores 

443 allow for electrolyte diffusion to active sites which enhances reaction kinetics [40, 42]. For this, 

444 AvCarb 1071 HCBA is chosen as the baseline for which machine learning suggestions will be 

445 implemented on. Based on the recommendations from the ML-based surrogate model, the binder-

446 coated electrode (AvCarb T2314B) is prepared by adding a carbonaceous, porous binder layer to 

447 both sides of the AvCarb 1071 HCBA electrode. The electrodes, initially un-activated, are 

448 activated by heating in a furnace at 425°C for 24 hours. 

449 For evaluating the performance of the binder coated electrode (AvCarb T2314B), 

450 electrochemical testing is performed and compared amongst the baseline results for AvCarb 1071. 

451 The experimental setup uses a symmetric RFB cell with a 40 mL single tank of electrolyte which 

452 has been described in detail in the subsection “2.1 Experimental Benchmarking of the 
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453 Computational Model” of the Methodology section. One experiment performed consists of the 

454 baseline electrode (AvCarb 1071 HCBA), and the second experiment utilizes a binder-coated 

455 electrode (AvCarb T2314B). The overall compression ratio of the cell is around 41% for the 

456 experiment consisting of 1071 HCBA and around 49.7% when T2314B electrodes are used. EIS 

457 results are analyzed to quantify the resistance for direct comparison of electrode performance 

458 within a VRFB.

459 3. Results and Discussion

460 3.1 Selected Features

461 After identifying the initial set of features and completing the preliminary dataset 

462 generation, the final set of features is selected based on their impact on electrode functionality as 

463 well as the computational feasibility. The final set of features along with their lower and upper 

464 bounds are displayed in Table 3. Note that the fixed operating conditions in this study are current 

465 density set to be 1000 A/m2 and flow rate set at 3.33E-7 m3/s. 

466 Table 3. Final set of six selected features and their corresponding bounds.

Parameter Description Lower Bound Upper Bound
Porosity 0.7 0.97

Electric Conductivity of the Electrode 
(S/m) 60 110

Permeability of the Electrode (m2) 1 E-10 5 E-10
Mean Pore Diameter (m) 1 E-4 1.2 E-4

Average Fiber Diameter (m2) 1 E-5 2 E-5
Cycle Number 2 6

467

468 The bounds can also be written as shown in Equation 13 using porosity as an example. 

469 𝜎𝑒 ∈ [0.7, 0.97] (13)
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470 The six features and their bounds shown in Table 3 describe the design domain. Please note 

471 that cycle number is an output of the computational model and may not be directly perceived as a 

472 statistical feature. However, it was used in training the ML algorithms and was deemed useful.  

473 Recalling that each feature, 𝑥𝑖, typically has lower and an upper bound constraints that needs to be 

474 specified, the feature vector, 𝑥, must be within the ML domain, represented by 𝒟, which is a subset 

475 of all real numbers. 𝒟 is also a vector with 𝑚 number of elements (features). This explanation is 

476 clearly summarized in Equation 14 [65].

477 𝑥𝑖 ∈ 𝒟 ⊂ ℝ𝑛(14)

478 There are six selected features, but permeability is also not included in the sampling plan 

479 design since the permeability is calculated for each sample using the Carman-Kozeny equation. 

480 This equation relates the morphological parameters of porosity and average fiber diameter for each 

481 sample to calculate the permeability and can be shown below in Equation 15 [66].

482 𝜅 =
𝑑2

𝑓𝜀3

𝐾𝑐𝑘(1 ― 𝜀)2  (15)

483 The response value of cycle number for each electrode design is recorded although it is not 

484 included in the sampling plan since it is technically a response that is output by the computational 

485 model. The porosity can be raised by the mean pore diameter depending on the pore sizes and the 

486 pore distribution in the material. Higher porosity can also be achieved by decreasing the fiber 

487 diameter to increase active surface area.  

488 3.2 Latin Hypercube Sampling Plan using Quasi Monte-Carlo Methods

489 The final statistical sampling plan consists of two hundred samples. This space filling 

490 sampling plan evenly distributes the two hundred samples throughout the design space. There are 

491 six selected features, but permeability is excluded from the sampling plan design as it is calculated 
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492 using the other two features. Referring back to Equation 4, the sampling plan can be described 

493 using the matrix below where 𝑚 = 5 and 𝑛 = 200. 𝑚 refers to each sample (observation) in the 

494 sampling plan.

495 𝑋 =  

𝑥1
1 𝑥2

1 𝑥3
1 𝑥4

1 𝑥𝑚=5
1

𝑥1
2 𝑥2

2 𝑥3
2 𝑥4

2 𝑥𝑚=5
2

⋮ ⋮ ⋮ ⋱ ⋮
𝑥1

𝑛=200 𝑥2
𝑛=200 𝑥3

𝑛=200 𝑥4
𝑛=200 𝑥𝑚=5

𝑛=200

(16)

496 Each sample in the LHS plan is an electrode design. Table 4 clearly outlines the first four 

497 electrode designs. For data visualization and ML model interpretability purposes, the mathematical 

498 notation displayed in Table 5 is used to describe the features and targets.

499 Table 4. The first four electrode designs created from the LHS sampling plan.

Sample 𝜎𝑒 𝜀 𝜅 𝑑𝑓 𝑑𝑝

𝑚 = 1 67.3 0.93 1.7E-10 1.4E-5 1.4E-4
𝑚 = 2 86.1 0.82 3.6E-11 1.9E-5 1.2E-4
𝑚 = 3 61.3 0.88 7.7E-11 1.8E-5 1.0E-4
𝑚 = 4 107.5 0.77 1.4E-11 1.7E-5 1.2E-4

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑚 = 200 103.9 0.95 3.3E-10 1.4E-5 1.3E-4

500

501 Table 4 provides clear examples of what each electrode design (sample) from the LHS plan 

502 will look like. Each sample, 𝑛, has a selected value for electrical conductivity, porosity, 

503 permeability, average fiber diameter, and mean pore diameter. 
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504 Table 5. The notation used to define the electrode features and targets.

Feature and Target Names Symbol

Electrical Conductivity of the Electrode 𝜎𝑒

Porosity 𝜀
Permeability 𝜅

Average Fiber Diameter 𝑑𝑓

Mean Pore Diameter, 𝑑𝑝

Voltage Efficiency VE
Coulombic Efficiency CE

Energy Efficiency EE
505

506 The selected values fall between the lower and upper bounds assigned to each feature 

507 (shown in Table 3).  The resulting distribution of values that the sampling plan created for each 

508 feature is shown in the Pairplot in Figure 7. A Pairplot, or matrix of scatterplots, is used to show 

509 the distribution of samples for the features. The LHS plan using quasi-Monte-Carlo methods 

510 ensures that a representative subset of values is selected for each feature. The limited white space 

511 in each scatterplot in Figure 7 shows that the sampling plan selected a representative subset of 

512 values for each feature. The permeability is calculated from 𝑑𝑓 and 𝜀. The script to generate the 

513 LHS plan with QMC methods considered four features; permeability is calculated using the 

514 Carman-Kozeny equation [66]. Therefore, sparse scatterplots in Figure 7 can be attributed to 

515 permeability being a function of porosity and average fiber diameter.  
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516

517 Figure 5. Feature distribution of the 200-point Latin hypercube sampling plan generated using 

518 QMC methods.

519 Table 4 displays the design combinations from the LHS sampling plan, which are displayed 

520 in Figure 7. The numerical values for each of the five features for the first four electrode design 

521 combinations are displayed. 
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522 3.3 Dataset Generation

523 3.3.1 Computational Data-Generation, Results and Charge-Discharge Curves 

524 The computational time required to obtain cycling data for a single electrode design can 

525 range from 60 to 180 minutes. Simulating 200 samples would take over 300 hours to complete. 

526 An ample amount of time has been invested into collecting response results for all two hundred 

527 electrode designs. Due to the time-consuming nature of computational data-generation, an active 

528 learning approach is taken as data is collected. Active learning refers to re-training the ML models 

529 as the dataset is enriched with more samples [57, 63, 67-69]. Since each sample has between 2 and 

530 6 cycles and each cycle has three target values (VE, CE, EE), the final database has 387 fully 

531 labeled examples to support the data-driven modeling approaches. For each sample, the raw 

532 cycling data produced by the computational model is cleaned, renamed, and imported into 

533 MATLAB for plotting. Figure 8 displays the charge-discharge curve produced when the 

534 computational model parameters are modified to match the electrode design specification of 

535 sample 4 (electrode design for sample 4 is shown in Table 4). The charging, discharging, and 

536 oscillating peaks are selected in MATLAB and the target values (EE, VE, CE) are calculated for 

537 each cycle. 
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538

539 Figure 6. Charge-discharge curve plotted in MATLAB (refer to Table 4 for the electrode design 

540 details for sample 4 that produced this cycling curve).

541 3.3.2 Statistical Analysis and Data Visualization 

542 A Pairplot of the 387 fully labeled examples is provided in Figure 9 which also includes 

543 cycle number, and the distribution of each target efficiency. The diagonal of the Pairplot contains 

544 histograms showing the distribution of collected values for each feature. Similar to Figure 7, the 

545 axes labels are based on the mathematical notation displayed in Table 5. 
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546

547 Figure 7. Pairplot (matrix of scatterplots) showing the feature and target distributions for the 

548 collected data from the sampling plan.

549 The Pearson correlation heatmap show that CE and VE are positively linearly correlated to 

550 EE with a correlation coefficient of 𝑟 = 0.85 and 𝑟 = 0.56, respectively. All three efficiency values 

551 are linearly related to porosity. The voltage and coulombic efficiency trends can be summarized 

552 by the energy efficiency target. The one exception is that VE is linearly related to 𝜎𝑒 with 𝑟 = 0.93. 
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553 The Pearson correlation coefficients correlation coefficients summarized in Figure 10 offer a 

554 thorough understanding of the design space and will guide machine learning model selection. The 

555 lack of linear feature-target correlations indicates that simple linear regression techniques are 

556 unable to capture the complex non-linear relationships. 

557

558 Figure 8. Pearson correlation coefficient heatmap.

559
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560 3.3.3 Understanding the Generated Response Data (EE, CE, VE)

561 Generated response data, shown in Figure 11, highlights the similarities and differences 

562 between the ranges of values for each response variable. The range of values obtained for CE is 

563 between 90-98%, which is comparable to the experimentally obtained values. The minimum and 

564 maximum efficiency values for the three target variables is also outlined in Table 6. 

565 Table 6. Minimum and maximum efficiency values for each target.

VE CE EE

Minimum 78.94 % 89.02 % 67.61 %

Maximum 76.15 % 99.85 % 75.04 %

566

567
568 Figure 9. Histogram and kernel density estimates (KDEs) containing the distribution of values 

569 collected for the three response variables, VE, CE, and EE.

570
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571 A more refined, higher resolution histogram for the EE has been provided below in Figure 

572 12. The relatively wide range of values (ranges from 0.68 to 0.75) obtained is an indication of the 

573 relatively large potential improvements on the energy efficiency that can be obtained with an 

574 optimized electrode design. 

575
576 Figure 10. Energy efficiency distribution emphasizing the percentage range for improvement.

577 3.4 Machine Learning Model Development 

578 3.4.1 Machine Learning Model Selection

579 Initially, since the EE target contains the VE and CE information, single output machine 

580 learning models were trained to determine what models are suitable for this problem. This 

581 approach also reduces the complexity of the model which in turn reduces the computational power 

582 necessary to train, validate, and test each model. A preliminary test was performed using the 

583 Automated Regression Model Selection with Bayesian Optimization tool in MATLAB, fitting the 
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584 regression models to the single response value of energy efficiency. This tool automatically trains 

585 and evaluates several regression models with various hyperparameters and returns corresponding 

586 models and hyperparameters with the highest prediction accuracy. The computing time is 

587 approximately 45 minutes. This process pinpoints appropriate regression models to fit this dataset 

588 as opposed to manually evaluating every regression algorithm. Although the automated regression 

589 model selection with Bayesian optimization is performed as a multivariate regression problem with 

590 a single output, the single output of EE encompasses the CE and VE information therefore no 

591 information is lost. The results suggested that tree-based ensemble methods, specifically random 

592 forests, would be the most suitable for this dataset. Therefore, the ML models selected for further 

593 investigation are random forest regressors and gradient boosting regressors, both of which are tree-

594 based ensemble methods. 

595 3.4.2 Comparing Feature Importance Scores for Single and Multiple Output Random Forest 

596 Regression Models

597 Once the single output and multiple output random forest regressors (RFRs) are trained 

598 and evaluated, the feature importance scores are found. Table 7 outlines which target variables 

599 each ML model was trained on. For example, ML Model 1 is trained to predict VE. Model 4 is the 

600 multiple output model which is trained on all three target variables (VE, CE, and EE).

601 Table 7. Using the mathematical notation to define the target variable for each model.

Model Target Values
Model 1 VE
Model 2 CE
Model 3 EE
Model 4 VE, CE, EE

602
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603 The feature importance analysis conducted for all the baseline RFR models reveal that the 

604 features in Model 3 and Model 4 have approximately the same importance scores. Model 2 follows 

605 similar trends when compared to Model 3 and Model 4. Model 1, where the target value is VE, 

606 has a noticeably different distribution of feature importance scores. Model 1 heavily relies on 

607 conductivity, whereas the other models rely more so on porosity. The comparisons of the four 

608 models can be seen in Figure 13 and Table 8.

609

610 Figure 11. Feature importance scores for single and multiple output random forest regression 

611 models (Models 1, 2, 3, and 4).

612
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613 Table 8. Feature importance scores for single and multiple output random forest regression 

614 models.

Feature Importance Scores

Model 1 Model 2 Model 3 Model 4
Conductivity 90.41 8.79 30.89 30.13

Porosity 5.86 51.97 45.69 43.12
Average Fiber Diameter 1.31 12.23 6.77 7.7

Mean Pore Diameter 2.06 8.5 6.38 7.79
Cycle Number 0.36 18.5 10.27 11.27

615

616 The single output models are prone to overfitting, a tell-tale sign of overfitting is if the 

617 testing error is larger than the training error [70-72]. The single output models also did not account 

618 for certain inherent physical limitations that can be accounted for when using a multiple objective 

619 model. The best performing ML models that will be used as surrogate models are a multiple output 

620 gradient boosting regressor and a multi-output RFR.

621 3.5 ML Based Surrogate Models

622 The best performing ML models are then used to construct the surrogate models. The top 

623 two ML models along with their training and testing error are shown in this section. Two ML 

624 methods to support surrogate modeling were selected as opposed to one method considering that 

625 as the database expands, RFR will perform slower while the GBRs will maintain fast training and 

626 evaluation times. The best performing models will be referred to as Model 1 and Model 2, where 

627 Model 1 is the multi-output RFR and Model 2 is the multi-output GBR. RFRs are less complex 

628 than GBRs and therefore more prone to overfitting during the hyperparameter tuning process. The 

629 following hyperparameter tuning methods were performed on Model 1 and Model 2 to achieve 

630 maximum model performance: exhaustive grid search over all specified parameters, randomized 
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631 grid search, and hyperparameter tuning using Bayesian optimization. (These hyperparameter 

632 tuning techniques were performed in the python software’s scikit-learn and optuna). The process 

633 of K-fold cross validation was performed with five folds to determine whether the hyperparameters 

634 were causing over or under fitting. Model 1 performed the best with the default scikit-learn 

635 hyperparameters. Model 2 performance increased when implementing hyperparameter tuning 

636 strategy using Bayesian optimization. Figure 14 displays the resulting training and testing error for 

637 the tuned surrogate models. The MAPE scoring metric is used as it is the most interpretable. 

638

639

640 Figure 12. Multi-Output RFR; Model 2: Multi-Output GBR - Training and testing scores using 

641 mean absolute percentage error (MAPE) scoring metric.
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643 The MAPE values in Figure 14 show that the surrogate models prediction errors are less 

644 than 0.15% on the training dataset. The testing error is slightly higher, though still less than 0.3%. 

645 When training error is lower than testing error, it is a sign that that the model is not overfitting.

646 To further emphasize the validity using 𝑘 ― 𝑓𝑜𝑙𝑑 cross validation, the final 

647 hyperparameters for the multi-output random forest regressor are shown in Table 9 where MAPE 

648 remains low for all five folds.

649 Table 9. Hyperparameter Tuning Results for the Multi-Output Random Forest Regressor.

Hyperparameter Description Hyperparameter Value
mean_fit_time 0.429506
std_fit_time 0.009786

mean_score_time 0.028945
std_score_time 0.001787

param_estimator__max_depth 33
param_estimator__max_features None

param_estimator__min_samples_leaf 2
param_estimator__min_samples_split 7

split0_test_score 0.480926
split1_test_score -0.064334
split2_test_score 0.678854
split3_test_score 0.39821
split4_test_score 0.331645
mean_test_score 0.36506
std_test_score 0.24433

rank_test_score 1
650

651 3.6 Multi-Objective Optimization with NSGA-II Results

652 A non-dominated genetic sorting algorithm II (NSGA-II) is a variation of the genetic 

653 algorithm that is best suited to find a Pareto set of optimal solutions for multi-objective 

654 optimization problems. Like a traditional genetic algorithm, NSGA-II will begin with an initial 

655 population, 𝑃. The best design combinations in the initial population will move onto the second 

656 generation and this process will repeat until convergence. 
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657 The main nuance to this approach is that each design combination is evaluated on its fitness 

658 score and the combinations are also ranked based on their location in the design domain. This will 

659 eliminate the chance of having repetitive offspring in future generations as well as assuring that 

660 the entirety of the design space is explored. The final electrode design parameters for surrogate 

661 Model 1 and 2 using NSGA-II are listed in Table 10.  The multiple objective optimization with 5 

662 inputs (𝑥1,𝑥2,𝑥3.𝑥4,𝑥5) and 3 outputs (𝑓1,𝑓2,𝑓3) = (𝐶𝐸, 𝑉𝐸, 𝐸𝐸) using the NSGA-II, the 

663 optimization problem can be represented as follows: the objective function is represented by 

664 Equation 17 and the decision variables are 𝜎𝑒,𝜅, 𝜀, 𝑑𝑓, 𝑑𝑝 shown as 𝑥.

665 maximize
𝑥

𝑓1(𝑥)

666 maximize
𝑥

𝑓2(𝑥)

667 maximize
𝑥

𝑓3(𝑥)(17)

668 where 𝑥 = [𝜎𝑒 𝜅 𝜀 𝑑𝑓 𝑑𝑝]𝑇

669 The objective functions from Equation 17 are then evaluated for each solution 𝑃.  The 

670 solutions are ranked based on non-domination, each solution is assigned to a front, the crowding 

671 distance for solutions in each front is found. The parents for the next generation are selected abased 

672 on the non-dominated fronts and crowding distance. Generic operations are applied to create 

673 offspring solutions. 

674 Table 10. Resulting electrode design parameters for surrogate Model 1 and surrogate Model 2 

675 using NSGA-II for multi-objective optimization.

Surrogate Model 1 Surrogate Model 2

Iteration Number 227 212
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Electrical Conductivity (S/m) 106.4 107.4

Porosity 0.799 0.900

Permeability (m2) 8.1E-10 5.71E-10

Average Fiber Diameter (m) 1.2E-5 1.4E-5

Mean Pore Diameter (m) 1.11E-4 1.85E-4

Predicted Voltage Efficiency 75.75% 75.70%

Predicted Coulombic   Efficiency 96.10% 95.72%

Predicted Energy Efficiency 73.12% 72.52%

676

677 The parents of the offspring form a new population. This process continues to repeat until 

678 termination criteria is met [73]. The general trend obtained using the ML-based screening and 

679 optimization tool suggests that mean pore diameter should be reduced compared to the tested 

680 carbon cloth electrodes while maintaining a similar permeability value. Based on this suggestion, 

681 a new type of carbon cloth electrode has been fabricated by introducing a carbonaceous binder into 

682 woven fabric to make hydrophilic cloths with more complex pore structure and reduced mean pore 

683 diameter. 

684 To evaluate the performance of the VRFB with each electrode, ASR values were 

685 quantified and compared to visualize the effects of adding a binder to the carbon cloth electrode. 

686 Ohmic, charge transfer, and mass transport resistances are determined through curve fitting of the 

687 EIS plots, which can be seen in Figure 15a. It is known that the left-most intersection point on the 

688 x-axis demonstrates the ohmic resistance for the recorded cycle, the diameter of the first semi-

689 circle of an EIS plot represents charge transfer resistance, and the diameter of the second semi-
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690 circle corresponds to mass transport resistance when reading the plot from left to right. Using a Z-

691 fit curve fitting analysis within EC-Lab software, the Randles equation (𝑅1 + 𝑄2
𝑅2 𝑊𝑑2) is utilized 

692 which represents the circuit of the physical system. This equation is commonly used to interpret 

693 impedance data and confirm the values of corresponding resistances obtained from the semi-circle 

694 intersection points [74]. Figure 15b below displays the comparison of associated resistance values 

695 throughout the duration of the symmetric cell experiments.

696

697 Figure 15. a) EIS data from the beginning and end of each experiment and b) comparison of total 

698 resistance values of the VRFB with AvCarb 1071 HCBA and AvCarb T2314B electrodes.

699 Figure 15b illustrates the comparative analysis of electrode resistances, showcasing the superior 

700 performance of the novel binder-coated electrode over the standard 1071 HCBA electrode. 

701 Symmetric cell cycling coupled with EIS provides a direct correlation of the performance 

702 enhancement of the electrode. A constant SOC symmetric cell experiment is advantageous for 

703 multiple reasons, such as the mitigation of cross-over of the active species and the absence of 

704 chemical or electrical potential gradients which makes the effects of side reactions negligible [44, 

705 75]. Resistance data from the analysis of EIS experiments can then be used to quantify the 
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706 performance of the electrode itself without concern for the effects of electrolyte degradation. The 

707 performance enhancement of the VRFB with the new electrodes is evidenced by the reduction in 

708 both ohmic and mass transport resistances by 24% and 66% respectively, attributed to 

709 modifications in the electrode's microstructural parameters induced by the binder coating. 

710 However, it is critical to note the observed increase in charge transfer resistance, which can be 

711 attributed to the suboptimal activation conditions for the newly fabricated electrodes, underscoring 

712 the preliminary nature of these findings. The AvCarb T2314B electrode underwent 24 hours of 

713 thermal activation in a furnace at a temperature of 425°C as an initial activating condition. An in-

714 depth investigation focused on refining these thermal activation conditions is currently underway, 

715 promising to address this limitation and reduce charge transfer resistance. 

716 The aforementioned enhancements in mass transport, ohmic, and total resistance values 

717 signify a marked improvement in carbon cloth electrode performance within VRFB applications. 

718 EIS experiments, performed to compare the base electrode, AvCarb 1071 HCBA, and the electrode 

719 with the addition of a porous binder, AvCarb T2314B, display promising results utilizing the newly 

720 fabricated electrode in terms of reduced total ASRs. These findings corroborate the hypothesis that 

721 integrating a carbonaceous, porous binder layer— as recommended by our optimization analysis—

722 substantially benefits VRFB performance. Such findings not only highlight the critical role of 

723 electrode composition and structure in optimizing battery performance but also open avenues for 

724 future research to unlock the full potential of VRFB technologies.

725 4. Conclusion

726 In summary, this research makes a substantial contribution to the field by introducing a 

727 cost-effective modeling strategy aimed at optimizing the design of porous carbon cloth electrodes 

728 for VRFB technology. The key innovation lies in the development of a versatile framework that 
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729 allows for the selection and application of optimal machine learning techniques tailored to the 

730 unique challenges of the design problem. With operating conditions in RFB systems being user-

731 defined and varying case by case, the behavior of porous carbon electrodes exhibits significant 

732 complexity contingent on specific operational scenarios. Given the impracticality of creating an 

733 exhaustive model for every operating condition, our proposed cost-effective framework offers a 

734 customizable surrogate modeling solution, maintaining high prediction accuracy while ensuring 

735 computational efficiency.

736 Crucially, the adaptability of our framework positions it as a valuable tool for both single- 

737 and multi-objective optimization problems, enabling the discovery of improved electrode design 

738 combinations under the specified operating conditions outlined in the case study. The novel 

739 electrode design not only reduces average ohmic and mass transport resistances but also results in 

740 a reduction to the overall increase of total resistances from 29% to 0.4% during the 24-hour 

741 constant SOC symmetric cycling experiment. It is noteworthy that ongoing experimental results, 

742 set to be disclosed soon, will provide additional empirical insights, further validating the 

743 robustness and applicability of our proposed framework. This study not only represents a 

744 significant step forward but also lays the groundwork for future investigations, offering a platform 

745 for discovering enhanced electrode combinations tailored to specific operating conditions, thereby 

746 eliminating the need for extensive laboratory testing or substantial computational resources. By 

747 addressing the nuanced challenges of electrode design and optimization, this work paves the way 

748 for significant advancements in energy storage solutions, catering to the growing global demand 

749 for renewable energy integration and grid stabilization.

750 5. Acknowledgements 
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764 7. Nomenclature 
𝜀 = porosity

𝑑𝑓 = average fiber diameter, m2

𝜅 = permeability, m2

𝑑𝑝 = mean pore diameter, m
𝐾𝐶𝐾 = Kozeny-Carman coefficient

𝜎𝑒 = electrical conductivity of porous 
carbon electrode, S/m

𝐼 = current density, A/m2

𝛷 = potential, V
𝑉3+ = 𝑉(𝐼𝐼𝐼) 

𝑉𝑂2+ = 𝑉(𝐼𝑉) 
𝑉𝑂+

2  = 𝑉(𝑉) 

kWh = Kilowatt hour
anode = positive electrode

cathode = negative electrode
R2 = coefficient of determination 

𝑦 = data label (response)
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𝑛 = discrete number of observations 
𝒟 = domain (machine learning)
𝑓 = expensive “black-box” function

𝑓 = surrogate model (emulator or 
meta-model) 

X = data matrix 
𝑚 = number of samples

𝑛 = number of design variables 
(features)

𝑥𝑖 = 𝑚 ― 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 feature 
vector  

{𝑥𝑖, 𝑦𝑖} = data pairs 
𝒟𝑡𝑟𝑎𝑖𝑛 = training dataset 

𝒟𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = validation dataset
𝒟𝑡𝑒𝑠𝑡 = testing dataset

𝜎 = standard deviation
𝜎2 = variance

𝜇 = mean 
𝜎 = standard deviation

𝑡𝑑 = charging time, s
𝑡𝑐  = discharging time, s

𝑉𝑎𝑣𝑒,𝑑 = Average discharging voltage, V
𝑉𝑎𝑣𝑒, 𝑐 = Average charging voltage, V

K = number of folds when using k-
fold cross validation

𝑅𝑜ℎ𝑚𝑖𝑐 = ohmic resistances 
𝑅𝑐𝑡 = charge transfer resistances 

𝑅𝑚𝑡 = mass transport resistances
ML = machine learning 
VE = voltage efficiency 
EE = energy efficiency
CE = coulombic efficiency 

MAPE = mean absolute percentage error

MAPD = mean absolute percentage 
deviation (same as MAPE)

GBR = gradient boosting regressor
RFR = random forest regressor
LHS = Latin hypercube sampling

QMC = Quasi Monte-Carlo
KDE = kernel density estimation
OCV = open circuit voltage
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MSE = mean squared error
MAE = mean absolute error

RMSE = root mean squared error

𝑟 = Pearson correlation coefficient 
(between -1 and +1)

765
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