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Transition metal dichalcogenides are at the center of intense scientific activity due to their promising
applications, as well as the growing interest in basic research related to their electronic and dielectric
properties. The layered structure of single-(ML) and two-layer (2ML) samples presents exciting features
for light—matter interaction, electron transport, and electronic and optoelectronic applications. Lattice
vibrations and electron—phonon interactions are essential for studying the above mentioned topics.
Phonon spectra in ML and 2ML of MoX, and WX, (X = S, Se, and Te) families are studied using first
principles calculations. A comprehensive analysis of the two-dimensional optical-phonon dispersion
laws is performed, and the results illustrate the main differences between ML and 2ML for each
considered semiconductor. Taking advantage of ab initio calculations, a generalization of the
phenomenological Born—Huang dielectric model for long-wavelength vibrational modes around the I'-
point of the Brillouin zone (BZ) in 2ML structures is implemented. Explicit expressions are derived for the
optical phonon dispersion of in-plane and out-of-plane normal modes. The set of characteristic
parameters describing each long-wavelength optical branch is resolved from a direct comparison with
the exact dispersion laws provided using the first principles calculations. The long-range electron—

phonon Pekar—Frohlich (PF) interaction and intra-valley electron scattering rates at the K-point of the BZ
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Accepted 19th January 2024 via E' (LO) and E, longitudinal optical oscillations are examined for the ML and 2ML structures,
respectively. The non-local macroscopic screening and the coupling between the in-plane electric field

DOI-10.1039/d3ra08759) and longitudinal optical mechanical oscillation, profoundly affect the PF Hamiltonian and the carrier

rsc.li/rsc-advances inverse relaxation time.
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. Introduction

Transition metal dichalcogenides (TMDs) are an important
class of materials in two dimensions (2D);* they can be repre-
sented by the formula MX,, where M (Mo or W) is the transition
metal element and X the chalcogenides (S, Se, or Te). In the X-M-
X structure, the chalcogenide atomic layers are separated by
a layer of metal atoms, forming a sandwich structure similar to
two stacked hexagonal layers. The stacking can preferably form
three polytypes: 2H hexagonal honeycomb, 1T trigonal, or 3R
rhombohedral.>® Unlike graphene (zero band gap), the elec-
tronic structure of TMDs possess gaps around 1-2 eV;* for
instance, bulk MoS, possesses an indirect band gap of 1.3 eV,
while the monolayer (ML) possesses a direct gap of 1.8 eV.>”
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TMDs have shown promise as a potential replacement for
silicon-based electronics due to their high carrier mobility,® on/
off ratio field-effect transistors,® and compatibility with existing
semiconductor manufacturing processes. Due to their unique
optical properties,’ they are also being explored for use in
various optoelectronic devices," such as solar cells,” light-
emitting diodes (LEDs),"” and photodetectors.* They also have
potential applications in sensing technologies, gas sensing®
and bio-sensing,'® due to their high surface-to-volume ratio and
sensitivity to changes in the local environment. Furthermore,
they might find applications in spintronics;'” this field involves
the manipulation of electron spin for use in information pro-
cessing due to their strong spin-orbit coupling and tunable
band gap.

In general, the properties of several stacked layers differ from
the ML behavior.'® For example, graphene changes from linear
to parabolic dispersion,” and even if we rotate the layers,*
unexpected phenomena such as superconductivity appear.*
Two layers of polar materials lead to the appearance of spon-
taneous ferroelectric properties®»*® in materials like hexagonal
boron nitride**** or TMDs.*® By stacking two ferromagnetic

© 2024 The Author(s). Published by the Royal Society of Chemistry
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layers, we can control the magnetic phase of the system with an
external electric field.”””® In addition to ferroelectricity appli-
cations, 2ML, and multilayer TMDs exhibit a higher density of
states, carrier mobility, and stability at room temperature,
giving them superior performance in various applications.****

For studies of electronic transport,* optoelectronic applica-
tions,***” phonon damping,*® limited phonon mobility,*
quantum phononics,*® magneto-polaron resonances,** dielec-
tric and optical properties,*” in 2D structures, it is necessary to
address the role of the phonon spectra and its interactions with
charge carriers in these novel materials. The layered single and
2ML structures present interesting features for light-matter
interactions and the aforementioned topics. Optical phonons in
the ML of TMD are known to play a central role in several
processes.****

Furthermore, the strength of the electron-phonon interac-
tion must depend on the environment and the number of layers
of the TMD compound. This raises several questions about what
the phonon spectra, their symmetry, and the electron-phonon
interaction are like for a ML or a 2ML TMD, in addition to being
able to establish the differences between both considered
structures.

The main objective of this work is to describe the effects on
the phonon branches of the ML vs. 2ML in TMD semi-
conductors. To accomplish this task, in this article we have
employed density functional perturbation theory (DFPT) to
obtain the complete phonon spectra of MX, compounds. The
developed microscopic calculations support a phenomenolog-
ical approach to simulate the small moment limit for optical
phonon scattering laws in bilayers. We divided the study into
polar and non-polar modes for the in-plane and out-of-plane
atom oscillations for better analysis and comparative
purposes. Having access to the analytical model within ab initio
parameters describing the in-plane polar mode, we build the
Pekar-Frohlich (PF) Hamiltonian, allowing us to identify the
key elements that govern the electron-phonon interaction.

The paper is organized as follows. First, we evaluate the
phonon dispersion curves of single-layer and the bilayer of MX,
materials based on ab initio calculations. We provide a detailed
discussion of the symmetry properties and the main differences
of the optical branches present in the ML and bilayer of the
MoX, and WX, families. Employing the results obtained from
first principles calculations, in Section III we generalize
a phenomenological model for long-wavelength optical modes
for in-plane and out-of-plane TMD bilayer oscillations. Based on
the ab initio results of the normal optical modes, we report the
characteristic parameters that support the long-wavelength
model for each phonon symmetry of MoX, and WX, mate-
rials. Finally, Section IV is devoted to the evaluation of the
electrons’ intra-valley relaxation time due to the longitudinal
phonon of ML and 2ML WX, compounds. We use the first
principles formalism to derive the electron-phonon PF inter-
action Hamiltonian and compare the single-layer’s scattering
rates versus the bilayer. The conclusions are listed in Section V.
Appendixes A-D report the parameters obtained by the DFPT
calculations and summarize the main results for the polar
modes in the framework of the phenomenological model.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Il.  Phonon dispersion

The phonon dispersion was computed using DFPT*® as imple-
mented in the Quantum Espresso package.*” The exchange and
correlation functional with dispersion interaction optB86b-
vdW*** was used. The projector augmented wave method was
used for the electron—-core interaction with standard potential
files from PSLibrary version 1.0.0.° Periodic boundary condi-
tions are implicit in Quantum Espresso. The supercell included
a vacuum region to simulate the bidimensionality of ML and
2ML; also, a 2D cutoff was applied to the Coulomb interaction.*
The vacuum width was initially 10 A, but it was enlarged to
ensure that the out-of-plane components of the stress tensor are
also less than 1 kbar. Tables 3 and 4 report the most important
parameters. The atomic positions and in-plane lattice vectors
were relaxed until all force components were smaller than 0.001
Ry/bohr, and all stress tensor components were smaller than 1
kbar. The out-of-plane dimension of the simulation cells (vector
¢), which control the vacuum widths, were kept fixed during the
relaxation. The final lattice vectors are given in Table 3.

The complete phonon dispersion laws of ML and 2ML of
MoX, and WX, (X =S, Se, Te) are shown in Fig. 1-3. First, notice
that for each TMD, the 2ML spectrum is quite similar to the ML
one. The main differences between both structures are: (1)
small band splittings, (2) the appearance of low-frequency
optical bands (less than 50 cm™'), (3) the branch of acoustic
flexural mode - seen in quadratic dispersion around I" - looks
steeper in the bilayers, which is expected due to increased
resistance to bending compared to ML. Other differences that
can be appreciated in zoomed-in plots, concerning behavior at
low wavevector, will be discussed below.

The symmetry groups of the I'-point normal modes are D3y,
and D34 for the ML and 2ML, respectively.”” For a ML there are
six optical modes that for a small wavevector are divided into
three classes: longitudinal in-plane modes (LO; and LO,),
transverse in-plane modes (TO; and TO,) and out-of-plane
modes (ZO; and ZO,).”* These modes correspond to the
following irreducible representations of the group Dsp: E' (LO,
and TO,), E” (LO; and TO,), A'; (ZO,) and A", (ZO,). The
patterns of these modes are shown in Fig. 4, while labels indi-
cate their location in the spectra of Fig. 1-3. For each branch of
a ML, there are two normal modes of the 2ML. Hence, we have
twelve long-wave optical branches: eight vibrating in-plane with
symmetries E; and E, and four modes oscillating out-of-plane
with symmetries A;, and A,,. Three low-frequency optical
modes result from combining acoustical modes from the two
layers. These modes are not discussed in this article. The
vibration patterns displayed in Fig. 4 allow us to understand
some trends in the family. In the normal modes E” (E,, E¢) and
A’y (Asy, Asg) in the ML (2ML), the anions move, while the cation
is at rest. The obtained frequencies of each mode differ in less
than 4% between MoX, and WX,. This can be understood if the
interatomic force constants are nearly identical for Mo and W
with the same anion. On the other hand, in the modes E' (Ey, Eg)
and A”; (Asy, Aqg), the cation motion opposes the motion of the
anions. As discussed below, this motion is associated with the

RSC Adv, 2024, 14, 5234-5247 | 5235


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra08759j

Open Access Article. Published on 09 Ginora 2024. Downloaded on 15.02.2026 7:15:06.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

A3 MoS, monolayer Aig MoS, bilayer
A
A, Arq
400 \ ¥ ou \
BT | e
E
£~ 300 L] - %ﬁ
\(E-)/ Eu Eu
>
[&]
QC) ~_"] ~_]
>
g 200 | 1t
i f f
100 | it
0
r M K rr M K r

View Article Online

Paper
WSQl mon'olayer W'SZ bilzayer
Ao ﬁ19vA2u
400 A} ~_| 20 ~_ ]
E’ Y E >
EU
. E f
<300 | / 1
\g/ EH Eu
>
&)
c
o)
>3
5200 3 1 1
100 1 / _
0
r M K rr M K r

Fig.1 Phonon dispersion curves of ML and 2ML of MoS; and WS, employing DFPT. Phonon momenta are along the high symmetry path '-M—-K-T.
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Fig. 2 DFPT phonon spectra of ML and 2ML of MoSe, and WSe,.

reduced mass u given by 1/u = 1/my; + 1/(2mx). Assuming again
that the interatomic force constants do not depend on the
cation, the frequency of these modes is proportional to 1/,/u.
Renormalizing the frequencies of MoX, modes by the factor

p(MoX,)/W(WX,) provides an approximation to the
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frequencies of WX,. When the anion is changed, rescaling by
the reduced mass leads to increased errors, suggesting that the
force constants depend more strongly on the nature of the
anion than the nature of the cation. Even then, the reduced
mass helps to understand another trend. The frequencies in the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 DFPT phonon spectra of ML and 2ML of MoTe, and WTe.
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Fig. 4 Atomic displacement patterns and symmetries of phonon
branches for the ML and 2ML of the MX, samples. Vibrations involving
only the anion atoms (orange dots) are non-polar modes, while those
cation oscillations opposing the anions’ motion (dark green dots) are
polar. Each mode in a bilayer has two independent modes vibrating in
and out of phase. The oscillations are divided into two independent
groups: polar and non-polar phonons.
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sulfide monolayers increase in the order E’, E/, A'y, A",.
However, the order E/, A'; is reversed in MoSe, and the tellu-
rides. For A’ frequencies, the atomic mass rescaling factor

m(S)/m(X) is 0.64 and 0.5 for X = Se and Te, respectively. For
the E' frequencies, the reduced mass scaling factor

V/1(MoX,)/u(WX,) is 0.80 and 0.74 for X = Se and Te, respec-
tively. Hence, the A'; frequency decreases more than the E’
frequency due to the mass rescaling factor. Moreover, in
the case of WSe,, both A’; and E' become almost degenerate
(242 vs. 239 cm ™).

lll.  Long wavelength optical modes in
TMD bilayers

In ref. 53, we developed a phenomenological continuum
approach, based on ab initio calculations, that allowed us to
describe the 2D optical vibrations of several TMD monolayers.
We thoroughly analyzed the long wavelength phonon disper-
sion curves for in-plane and out-of-plane oscillations. In this
section, we generalize this model to evaluate the optical vibra-
tion modes in TMD 2MLs.

A. Basic equations

The point group D34 presents an inversion center (see Fig. 4), so
the phonon oscillation patterns can be classified in-phase and
anti-phase. Next, the oscillation vectors Uj, and U,, will describe
the in-phase and anti-phase motion of the atoms for the two
independent normal modes. The 2D TMD unit cell is unfolded
into two single sub-cells I and II with a van der Waals interac-
tion. Therefore, we can construct the normal oscillations for the
bilayer by combining the in-phase or anti-phase motion of the
individual sub-cells I and II. These two combinations have
different symmetry representations with similar optical phonon
dispersion, and due to the weak interlayer van der Waals
coupling, they must show almost the same phonon energies.

RSC Adv, 2024, 14, 5234-5247 | 5237
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B. Modes vibrating out-of-plane

Out-of-plane vibrations have A-symmetry. For the sake of clarity,
we divide the study into two groups: (i) polar and (ii) non-polar
modes (see normal vibration patterns in Fig. 4(a) and (c)).

1. A,z and A,,-non-polar phonons. Following the oscillation
pattern shown in Fig. 4(c), the mass of the metal atoms M; (i =1,
2) are at rest, while only the chalcogen atoms (x;, x,) and (x3, X4)
located at the first and second layer vibrate. The relative vector
displacements Uy = (u,, — u,)/2 and Uy = (u,, — u, )/2 describe
the opposing motion of the two chalcogen atoms X; (i =1, 2 or 3,
4) in the single-layer of reduced mass u ™' = 2/my. The anti-phase
and in-phase displacements are given by U,, = (U; — Uy/2 and
Uip = (U + Uy)/2. The mechanical equation of motion reads as

P U=7v-U+B[VV-U -V x V x U], (1)

where

- 0
_ WA, 0 .3 — Alg U= Uip
Y pm< 0w, ) B = pn o & ) <Uap ;
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wa,, and wy, are the natural frequencies at phonon wave vector
g = 0 with symmetry A;, and A,,, respectively, pn, is the 2D
reduced mass density of a single-layer, 8 a tensor describing the
quadratic parabolic behavior of phonon dispersion with g vector.

Since the vector U(p) is parallel to the z-axis, eqn (1) decou-
ples into two independent equations

— a2
(‘*’2 - wilg(Az")> Uipap) = +ﬂA1g(A2u)V XV X Up(ap).- (2)

The choice of the sign + or — depends on the curvature of the
dispersion relation of the TMD material under consideration.
From eqn (2) we get the dispersion relation:

(3)

2 _ 2 2 2
W7 = 0x Ay T O AT

2. Ay and Ay,-polar phonons. The opposite motion of the
chalcogen atoms (x4, x,) and (x3, x,) with respect to the transition
metals (M, M,) are responsible for the branches A, and A, (see
Fig. 4(a)). The vector displacements, which describe the out-of-
plane oscillation in the single layers I and II, are Uy = uy, —
(uy, + u, )/2 and Uy = uyy, — (uy, + u, )/2 with reduced mass wt=

Bilayer. Polar Modes at 7=---> M
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Fig.5 Dispersion law of optical phonons for a bilayer of MoS;, MoSe; and MoTe,. Out-of-plane phonons: A4 (green line) and Ay, (blue line). In-
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my '+ (2m,) ", The normal oscillations for the Uy, in-phase and
the U,, anti-phase correspond to A,, and A, polar phonon
modes, respectively. The relative displacement of atoms in the
single-cell, I or II, or equivalently the atomic displacements Uy
and Uy, generate a macroscopic electric field. For the in-phase
oscillation Uj,, we are in the presence of a non-zero internal
electric field E,. This field is coupled with the mechanical
displacement Uj,. Let us symbolize this linkage between the
mechanical and the electric fields by the unknown constant ay, .
The mechanical equation of motion for Uj, can be cast as

pme Uip - pmwéAZH Uip - aAzuEz(p7 Z)

£ pmbBi,, [VV- U — V X V x Uy, (4)

where E,(p,z) is the z-component of the electric field in the
bilayer (we will assume that E,(p,z) = E(p,0)), woa,, the natural
frequency at g = 0 with symmetry A,,, B4, represents the
quadratic behavior in g of the phonon dispersion. Due to the
appearance of an internal electric field to the equation of
motion (4) we must add the Maxwell’s equations that couples
the mechanical motion Uj,, E, and the z-component of the
macroscopic polarization (see Appendix B). It is possible to

View Article Online
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show that the dispersion relations for the polar phonon A,,
vibrating out-of-plane are

2 _ 2 2092
W= Wy, tq ﬂAZu’

(5)

where w,, is the renormalized frequency at I'. The out-of-phase
amplitude U,, does not produce an electric field; therefore, the
total internal electric field in the bilayer can be set to zero.
Consequently, we can assume a similar eqn (4) but with E, = 0.
Thus, for the A;; mode:

2 __ 2 2732
w 7(‘)Algiq 5Algv

(6)

where Wa,, and 5A1g are the natural frequency at I’ and the par-
abolicity parameter, respectively. Note that the A;; mode is
Raman-allowed in the backscattering configuration with
parallel configuration (X,X), and it is absent for cross-
polarization (X,Y) under normal incidence.”* In the case of
a single-layer, this mode is infrared Raman (IR) active. Due to
the inversion center in the bilayer, the construction of the anti-
phase solution U,, leads to the generation of Raman active
mode A;,.** This fact has been observed in WSe,, TaSe,, and
MoTe,.*® The A,, phonon of the bilayer, as in the bulk, is still IR
active.
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Fig. 6 The same as Fig. 5 but for the dispersion law of non-polar optical phonon dispersion.
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C. Modes vibrating in-plane

In-plane phonons have E-symmetry. For the ML, the single-
unit cell has two irreducible representations E’ and E”. The
modes with E’-symmetry are polar, while those with E” are
non-polar (see in Fig. 4(b) and (d) the scheme of the vibra-
tion patterns and symmetries for the ML and bilayer). In
general, modes vibrating in-plane have similar character-
istics to those oscillating out-of-plane. Each single-layer
mode has two branches of the 2ML: in-phase and anti-
phase. These combinations belong to two different
symmetry representations E, and E,. All E-modes are doubly
degenerate at I'.

1. E, and Egnon-polar phonons. Phonon modes with
symmetry E, and E, are responsible for four optical branches.
Two of them move in-phase and two in anti-phase of the atoms
X; (i =1, 2, 3, 4) (we follow the same notation as in Subsection
(I B 1)). Here, we are in the presence of two different sub-
spaces that provide two independent equations of motion. A
general equation of motion for the atom’s in-phase and out-of-
phase motion can be written as

pm’U = y-U=£ (B-VV-U = B7-V x V x U), ?)

View Article Online
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where v, 8, (87) are given by

2 2
Wy 0 :3}3 " 0
Y=ol ° , BB =pu| 2
0 WE, 0 ﬁEul(gl)

Wgg, Wy are the natural frequencies in-plane at T, 6%@ and ,6123“1(()
are the phenomenological parameters obtained by the phonon
dispersion w(q). Using the solution Uy, (Uap) = Uoi(Usa)e'? * we get

(0 = 0}, ) Us = 62 4a(a- Us) % B2, [ ~ala- Us) + U] (8)

The same equation follows for the anti-phase component U,,
with wgpg = wgy,. Taking U, = U; + U, where - U; = 0,q-U; # 0, q
x Uy # 0, g x Uy = 0 we have two branches for phonons with E,-
symmetry, longitudinal and transverse with

2 2 2 2
g — “E + BT )
For the E,-symmetry we have the dispersion relation:
2 2 2 2
Euwy — “Eu + BEul(ut)q : (10)
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Fig.7 Polar optical phonon dispersion for a bilayer of WS,, WSe;, and WTe,. Out-of-plane phonons: A;4 (green line) and A, (blue line). In-plane-
modes with symmetries E5 and E, split into Ey (magenta line), Ey (red line), E, (olive line) and E,; (black line). The insets show the phonon
dispersion of WS, and WSe; in the range g — 0, while for WTe; only the Eg, Eg and Ey; modes are shown.
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2. E, and Egpolar phonons. Each vibration mode in a
single layer of MX, is split into two modes in the bilayer:
E' — 2E, and 2E,. The movement of the in-plane phonon
is determined by the oscillation of the positive ion relative to the
negative ions: Uy = g, — (1, + 1y ))/2 and Uy = g, — (2, + 14, )/2
for subcells I and II, that is, the M-atom vibrates opposed to the
phase of the X-atoms in the layer.

Eg phonon. Assuming that the out-of-phase amplitude U,,
carries no net electric field, the Eg-optical vibrations are ruled
by

(7 = 03, ) Usp = £ (B3, VV-Usp — B,V X V x Uy, (1)

thus, we obtain the phonon dispersion for the longitudinal and
transverse phonon:

2
13}
L)

(12)

2 2 2
=wy * .
Eg ﬂEg](gl) 4

E,-phonon. The opposite motions of the ions M; (i = 1, 2) and
X; (i =1, 2, 3, 4) lead to the appearance of a 2D electric field
E(p,0) in the plane of the two layers. The equation of motion for
the in-phase vector displacement Uj, of the atoms involved is
written as

View Article Online

RSC Advances

Pm (wz - “)123“) Uy, = —aE(p,0)U;,
0 (81, VV-Usp — B2,V x V x Uy, ), (13)

where o is the coupling constant between the mechanical
oscillation Uj, and the in-plane electric field E,** py, is the 2D
reduced mass density with u=" = my, ' + (2mx) ", and wg, the
natural frequency at I'. Eqn (13) provides the phonon dispersion
relations (see Appendix C)

2ma? q
2 2 2
= — 4+ 14
B R 7 R ()
and

‘Ulzzm = a)éu + ﬂém 7, (15)

with 7, = 21w, being the screening parameter of the bilayer.

D. Phonon parameters

Fig. 5-8 compare ab initio calculations and the long-wave
optical model for the MoX, and WX, families. For each
family, the results are divided into polar and non-polar
branches.

Bilayer. Non-Polar Modes at /——> M
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Fig. 8 The same as Fig. 7 but for the dispersion law of non-polar optical phonon dispersion.
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1. MoX, family. In Fig. 5 and 6 we show the optical phonon
dispersion law, w(g) of the 2ML MoX, and phonon wave vectors
g = 0.25 (27/a). The twelve phonon modes 2A,,, 2Ag4, 2E, 2Ey,
2Eg and 2E, are shown along the I' — M-direction of the BZ.
The dispersion relations obtained in Section II using the ab
initio procedure are displayed by straight lines. The dots show
the results using the long-wave polar optical model of
Section III.

2. WX, family. Fig. 7 and 8 are devoted to the 2A,,, 2A4,
2Ey, 2Ey;, 2Eg and 2E, phonon dispersion branches for 2ML of
WX,. We employed the same notation as Fig. 5 and 6.

The Fig. 5-8 show that the precision achieved between the
phenomenological treatment and first principles calculations
depends on the optical branch and the material. The in-plane
branches with E' (polar modes) and E” (non-polar modes)
symmetry are double-degenerates vibrating along the perpen-
dicular longitudinal (Eg, Ey) and transverse (Eq, Ey¢) directions.
Taking into account the phonon dispersion laws in Fig. 1-3, one
can extract the parameters that govern the long-wave phenom-
enological model shown in Fig. 5-8. In Table 1, we report the
relevant parameters of the twelve optical phonon branches of
the 2ML.

A closer look at the results reveals that the parameters for the
modes with symmetries A;, and A,, are very similar. We can
argue the same for non-polar modes with E; and E,, irreducible
representation. For the polar phonon with E-symmetry, the
situation is not uniform. The E and Eg dispersion laws are

Table 1 Phonon data of the 2ML MoX, and WX, (X = S, Se, and Te).
The dimensionless curvatures Cj = +(27m8;)*/(aws(0))>  and
E= (27:a)2/(apmw§u) are estimated from the dispersion curves and the
phonon dispersion law obtained using ab initio calculations for polar
and non-polar optical modes. w; in cm™*

MosS, MoSe, MoTe, WS, WSe, WTe,
Polar
Wa,, 462.8 346.0 287.2 432.4 302.8 241.9
(CAlg —2.58 —2.0 —1.90 —2.58 —2.4 —2.1
Wa,, 461.7 345.5 286.7 430.4 302.3 241.4
CA;., —2.6 —2.05 —1.90 —2.6 —2.45 —2.2
WEu 376.6 279.2 231.8 347.8 241.3 193.9
Cg, —2.4 0.47 —0.35 —012  —17.7 1.2
= 2.0 6.95 22.6 0.4 2.2 14
Cg, —0.41 0.3 0.58 —0.4 —0.15 0.1
Wgg 376.5 279.2 231.6 347.9 241.2 193.6
CEg‘ —0.43 0.31 0.66 —0.04 —0.14 0.26
(CEg1 —2.1 1.7 3.1 —0.38 —21 4.0
Non-polar
Wa,, 401.1 237.8 171.3 411.8 244.6 1771
CAlg 0.57 —2.6 —2.4 —0.54 11 —3.7
Wa,, 398.2 235.5 169.3 409.0 243.1 175.2
CAZU 0.55 —2.7 —2.4 —0.56 11 —3.7
Wgg 280.0 164.5 116.4 290.6 170.7 120.8
(ngl 5.2 7.6 9.3 4.8 7.6 9.0
CEgl 1.4 1.55 2.1 1.5 1.7 241
WEy 278.8 163.6 115.4 289.4 170.0 119.6
Cpg, 5.8 8.2 10.6 5.0 8.1 10.5
CEm 1.4 1.6 2.12 1.5 1.8 2.3
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Table 2 Phonon data of the ML MoX, and WX, (X = S, Se, and Te)
obtained using ab initio calculations. The notation is the same as in
Table 1

MoS, MoSe, MoTe, WS, WSe, WTe,
Polar
wz0, 463.7 347.9 289.0 432.4 303.7 243.1
Co, —2.38 —1.9 —1.82 —2.4 —2.2 —2.05
Wg 378.1 281.0 233.0 349.4 242.2 194.8
Cro, —2.9 0.34 —0.3 —0.19 —37 1.0
c 1.06 3.5 11.5 0.23 1.3 7.2
Cro, —0.46 0.15 0.52 —0.42 —0.18 0.13
Non-polar
w70, 399.3 236.9 170.3 410.7 243.8 176.1
Czo, 0.72 —2.5 —2.25 —0.48 21 —3.2
Wg” 279.5 164.4 115.8 290.7 170.3 120.0
Cro, 4.7 7.45 9.84 4.5 7.2 9.8
Crro, 1.37 1.54 1.95 1.6 1.84 2.17

almost identical. Differences are observed for the curvatures
Cpg, and Cpg, between the two branches, even the sign is not
always preserved. These differences are determined mainly by
the dielectric properties of the environment. The in-phase
displacement Uj, creates an in-plane internal electric field
that is greatly affected by the dielectric environment (see
eqn (14).)

For comparison, the phonon parameters for the six branches
of the single-layer are also reported in Table 2. Here, we employ
the corresponding dispersion law provided by the phenome-
nological model® for the A", (ZO,), A'; (ZO,), E' (LO,, TO,), and
E” (LO4, TO,) phonon symmetries.

From the compiled values in Tables 1 and 2, we conclude the
following: (1) the phonon frequencies for the polar branches in
the 2ML are lower than those of the ML, while the opposite is
achieved in the non-polar modes, (2) the linear dispersion
relation given by the slope E is double that of the ML, (3) the
curvatures Cj; take similar values except for the polar modes of
Eg-symmetry. Comparing the phonon dispersion reported in
ref. 53 with the data given in Table 2, we observe that the
phonon parameters in both cases are almost the same. Due to
incorrect manipulation, the results collected in Table 2 of ref. 53
for WTe, need to be corrected; also, the correct value for MoS,
Cro, = —0.46.

V.

The conductivity and mobility in semiconductors depends
directly on the carrier’s scattering rate (SR), v '.¥ At high
temperatures (T ~ 300 K) and carrier energies greater than those
of an optical phonon, the longitudinal optical branch deter-
mines the faster relaxation time. Evaluation of the scattering
rate due to the intra-valley transition in ML and 2ML of TMDs is
of profound interest for transport and optoelectronic applica-
tions.*® In this framework, we must know the dependence of the
inverse relaxation time on the carrier energy E and the phonon
parameters. Fermi’s golden rule gives the scattering rate of the
electronic transitions,

Intra-valley scattering rate

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Scattering rate as a function of the reduced energy E/hw, for the (a) MoX, and (b) WX, families. Straight lines represent the ML samples
(wo = wpr), dots correspond to 2ML materials (w, = wgy). The parameters in Tables 1-3 are used, the results are given in units of W, (20) for the ML

parameters.

= TSRl ) o~ ).

0 2 (16)

In the initial (final) state |I) (|F)) we have a particle with
momentum k (¥) and energy E; = E = #*k*/(2m) (Ep = #°K?/(2m)
=+ /iw,) with m being the effective mass. We consider the inter-
action of carriers with polarized longitudinal optical phonons
wg and wgy for the ML and 2ML, respectively. For an evaluation
of 7(E) it is necessary to derive the PF interaction Hamiltonian
(Hopr). Ref. 53 reports Hpy for a ML TMD and in Appendix D the
corresponding electron-phonon interaction for 2ML is ob-
tained. It is shown that the Hpp can be written as

- : Gpn N g
Hpp=—Y ————— |b,e"? + b e™P|, (17)
Zq:VNC(l +70q) g o
where
2m2ha\
Gpy = [ ——— . 18
o ( Appmwo ) (8)

Eqn (17) is valid for both considered structures, the main
difference is in the parameter values «, w, (Wg, ®Wga) and r.
Assuming non-degenerate semiconductor and that w,(q) =
wo(0) we get the scattering rate

1

- Wo[(No + )F(E)H(E — hw,) + NoF1(E)],

(19)

where N, is the Bose-Einstein distribution function, H(z) the
Heaviside step function,

© 2024 The Author(s). Published by the Royal Society of Chemistry

2m2ea? 2m
W= ——,
PmWE, h

(+)

%2 X dx
Fia=|

5* 1+ \/2’:2’%)( \/4Ex2 — (2 + hw,)”

and x; = VE + \/E — hop,, x5 = £VE + \/E + hog,.

The first (second) term in eqn (19) corresponds to the
phonon emission (absorption). We evaluate t~* for the lower
conduction band at the K-point of the BZ for MoS,, MoSe,,
MoTe,, WS,, WSe, and WTe, materials. The scattering rate
values given by eqn (19) are governed by the effective mass,
screening parameter, and phonon frequency. For comparison,
the results for each material are displayed in units of W, of the
ML, in Fig. 9.

Because the phonon frequencies for the ML and 2ML are very
similar for each family, comparing the results for those
compounds with the same anion is possible. In all cases, 7" is
smaller in the bilayer structures. The sequence of values from
lowest to highest in the SR seen in Fig. 9 is related to the
increase of the r, parameter when passing from the S to Te
anion (see Table 3). Fig. 9 for the ML resembles the values ob-
tained in ref. 51.

V. Conclusions

We have performed first principles calculations to examine the
phonon dispersion curves for single-layer and bilayers of the
MX, family (M = Mo, W and X = S, Se, Te). The method enables
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us to examine the parameters describing the phonon disper-
sion and to elucidate their role on the optical branches. Based
on the ab initio results of Fig. 1-3, we report the phonon
parameters for the long-wavelength polar vibrations in bilayer
TMDs for in-plane and out-of-plane motions. The latter was
done by fitting the analytical phonon dispersion laws provided
by the macroscopic equations obtained in the framework of the
phenomenological continuum limit to the phonon dispersion
obtained by first principles calculations. These results allow us
to validate the analytical equations reported in Section III as
a function of the phonon wave vector for all-optical phonon
branches; this is one of the main achievements of this work,
graphically represented in Fig. 5-8 together with the set of
parameters that describe the twelve dispersion laws (see Table
1). The most significant differences between the single-layer
and bilayer results are linked to the polar branches with E-
symmetry. Although the phonon parameters for the other
modes (polar and non-polar) are very similar, this does not
happen with the curvatures of the longitudinal and transverse
modes and the increase in the observed slope value & when
going from a ML to 2ML (compare Tables 1 and 2). All this is
a consequence of the neighborhood influence on the dielectric
properties of the 2D TMD. Using first principles analysis, we
have derived the Pekar-Frohlich Hamiltonian in double-layer
structures in the small-phonon momentum limit. The anal-
ysis provides the strength of the PF interaction for ML (see ref.
52) and 2ML of MoS,, MoSe,, MoTe,, WS,, WSe, and WTe,
semiconductors.

We have examined the intrinsic transport properties by
evaluating the dispersion rate at low carrier density and high
temperature. 2ML structures have a longer lifetime than ML
ones. We demonstrate that the number of layers is paramount
in evaluating the dispersion rate and transport properties. The
quantitative picture of the scattering rate displayed in eqn (19)
allows us to delineate the critical factors involved in conduc-
tivity and mobility. One particularly interesting point is to
consider TMD materials in the presence of an external magnetic
field where the transport of carriers is spin polarized.*

The reported analytical models become necessary to under-
stand better transport properties, infrared and Raman spec-
troscopy. Among other topics, the generalization of the present
results to the evaluation of optical phonons in 2D Moiré hetero-
bilayers offers an attractive field to study the peculiarities of the
symmetries of the optical branches, the dispersion laws, how
the electron-phonon interaction is modified and the impact
that these effects produce on the Raman selection rules,
dielectric, optical properties and transport phenomena of these
exotic structures.

Appendix A: parameters of ab initio
calculations

In the DFPT calculations, the dynamical matrices were
computed for a I'-centered n x n g-point grid in the reciprocal

lattice unit cell corresponding to the supercell that contains the
ML and 2ML structures. The electron wavefunctions are
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Table 3 Employed parameters for the evaluation of the out-of-plane
and in-plane optical phonon dispersion relations of a bilayer of MX;
(M =Mo, W; X=S5, Se, Te). The corresponding values for a monolayer
are also listed. a — Optimized lattice constant, ¢ — interlayer distance,
d — thickness of the monolayer or bilayer, ro — screening parameter, ¢
— dielectric constant and m — the electron effective constant

MoS, MoSe, MoTe, WS, WSe, WTe,
Single-layer
a(d) 3.1635 3.2991 3.5274  3.1627  3.2949 3.5230
[4 (A) 15.9300 16.4957 17.6370 15.8137 16.4744 17.6481
o (A) 46.0353 53.4115 68.6629 41.9088 48.8415 64.87084
d (A) 5.4816 5.9689 6.6794 5.5108 6.0037 6.6959
e 16.8161 17.9151 20.5759 15.2315 16.2908 19.3933
Bilayer
a (A) 3.1647 3.3001 3.5305 3.1831 3.2964 3.5319
c (A) 28.4820 29.2058 31.1933 28.3299 29.6674 31.7871
ro(o) 93.1131 107.9929 139.0393 85.2742 98.4814 131.1408
d (A) 11.0497 12.0003 13.3737 11.0062 12.0314 13.36
€ 16.8732 18.0168 20.8090 15.5173 16.3910 19.6489
mimy” 0.43 0.49 0.53 0.26 0.28 0.26
“ Ref. 60.

Table 4 Parameters used for the ab initio calculations. Wavefunction
(wf) and density (rho) cutoffs, k-point, and g-point grids®

MosS, MoSe, MoTe, WS, WSe, WTe,
wf cutoff (Ry) 65 80 80 100 80 80
rho cutoff (Ry) 650 800 800 800 800 800
k-mesh 12 x 12 12 x 12 12 x 12 12 x 12 15 x 15 12 x 12
g-mesh 6xXx6 6X6 6x6 6X6 6X6 6xX6
“The PAW potential files used were Mo.pbe-spn-kjpaw_psl.1.

0.0.UPF, W.pbe-spn-kjpaw_psl.1.0.0.UPF, S.pbe-n-kjpaw_psl.1.0.0.UPF,
Se.pbe-n-kjpaw_psl.1.0.0.UPF, and Te.pbe-n-kjpaw_psl.1.0.0.UPF from
ref. 50.

expanded in plane waves restricted by a kinetic energy cutoff.
The electronic density is also expanded in plane waves
restricted by a cutoff. For the electronic calculation, the recip-
rocal unit cell was sampled using a I'-centered m x m k-point
grid. The employed computational parameters for MoX, and
WX, with X = S, Se and Te are summarized in Table 3 and 4. We
observe that for a given TMD family the lattice constant and r,
increase as the mass of the chalcogen atom X increases.
Furthermore, the screening parameter, or similarly, the in-
plane polarizability, doubles its value when moving from the
ML to the two-layer. The latter has an important impact on the
evaluation of the PF Hamiltonian in eqn (17).

Appendix B: polar phonon: A,,-
symmetry

For the out-of-plane optical vibrations, eqn (4) is complemented
by the Maxwell equation

V-(E(p.2) + 4nP(p.2)) = O, (B1)

© 2024 The Author(s). Published by the Royal Society of Chemistry
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with P, being the total macroscopic polarization due to the two
sub-cell polarization contributions.

We assume the existence of a polarization field coupling the
phonon amplitude with the macroscopic electric field in the
plane. The mechanical displacement Uj, induces an electric
field Eina(Usp), a general expression for the induced field can be
taken as Ejnq = aa, Uip. Thus, for the vector polarization P, we
assume the linear constitutive phenomenological relation

P. = [aAlul]ip(p) + XeEz(pao)]p(Z)a (BZ)

where x. is the out-of-plane electronic susceptibility®* and p(z) is
the polarization density out-of-plane as given by p(z) = 1/d; |z| <
d/2 and 0 if |z| > d/2, d the thickness of the bilayer. From eqn (B1)
and taking E, = E,(p,z) = —V¢(p,z2) it follows that

V’o(p.z) = 4mcV-P. (B3)
V'P; = dIZi(Z) [aAzu Uip e + XeE; '8;] . (B4)
z

Poisson eqn (B3) points out that the electrostatic potential
¢(p,2) is due to the polarization charge 47tV-P, of the polariza-
tion field, eqn (B2). Due to the translation symmetry in the
plane, we can choose the electrostatic potential and vector

amplitude as ¢(p,2) = $(2)e'?”, Uy, = U,e?”, respectively.
d¢(0) ;
Therefore, E,(p,0)-e;, = —~Vo(p,2)|,—0-€; = —%@’q"’ and eqn
(B3) reduces to
d de(0)] .
Vo(p.z) — 420 aas, Us( ) - 2 22O g, (B5)
dz . dz
Considering the Fourier transform
1 (* - ;
b2)= 5= J $(g2)¢®*dgq, from (B5) it follows that
_ 8mi sin(g.d/2) de(0)
)= I win(P) = Xe ——| - B
B4 =7 T ] [ U0~ x| (B6)
The z-component of the electric field E,(p,0) is given by
de(0) g
E. =— =— -)dq.. B7
0.0 = -0 = Toape. @)
Inserting (B6) into (B7) we obtain
4 —qd )2
E.(p,0) = % %UO. (BS)
4y 4y 22
°d
In the long wavelength limit e 9% = 1. Therefore,
41t QA,,
E.(p,0) = Td T Amy o (B9)
1+ pl
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Employing the identity V x V x Uy, — V(V-Uy,) = —VUjp, =
q’Uyp from eqn (4) we obtain

4 o

oo (7 =R, ) Uo = | 5 — s £ 0ubh, | Vo (B10)

1 €

T
and the w(g) for the A,, mode is equal to

4 g,

wz = wimu + W #X + qzﬁzAzu . (Bll)
m ] p ¢

The second term on the right side of the above equation
renormalizes the intrinsic oscillatory frequency waozy

4t o}

2 Axy 2

WAg, dp 4TCXe - W (BIZ)
m 1 + T

thus, the final dispersion relation eqn (5) for the A,, mode is
obtained.

Appendix C: polar phonon: E,-
symmetry

The total macroscopic electric field E(p,z) in the plane satisfies
the Maxwell equation

V-(E(p.2) + 4P(p.2)) = 0, (c1)
and for the macroscopic polarization P(p,z) we have
P = [aUip(p) + axE(p,0)]p(2), (C2)

with «, the polarizability in the plane. Taking E(p,z) = —V¢(p,2)
and looking for the solutions as Uy, = Uyipe? ” and E(p,z = 0) =
E(g)e'??, from eqn (13) and (C1) we have

Pm <a)2 - a)]252u> Uoip = —E(q)Uqip £ Pmﬁf—:glq(‘l’ Uoip)

, , (C3)
:I:pmﬁEg‘ ( *‘I(‘I' Uoip) +4q UOiP)?

and

V2 + 4maxV, 0(p,0)p(z) = 4maV - [Ui(p)p(2)]. (C4)

In (C4), ppor = 4maV-[Uip(p)p(2)] is considered as the polari-
zation charge generated by the induced electric field Ej,q =
aUip(p). In Poisson’s eqn (C4), the total charge density pr =
Ppol t Ping With

Pina = —4ma2V0(p.0)p(2), (C5)
pina is the induced charge density related to polarization due to
the in-plane electric field E;, = —V,¢(p,0) in the bilayer. The
presence of an environment leads to a point charge at the origin
that creates a field that shields the electrostatic potential ¢(p,z).
For the solution of Poisson’s eqn (C4), coupled to the
mechanical equation of motion eqn (13), we take the Fourier
transform

RSC Adv, 2024, 14, 5234-5247 | 5245
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1
()’

J B(q,q:)e" ") d’q dg.. (C6)

Thus, from (C4) it follows that for the Fourier transform of
the electrostatic potential #(q) = [*, @(q, q.)dq, /2™ is

2n aF(q)

(P(q) = 7 1 I zﬁa2q7

(€7)
where the long-wave length limit gd/2 < 1 was considered and

Flg) = |- [Uy (o] . (c8)

From (C7) and (C8) the Fourier transform of E,(p,z = 0) =
—Vo(p) is given by
q q: Uip

E(q) = 2ma=

q (14 2mayq) (C9)

Considering Uy, = Uy + U, as the longitudinal and transverse
independent components of the vector displacement we obtain
the w(q) laws dictated by eqn (14) and (15).

Appendix D: Pekar—Frohlich
Hamiltonian

Here we discuss the formulation of PF coupling valid for
a bilayer of TMD. The lattice vibration, Uy, gives rise to the 2D
macroscopic electric field E;, = —V,¢(p,0). An electric charge
—e is coupled to the scalar potential ¢(p), so the PF Hamiltonian
can be written as
ﬂPF = —e@(p). (D1)
The polarization charge pr = ppo1 + ping is responsible for the
scalar potential ¢ as discussed in Appendix C. From eqn (C6)
and (C7) immediately follows

F(q)

_® iqp 42
27 Jq(l + ZTcazq)e 7

o(p) = (D2)

Transforming the classical field of the phonon amplitude Uj,
into a quantum-field operator Ujp(p) in terms of phonon crea-
tion (b:r]) and annihilation (by) phonon operator we obtain

. q il e N
v, =S4(" {b a0 4 b e ]
=2y (2pm5wgl) e

with S = N.A the normalization area, A the area of the sub-unit
cell and N, the number of cells. Consequently, F(q) — F(q) and
o(p) = 9(p).

Inserting eqn (D3) into eqn (C8), the in-plane electrostatic
potential, eqn (D2), is given by

2m2hat\ 1 g
= iq:p P D4
® lzq: (Spmwgl) (14 27ang) [b"e e ] (D4)

(D3)
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From eqn (D1) and (D4) follows the Hamiltonian, eqn (17).

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

AD initio calculations were conducted at the following computer
centers: CICA (Centro Informatico Cientifico de Andalucia,
https://www.cica.es/) and Supercomputing Center Alhambra of
Universidad de Granada. ESM acknowledges financial support
from ANID-FONDECYT 1221301 and the Maria Zambrano
Program, Ministry of Universities and Seville University, Spain.
Powered @NLHPC: this research was partially supported by the
supercomputing infrastructure of the NLHPC (ECM-02). G.
E. M. and C. T.-G. are grateful for the financial support from the
Brazilian agencies, Fundacdo de Amparo a Pesquisa do Estado
de Sao Paulo (FAPESP: Proc. 2023/10905-2, 2022/08825-8, 2020/
07255-8) and Conselho Nacional de Desenvolvimento Cientifico
e Tecnologico (CNPq: Proc. 302007/2019-9).

References

1 S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev and
A. Kis, Nat. Rev. Mater., 2017, 2, 17033.

2 B. Schonfeld, J. J. Huang and S. C. Moss, Acta Crystallogr.,
Sect. B: Struct. Sci., 1983, 39, 404-407.

3 S. Coutinho, M. Tavares, C. Barboza, N. Frazao, E. Moreira
and D. L. Azevedo, J. Phys. Chem. Solids, 2017, 111, 25-33.

4 Z. Huang, W. Zhang and W. Zhang, Materials, 2016, 9, 716.

5 J. K. Ellis, M. J. Lucero and G. E. Scuseria, Appl. Phys. Lett.,
2011, 99, 261908.

6 Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu,
F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng,
S.-K. Mo, Z. Hussain, A. Bansil and Z.-X. Shen, Nat.
Nanotechnol., 2014, 9, 111-115.

7 Z. G. Yu, B. L. Yakobson and Y.-W. Zhang, ACS Appl. Energy
Mater., 2018, 1, 4115-4121.

8 C. D. English, G. Shine, V. E. Dorgan, K. C. Saraswat and
E. Pop, Nano Lett., 2016, 16, 3824-3830.

9 W. Wu, D. De, S.-C. Chang, Y. Wang, H. Peng, ]J. Bao and
S.-S. Pei, Appl. Phys. Lett., 2013, 102, 142106.

10 H.-L. Liu, C.-C. Shen, S.-H. Su, C.-L. Hsu, M.-Y. Li and L.-J. Li,
Appl. Phys. Lett., 2014, 105, 201905.

11 E. Singh, P. Singh, K. S. Kim, G. Y. Yeom and H. S. Nalwa,
ACS Appl. Mater. Interfaces, 2019, 11, 11061-11105.

12 S. Rashidi, S. Rashidi, R. K. Heydari, S. Esmaeili, N. Tran,
D. Thangi and W. Wei, Progr. Photovolt.: Res. Appl., 2021,
29, 238-261.

13 C. Wang, F. Yang and Y. Gao, Nanoscale Adv., 2020, 2, 4323-
4340.

14 A. Taffelli, S. Diré, A. Quaranta and L. Pancheri, Sensors,
2021, 21, 2758.

15 W. Zheng, X. Liu, J. Xie, G. Lu and J. Zhang, Coord. Chem.
Rev., 2021, 447, 214151.

© 2024 The Author(s). Published by the Royal Society of Chemistry


https://www.cica.es/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra08759j

Open Access Article. Published on 09 Ginora 2024. Downloaded on 15.02.2026 7:15:06.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

16 Y. Hu, Y. Huang, C. Tan, X. Zhang, Q. Lu, M. Sindoro,
X. Huang, W. Huang, L. Wang and H. Zhang, Mater. Chem.
Front., 2017, 1, 24-36.

17 E. C. Ahn, npj 2D Mater. Appl., 2020, 4, 17.

18 Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang and
X. Duan, Nat. Rev. Mater., 2016, 1, 16042.

19 A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov
and A. K. Geim, Rev. Mod. Phys., 2009, 81, 109-162.

20 E. Suarez Morell, J. D. Correa, P. Vargas, M. Pacheco and
Z. Barticevic, Phys.Rev. B: Condens. Matter Mater. Phys.,
2010, 82, 121407.

21 Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras and P. Jarillo-Herrero, Nature, 2018, 556, 43-50.

22 K. Yasuda, X. Wang, K. Watanabe, T. Taniguchi and
P. Jarillo-Herrero, Science, 2021, 372, 1458-1462.

23 D. Zhang, P. Schoenherr, P. Sharma and J. Seidel, Nat. Rev.
Mater., 2022, 8, 25-40

24 Y. Wang, S. Jiang, J. Xiao, X. Cai, D. Zhang, P. Wang, G. Ma,
Y. Han, J. Huang, K. Watanabe, T. Taniguchi, Y. Guo,
L. Wang, A. S. Mayorov and G. Yu, Front. Phys., 2022, 17,
43504.

25 E. A. Cortés, J. M. Florez and E. S. Morell, J. Phys. Chem.
Solids, 2023, 173, 111086.

26 X. Wang, K. Yasuda, Y. Zhang, S. Liu, K. Watanabe,
T. Taniguchi, J. Hone, L. Fu and P. Jarillo-Herrero, Nat.
Nanotechnol., 2022, 17, 367-371.

27 B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-
Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire,
D. H. Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero and
X. Xu, Nat. Nanotechnol., 2018, 13, 544-548.

28 E. S. Morell, A. Le6n, R. H. Miwa and P. Vargas, 2D Mater.,
2019, 6, 025020.

29 H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam,
A. 1. Y. Tok, Q. Zhang and H. Zhang, Small, 2012, 8, 63-67.

30 S. Das, H.-Y. Chen, A. V. Penumatcha and ]J. Appenzeller,
Nano Lett., 2013, 13, 100-105.

31 S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang,
C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee,
D. Jena, W. Choi and K. Kim, Nat. Commun., 2012, 3, 1011.

32 H. Terrones and M. Terrones, J. Mater. Res., 2014, 29, 373-
382.

33 X.Liu, D. Qu,J. Ryu, F. Ahmed, Z. Yang, D. Lee and W. ]. Yoo,
Adv. Mater., 2016, 28, 2345-2351.

34 K. M. McCreary, M. Phillips, H.J. Chuang,
D. Wickramaratne, M. Rosenberger, C. S. Hellberg and
B. T. Jonker, Nanoscale, 2022, 14, 147-156.

35 G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios,
D. Neumaier, A. Seabaugh, S. K. Banerjee and L. Colombo,
Nat. Nanotechnol., 2014, 9, 768-779.

36 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and
M. S. Strano, Nat. Nanotechnol., 2012, 7, 699-712.

37 C. Chakraborty, L. Kinnischtzke, K. M. Goodfellow, R. Beams
and A. N. Vamivakas, Nat. Nanotechnol., 2015, 10, 507-511.

38 B. Radisavljevic, A. Radenovic, ]J. Brivio, V. Giacometti and
A. Kis, Nat. Nanotechnol., 2011, 6, 147-150.

39 E. H. Hwang and S. Das Sarma, Phys. Rev. B: Condens. Matter
Mater. Phys., 2008, 77, 235437.

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

40 A. Kefayati, J. P. Bird and V. Perebeinos, Phys. Rev. B, 2022,
106, 155415.

41 C. Trallero-Giner, D. G. Santiago-Pérez and V. M. Fomin, Sci.
Rep., 2023, 13, 292.

42 N. A. Pike, A. Dewandre, B. Van Troeye, X. Gonze and
M. J. Verstraete, Phys. Rev. Mater., 2019, 3, 074009.

43 1. Paradisanos, G. Wang, E. M. Alexeev, A. R. Cadore,
X. Marie, A. C. Ferrari, M. M. Glazov and B. Urbaszek, Nat.
Commun., 2021, 12, 538.

44 X. Li, J. T. Mullen, Z. Jin, K. M. Borysenko, M. Buongiorno
Nardelli and K. W. Kim, Phys. Rev. B: Condens. Matter
Mater. Phys., 2013, 87, 115418.

45 J. K. Han, M.-A. Kang, C.-Y. Park, M. Lee, S. Myung, W. Song,
S. S. Lee, J. Lim and K.-S. An, Nanotechnology, 2019, 30,
335402.

46 S. Baroni, S. de Gironcoli, A. Dal Corso and P. Giannozzi, Rev.
Mod. Phys., 2001, 73, 515-562.

47 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni,
1. Dabo, A. dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi,
R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj,
M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri,
R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen,
A. Smogunov, P. Umari and R. M. Wentzcovitch, J. Phys.:
Condens. Matter, 2009, 21, 395502.

48 J. Klimes, D. R. Bowler and A. Michaelides, Phys. Rev. B:
Condens. Matter Mater. Phys., 2011, 83, 195131.

49 T. Thonhauser, S. Zuluaga, C. A. Arter, K. Berland,
E. Schroder and P. Hyldgaard, Phys. Rev. Lett., 2015, 115,
136402.

50 A. Dal Corso, Comput. Mater. Sci., 2014, 95, 337-350.

51 T. Sohier, M. Calandra and F. Mauri, Phys. Rev. B, 2017, 96,
75448.

52 N. Scheuschner, R. Gillen, M. Staiger and J. Maultzsch, Phys.
Rev. B: Condens. Matter Mater. Phys., 2015, 91, 235409.

53 C. Trallero-Giner, E. Menéndez-Proupin, E. S. Morell,
R. Pérez-Alvarez and D. G. Santiago-Pérez, Phys. Rev. B,
2021, 103, 235424.

54 X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang and
P.-H. Tan, Chem. Soc. Rev., 2015, 44, 2757-2785.

55 A. V. Kolobov and J. Tominaga, Two-Dimensional Transition-
Metal Dichalcogenides, Springer International Publishing
Switzerland, 2016, vol. 239.

56 M. Yamamoto, S. T. Wang, M. Ni, Y.-F. Lin, S.-L. Li,
S. Aikawa, W.-B. Jian, K. Ueno, K. Wakabayashi and
K. Tsukagoshi, ACS Nano, 2014, 8, 3895-3903.

57 P. Y. Yu and M. Cardona, Fundamentals of Semiconductors,
Springer, Berlin Heidelberg, 2010.

58 K. Kaasbjerg, K. S. Thygesen and K. W. Jacobsen, Phys. Rev.
B: Condens. Matter Mater. Phys., 2012, 85, 115317.

59 J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross,
K. L. Seyler, W. Yao and X. Xu, Nat. Rev. Mater., 2016, 1,
16055.

60 A. Kormanyos, G. Burkard, M. Gmitra, J. Fabian, V. Zolyomi,
N. D. Drummond and V. Fal’ko, 2D Mater., 2015, 2, 022001.

61 J.-Z. Zhang, AIP Adv., 2020, 10, 045316

RSC Adv, 2024, 14, 5234-5247 | 5247


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ra08759j

	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides

	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides
	Lattice vibration modes and electrontnqh_x2013phonon interactions in monolayer vs. bilayer of transition metal dichalcogenides


