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Numerous pieces of evidence in the literature suggest that zeolitic materials exhibit significant intrinsic

flexibility as a consequence of the spring-like behavior of Si–O and Al–O bonds and the distortion ability

of Si–O–Si and Al–O–Si angles. Understanding the origin of flexibility and how it may be tuned to afford

high adsorption selectivity in zeolites is a big challenge. Zeolite flexibility may be triggered by changes in

temperature, pressure, or chemical composition of the framework and extra-framework compounds, as

well as by the presence of guest molecules. Therefore, zeolite flexibility can be classified into three

categories: (i) temperature and pressure-induced flexibility; (ii) guest-induced flexibility; and (iii)

compositionally-induced flexibility. An outlook on zeolite flexibility and the challenges met during the

precise experimental evaluations of zeolites will be discussed. Overcoming these challenges will provide

an important tool for designing novel selective adsorbents.
1. Introduction

Zeolites are microporous materials that play a key role in
industrial applications as catalysts, gas adsorbents and ion
exchangers in many processes intimately related to environ-
mental and economic challenges.1–3 Different approaches have
been applied to control the selectivity of zeolite adsorbents and
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simultaneously control the adsorption and release of guest
molecules.4–7 One of the key contributors to the selectivity
towards adsorbed gas molecules was recently regarded to result
from the zeolite framework's exibility.8 Yet, there is not
a generally established denition in the literature of the term
“exibility of zeolites”. This exibility may be dened as
a reversible framework deformation (expansion/contraction) or
dynamics of the zeolite structure including the movement of
extra-framework cations, an intrinsic property of zeolitic
frameworks due to the spring-like behavior of Si–O and Al–O
Eddy Dib
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bonds and the distortion of Si–O–Al and Si–O–Si angles as
a response to an external trigger such as gas adsorption/
desorption or a change in temperature or pressure.5,9–11 This
spring-like behavior was used in the development of exible
force eld parameters for the modeling of porous materials
(zeolites) using Monte Carlo calculations or molecular
dynamics simulations for many years.12–20 These models allow
us to simulate the dynamics-related parameters in zeolites such
as diffusion coefficients.21–25 Moreover, theoretical calculations
of minimal and maximal possible framework densities showed
that zeolitic frameworks exhibit a exibility window in their all
silica forms and almost all of them show some degree of exi-
bility in their aluminosilicate forms.26–28 As a result of these
framework density calculations, 25 zeolitic frameworks were
highlighted as potentially exible structures: ACO, AST, ASV,
DFO, EAB, EMT, ERI, FAU, KFI, LEV, LTA, LTL, MER, MOZ,
MTN, OFF, PAU, RHO, SAS, SOD, SSF, TSC, UFI, UOS, and
UOZ.29,30

The term exibility window and its related parameters are
merely theoretical and they have been used to predict the
synthesis of millions of hypothetical zeolitic frameworks.29,31

However, a cohesive experimental factor describing zeolite
exibility is still not established and different aspects of zeolite
exibility are not fully explored yet. In this contribution, the
different aspects of zeolite exibility are summarized into three
categories: (i) temperature and pressure-induced exibility; (ii)
guest-induced exibility; and (iii) compositionally-induced
exibility.
1.1. Temperature and pressure-induced exibility

Zeolite exibility can be observed as a response to temperature
and pressure changes. Temperature-induced exibility usually
manifests as alteration of the lattice parameters of the zeolite
Svetlana Mintova
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framework (e.g. RHO, SOD, MFI, etc.) or by migration of extra-
framework cations within the zeolite structure (e.g. RHO,
CHA, etc.).3,10,32 Zeolites undergo alterations in their lattice
parameters when subjected to pressure.11,33–35 These alterations
are reversible until they reach maximum pressure, commonly
referred to as the ‘threshold pressure’ in the literature.11,33–35

These physical triggers can occur in gas adsorption, gas storage,
and sensing applications.

1.1.1. Temperature-induced exibility. The change in the
zeolite's lattice parameters in response to temperature variation
was the rst to be highlighted in the literature.36–40 The most
prominent example is the work reported for RHO zeolite in
1984.36 The structural exibility of RHO zeolites can be observed
due to changes in temperature, however, the effect of temper-
ature can also be linked to guest molecules (dehydration) and
extra-framework cation behavior. RHO zeolite has shown a unit
cell deformation and, subsequently, a change in its symmetry
from acentric (I�43m) to centric (Im�3m) when heated from 30 to
800 °C and these results were supported by both theoretical and
experimental data (a variation of around 8% in RHO's unit cell
volume – see Fig. 1).37,41–43

Recently, our group observed such changes in the zeolite
RHO's lattice parameter by in situ variable-temperature XRD
measurements and the expansion of the lattice parameter was
also visualized by in situ TEM imaging (Fig. 2) which was
identied due to the temperature-induced oscillations of the
extra-framework Cs+ around their average position.32 Another
example is the encapsulation of Ar and Kr atoms (kinetic
diameters of 3.3 and 3.6 Å, respectively) inside the sodalite
framework with a pore diameter of 2.4 Å.44 Admission of these
gases was only possible because of sodalite's framework exi-
bility at elevated temperatures as it was shown by molecular
dynamics simulations.45 Similar behavior about the exibility of
zeolites at higher temperatures was observed for other zeolite
topologies, e.g. MFI, MEL, and CHA.38,43,46

An expansion of the lattice parameter does not always
happen when the temperature increases. In some zeolitic
frameworks, a contraction of lattice parameters is observed
upon the increase of temperature which is called negative
thermal expansion.47–51 This phenomenon is only observed in
some metal oxides, metal cyanides, polymers, and zeolites. In
zeolites which show negative thermal expansion (e.g. CHA, LTA,
and FAU) upon increasing the temperature, the whole tetra-
hedra SiO4 units rotate inside the zeolite structure reducing the
unit cell volume.19,47,52–54

The temperature-induced zeolite exibility is not limited to
contractions or expansions of the zeolite lattice; changes within
the structure, such as cation movements, are also triggered by
temperature variations.39,40,55,56 For example, when cadmium-
exchanged zeolite RHO (Cd-RHO) is heated up to 300 °C, the
pore-blocking Cd2+ cations relocate from the double eight-ring
to the six-ring site, which are 5.7 Å apart.39 This phenomenon
was also reported for Ba2+ and Sr2+ cations, which migrate from
the single to the double eight-rings of RHO.40 However, for Cd-
RHO it was later found that the migration of the cation was
associated with the removal of water upon increasing the
temperature.57 Another well-known example of cationic
Chem. Sci., 2023, 14, 12430–12446 | 12431
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Fig. 1 (a) In situ variable-temperature XRD scans of nanosized RHO zeolite from 30 to 700 °C and back to 28 °C, (b) plot of the ellipticity of eight-
membered ring opening (in blue) and the lattice parameter (black). The dashed line delineates the adoption of either the acentric (squares) or
centric (diamonds) space groups (reprinted with permission from ref. 43, copyright 2022 American Chemical Society).
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movements triggered by temperature is the potassium-
exchanged CHA zeolite (K-CHA).10 Depending on the tempera-
ture, it is possible for the pores of K-CHA to permit access to
certain guest molecules due to their interactions with the K+

cations; the movement of the K+ cations is described as
a temporary and reversible displacement. Upon decreasing the
temperature the K+ cations go back to their original position in
the middle of CHA main pores (eight-membered rings), block-
ing the access of guest molecules.10 This behavior is very
important for gas storage applications and was observed for
different zeolitic frameworks.55,56,58 Fig. 3 illustrates the effects
of temperature and pressure-induced exibility on zeolites.

1.1.2. Pressure-induced exibility. Zeolites undergo alter-
ations in their lattice parameters when subjected to pressure.
These alterations are reversible until they reach a maximum
pressure, commonly referred to as the “threshold pressure” in
the literature.11,33–35 Beyond the threshold pressure, an irre-
versible change in the zeolite topology occurs reaching
amorphization at high pressures.11,33–35,59 The threshold pres-
sure limit is a distinct quality of zeolite frameworks.11,33,59 The
pressure-induced exibility observed in zeolites is mainly
associated with movements of the rigid tetrahedra around the
shared O atoms that behave like hinges within the framework.60

The channel content, i.e. adsorbed gasses (H2O, CO2, etc.) or
extra-framework cations, govern the compressibility of the
cavities, leading to different degrees of unit cell volume
changes.60 For instance, sodium-exchanged LTA (Na-LTA) and
natural yugawaralite zeolites can exhibit 18.4% and 15%
12432 | Chem. Sci., 2023, 14, 12430–12446
reversible volume changes, respectively, in a non-intrusive
medium at a pressure of up to 10 GPa.61 All zeolites related to
the ANA framework family with initial space groups of Ia�3d, I41/
a, Ia�3d, and I2/a for analcime,62 leucite,63 pollucite,64 and wair-
akite,65 respectively change and converge their symmetry to
triclinic (P�1) under pressures as low as 1.08 GPa followed by
a reduction of their average Si–O–T (T= Al or Si) angle from 150
to 123°.33,66–68 Similar behavior was observed for NAT-type
zeolite with a reduction of its Si–O–T angle from 133 to 119°
under 8.5 GPa.69–71 CHA and MFI zeolites also show 10% and
16% volume variations under pressures of up to 8 GPa,
respectively.11,33 KFI (ZK-5 type zeolite), RHO and SOD frame-
works change their space group symmetry from Im�3m to I4/
mmm, I�43m, and I�43m respectively, under pressure
(Fig. 3).26,42,59,72–76

Both temperature and pressure variations change the energy
level of the zeolite structure thermodynamically (DG, Gibbs free
energy), hence, there is always an energy barrier to see the
aforementioned structural exibilities. Temperature changes
vary the entropic term of Gibbs free energy (DG = DH − TDS).
However, pressure changes are directly correlated with the
Gibbs free energy and unit cell volume as well (DG = VDP). As
a result, these structural exibilities categorized as temperature
and pressure-induced exibility are all of a thermodynamic
nature and the necessary energy barriers for these structural
changes can be estimated via thermodynamic simulations.
More studies are needed to determine these energies.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a and b) High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analysis of the nanosized RHO
submitted to thermal treatment between 200 and 800 °C at different magnifications. Scale bars of 50 and 20 nm for the first and second rows,
respectively. (c) Superimposed micrographs acquired at different temperatures show the volume expansion of the region highlighted by red
color and denoted by t (adopted with permission from ref. 32, copyright 2023 American Chemical Society).
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1.2. Guest-induced exibility

Zeolite exibility can also be observed as a response to guest
molecule adsorption or desorption. This can manifest as
changes in the zeolite lattice parameters (framework dynamics)
© 2023 The Author(s). Published by the Royal Society of Chemistry
or by the relocation of extra-framework cations within zeolite
pores (extra-framework dynamics).9,77,78 Guest-induced exi-
bility is highly interesting for gas separation and storage
applications.
Chem. Sci., 2023, 14, 12430–12446 | 12433
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Fig. 3 Schematic illustration of temperature and pressure-induced, guest-induced, and compositionally-induced flexibility in zeolites (Mn+ and
Nn+ are two arbitrary cations assuming smaller cationic diameter for Mn+ compared to Nn+).
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1.2.1. Framework dynamics. The rst attempts to describe
guest-induced exibility in zeolites were done using molecular
dynamics simulations.79–82 Rigid zeolitic force elds were
dynamically modied using transition state theory to include
lattice exibility, and the results obtained by these models were
in good agreement with experimental data.79–81,83,84 It was shown
that framework exibility in silicalite-1 (MFI-type framework) is
responsible for the adsorption of large molecules such as
isobutane and heptane with inection behavior at high load-
ings,80 while enhanced self-diffusivity at low loadings of short
alkanes (i.e.methane and n-butane) was observed.81 Framework
exibility is also crucial for aromatics adsorption on MFI
zeolite, especially at high pressures.84,85 While the use of rigid
zeolitic models led to the underestimation of the aromatics
adsorption in MFI zeolite by a factor of two,84,85 the use of
exible models to simulate diffusion coefficients of various
alkanes in silicalite-1 zeolite resulted in a convergence of
experimental and theoretical values.86 Recently by using in situ
integrated differential phase contrast scanning transmission
electron microscopy (iDPC-STEM) while adsorbing benzene
molecules on MFI zeolite, Xiong et al. showed that the MFI
structure goes through severe deformations giving another
proof of guest-induced exibility in zeolites (see Fig. 4).87

For the diffusion of small gas molecules such as methane
through AFI and LTL pores, the diffusion coefficients were
calculated and measured at high loadings.79 Calculations of
methane adsorption in LTA zeolites showed that using exible
zeolitic models largely inuences the diffusion coefficients and
it is dependent on the type of extra-framework cations, the
loading of methane in the structure, and the force eld
parameter used for simulations.88 Small-pore ITQ-55 zeolite
12434 | Chem. Sci., 2023, 14, 12430–12446
with a minimal pore aperture diameter of 2.4 Å showed
expansion of this minimal aperture to 3.1 Å, while allowing for
ethylene to be adsorbed. This framework exibility was used for
separation of ethylene from ethane with a selectivity enhanced
by a factor of ∼100.89 Fig. 3 illustrates the guest-induced exi-
bility in zeolites.

Water adsorption on Na-LTA zeolite showed a phase transi-
tion with a small contraction followed by an expansion of the
LTA framework, suggesting a hydration-driven exibility tran-
sition, with a two-phase region separating hydrated zeolite A
from its dehydrated form.90 Moreover, it was also observed that
preferential water adsorption sites are within the beta cages of
zeolite A.91,92 Thus, it was suggested that the diffusion of water
molecules can only be simulated when exible models are
employed.91 Furthermore, the S-shaped water adsorption
isotherms observed in LTA zeolite resemble those found in
another signicant category of porous materials: metal–organic
frameworks (MOFs), known for their remarkable exibility.93,94

This type of S-shaped adsorption behavior in MOFs is linked to
pore expansion induced by adsorbates, which is comparable to
the outcomes observed in various zeolites like LTA.90,95 These
results suggest that zeolites, to varying degrees, may exhibit
similar exibility behavior to MOFs in the presence of guest
molecules.

Na+ form of zeolite PAU, up to 5% unit cell shrinkage was
observed upon dehydration.96 Water adsorption in silicalite-1
showed a transition from monoclinic to orthorhombic and
this behavior was successfully modeled using exible frame-
work parameters during molecular dynamics simulations.97

Similar behavior was recorded for both water and CO2 adsorp-
tion on Na+ and Rb+ forms of gismondine (Na-GIS and Rb-GIS)
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Integrated differential phase contrast scanning transmission electronmicroscopy (iDPC-STEM) images of MFI straight channels (a) before
and (b) after benzene adsorption. MFI structure flexibility is also schematically highlighted (c) before and (d) after benzene adsorption. Scale bar,
500 pm (reprinted with permission from ref. 87, copyright 2022 The American Association for the Advancement of Science).

Fig. 5 Schematic illustration of reversible ellipticity of RHO nanosized zeolites upon dehydration and CO2 adsorption (adopted with permission
from ref. 9, copyright 2020 American Chemical Society).

© 2023 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2023, 14, 12430–12446 | 12435
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where the ellipticity of the empty pores is reduced signicantly
by CO2 and water adsorption to a circular pore shape with up to
14% expansion of the unit cell volume.98 Ni-exchanged zeolite Y
(FAU framework type) undergoes a series of structural rear-
rangements during dehydration from 20 to 400 °C. The Ni2+

cations start migrating towards tightly conned sites when
water molecules desorb, thus a unit cell contraction happens
with a strong deformation of the hexagonal prism of the FAU
framework.99 Similar behavior was also observed for the Na–Y
sample.100 Dehydration of zeolites Na-MER, K-MER, and Cs-
MER also results in 10, 8, and 7% shrinkage of their unit cell
volumes, respectively.101 All these studies suggested a zeolite
framework exibility in the presence of guest molecules. The
most important exibility observed was the 8% variation of the
unit cell volume of RHO zeolite by dehydration, a completely
reversible process aer adsorption of H2O or CO2 molecules
(Fig. 5).9,43,102–106

1.2.2. Extra-framework dynamics. Similar to the cation
relocations within the zeolite framework triggered by tempera-
ture (vide supra), it has been shown in the literature that sorp-
tion of guest molecules can also trigger such cation
movements.9,77,107 The migration of Fe3+ cations inside the FAU
cages aer dehydration was conrmed by electron spin reso-
nance spectroscopy.108 Similarly, the migration of La3+ cations
from the supercages of FAU to small sodalite cages was
observed during dehydration.109 In Li+ and Mg2+ forms of ZK-5
zeolite (KFI framework type), the migration of these cations
from the center of the hexagonal prisms of their structure to the
a-cages was observed aer CO2 adsorption.110 These cation
relocations are known as “cation gating” (also known as “trap-
door behavior”), and they were proposed simultaneously by P.
A. Wright and P. Webley and co-workers in 2012.77,111 It was
shown that the gating movement of cations is responsible for
opening or closing the pore access depending on the nature of
guest molecules.77,111,112 In Na-RHO, migration of the Na+

cations was described and CO2 molecules could pass through
the pores between the a-cages while Na+ cations migrate from
the single eight-membered rings (see Fig. 6a).111 In K-CHA,
however, K+ cations reject or admit the guest molecules based
on their attraction and repulsion towards them and the move-
ment of K+ cations is completely reversible from and to the
single eight-membered rings (see Fig. 6b).6 Based on DFT
calculations, door-keeper cations have to pay an energy penalty
to move away from the center of the pore aperture (thus allows
gas admission) in typical trapdoor zeolites such as Cs-CHA, Na-
RHO, etc.78,104,113 The difficulty of this pore opening process is
reected by the energy barrier associated with the cation
movement path from its most stable position (where it blocks
the entrance of the pore aperture) to the second most stable
position inside the zeolite (where the pore aperture is open).113

The energy difference between these two congurations can
qualitatively feature the actual energy barrier. The presence of
polarizable gas molecules that possess some sort of dipole or
quadrupole interactions with the door-keeper cations such as
CO2 and CO can substantially lower the energy difference,
whereas those non-polar molecules such as N2, CH4, and H2 can
hardly change the energy difference.113 Hence, the polarizable
12436 | Chem. Sci., 2023, 14, 12430–12446
guest molecules (e.g. CO2) induce the door-keeper cations to
move out from the center of the pores of the zeolite and selec-
tively admit CO2 to the CHA or RHO structure while rejecting
nonpolar molecules such as N2 and CH4.3,10,77,112–115 Similar
behavior was observed also for other zeolitic types such as MER
and PAU frameworks.96,101 Another interpretation of the “cation
gating” phenomenon, namely the “swinging door” mechanism
focuses on the thermal motions of door-keeper cations rather
than their movement.116 Based on this interpretation, the
amplitude of the thermal motion of the door-keeper cations is
always large and thus CO2 can squeeze in while the gate is
swinging because of the stronger attraction to the framework
(quadrupole interactions of CO2 and the cations), while
nonpolar guests such as methane cannot.116 The consequence
of the “cation gating” phenomenon, regardless of which inter-
pretation (“trapdoor behavior” or “swinging door” mechanism)
used, is superior selectivity for separation of CO2 from CH4 or
N2 (CO2/CH4 up to 583 and CO2/N2 up to 688 for K-CHA with Si/
Al = 1.9).117 In summary, a large opportunity is available to
design materials for gas separation applications already sug-
gested by many studies.3,10,77,112–115,118 Fig. 6 shows a schematic
illustration of the trapdoor behavior in Cs-CHA proposed by
Shang et al.77
1.3. Compositionally-induced exibility

Compositional changes in zeolites were also shown to play an
important role in framework exibility. Substitution of Si atoms
with Al (framework composition) and the type and content of
extra-framework cations inside the zeolite structure (extra-
framework composition) can also induce signicant changes
in the zeolite lattice parameters. The ability to engineer the pore
diameter and pore shape of zeolites is another important aspect
of zeolite exibility especially for gas separation applications. A
schematic illustration of compositionally-induced exibility in
zeolites is presented in Fig. 3.

1.3.1. Framework composition. Based on computational
studies, it was found that the exibility of LTA zeolite also
depends heavily on the Al content.119 Higher Al amounts result
in longer Al–O bond lengths and more exibility of the Si–O–Al
bridging angles which creates a more open and more exible
framework.119 In our group, we recently showed for a series of
RHO zeolites with different Si/Al ratios and lattice parameters,
that changes to the Al distribution within the nanosized RHO
samples, represented by the shi in the 29Si NMR barycenter,
could be correlated with the CO2 adsorption capacity.120

Changing the Si/Al ratio of RHO from 1.5 to 1.7 resulted in an
increase of the CO2 capacity from 1.37 to 2.01 mmol g−1.120 This
is due to changes in the framework charge distribution, which
play a fundamental role in controlling the CO2 adsorption
capacity and should not be overlooked as the cation distribu-
tion will always be guided by the negative charge distribution
within the framework.120

1.3.2. Extra-framework composition. Another important
factor affecting zeolite exibility is the type and content of the
extra-framework cations. The calcium-exchanged RHO zeolite is
an example: the partial exchange of deuteron cations with
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Schematic illustration of cation gating (a) permanent relocation of Na+ cations, this is a cooperative mechanism by which CO2 molecules
could pass through a window site between a-cages in zeolite Na-Rho proposed by Lozinska et al. (reprinted with permission from ref. 111,
copyright 2012 American Chemical Society). (b) Reversible Cs+ relocations namely trapdoor behavior in Cs-CHA proposed by Shang et al.77

(adopted with permission from ref. 77, copyright 2012 American Chemical Society).
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calcium cations resulted in a 21% decrease in the zeolite's unit
cell volume.121 Depending on the cationic composition, RHO
zeolites have shown signicantly different unit cell volumes,
© 2023 The Author(s). Published by the Royal Society of Chemistry
pore diameters, and pore shapes (see Fig. 7).73,102,122 For
example, the proton form of RHO (H-RHO) shows a circular
pore with a size of 3.9 Å, while a lithium form shows an elliptical
Chem. Sci., 2023, 14, 12430–12446 | 12437
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Fig. 7 Ellipticity of zeolite RHO containing different cations (a) based on experiments and (b) based on simulations (adopted with permission
from ref. 5 and 123, copyright 2015 and 2016 American Chemical Society).

Fig. 8 Maximum changes in the unit cell volume of the most flexible
zeolite structures presented in the literature.5,33,37,41–43,46,61,96,98,101,122,125,126
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pore with a size of 1.9 Å (Fig. 7a);however Si/Al ratios of these
RHO samples are the same.5

Similarly to RHO, different alkali-metal (Li+, Na+, K+, Rb+,
and Cs+)124,125 and alkaline earth metal (Mg2+, Ca2+, Sr2+, and
Ba2+)126 forms of zeolites PST-3 and PST-4 (NAT framework)
show signicantly different pore shapes and sizes with unit cell
volumes ranging from ∼2120 Å3 (for Li-form of natural NAT) to
∼2680 Å3 (for Cs-PST-4). Using different alkali-metal cations, it
is possible to tune the pore opening of different GIS samples
with unit cell volumes of 877, 853, and 851 Å3 for Na-GIS, K-GIS,
and Rb-GIS, respectively.98 Similarly, the unit cell volume of
different alkali-metal forms of MER zeolite can be tuned to
1809, 1823, and 1881 Å3 for Na-MER, K-MER, and Cs-MER,
respectively.101 These changes are due to the tetrahedral tilts
and changes in T–O–T bonds and angles (T = Si or Al). The
extent of these changes is inuenced by the polarizing power of
the extra-framework cations and their interaction with the
negative charge of the framework due to the presence of Al
(Fig. 7b).5

2. Evaluation of the framework
flexibility of zeolites

Amajor effort was made by Sartbaeva and co-workers to identify
and explain exibility in zeolites.127 They have analyzed the
geometry of the structural polyhedra in 14 pure silica zeolite
structures determining a exibility window explained by the
coulombic ination: a repulsion between close oxygen atoms
that appeared to play a role in stabilizing the open frameworks
of zeolites when dehydrated.127,128 The exibility index is dened
as the ratio of the maximum over the minimum feasible
framework densities for a particular framework type (rmax/
rmin).128,129 It has been tabulated for most of the known zeolite
framework types but remains a limited descriptor of actual
framework exibility because most framework types can be
folded along multiple paths starting from the maximum
symmetry point, which occurs very oen at the minimum
framework density.129 Furthermore, real zeolite materials tend
to occupy the low-density end of the exibility window, so
12438 | Chem. Sci., 2023, 14, 12430–12446
exibility behavior at higher densities may not play a key role in
determining exibility.129 In addition, to compare the exibility
of different zeolitic frameworks with each other (both pure
silica and aluminosilicates), and perhaps to other porous
materials like metal organic frameworks (MOFs), a quantitative
parameter is missing in the literature. To illustrate that, Fig. 8
shows the maximum changes in the unit cell volume observed
for the most exible structures found in the literature. Based on
Fig. 8, the changes in the unit cell volume upon different ex-
ibility triggers can be as signicant as 20%, which once more
proves the importance of understanding exibility as a way to
design smart materials for selective separation or catalysis in
porous materials. However, standard protocols are missing in
the literature to be able to quantify exibility in zeolites and
compare them with other porous materials. Perhaps, perform-
ing in situ powder X-ray diffraction (XRD) measurements at
different temperatures would be sufficient to explore the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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temperature-induced exibility of different zeolites. XRD
patterns of dehydrated forms of different zeolites with variable
compositions (mainly their Si/Al ratios and extra-framework
cationic contents) could be used to study compositionally-
induced exibility. However, to study the guest-induced exi-
bility, the immediate challenge is whether the probe molecule is
a non-polarizable molecule such as N2 or Ar or a polarizable one
such as CO2. If a non-polarizable probe molecule is selected,
some parts of guest-induced exibility related to the cation
gating effect will be hindered. On the other hand, the selection
of polarizable probe molecules may interfere with
compositionally-induced exibility due to the dynamics of
cations inside the zeolite structure. Additional work is required
to establish a protocol for the experimental evaluation of zeolite
exibility. This is of great importance as it will substantially
help in designing smart materials for selective gas separation or
catalytic applications.
2.1. Challenges in the characterization of exibility

To establish rigid protocols for the evaluation of zeolite exi-
bility using different in situ spectroscopic techniques can be
considered as a solution to probe zeolites' atomic order.
Temperature-induced exibility can be assessed using in situ
XRD measurements at different temperatures (e.g. from 25 to
800 °C) followed by lattice parameter evaluations by Le Bail and
Rietveld renement. Similar procedures have been reported for
RHO zeolite.43 Pressure-induced exibility can be measured by
in situ XRD when applying a non-intrusive pressure (e.g. up to 15
GPa); this has also been reported for several zeolites including
LTA, ANA, etc.33,61–63,65

The biggest challenge is to quantify guest-induced exibility.
The guest-induced exibility can manifest both in the form of
changes in zeolites' lattice parameters or by a dynamic move-
ment of extra-framework cations within the zeolite structure.
Both these phenomena oen happen simultaneously and they
are intertwined. As a result, their quantication is not a trivial
task. To tackle this issue, the use of in situ spectroscopic tech-
niques can be considered. In situ XRD measurements can be
considered while different gas molecules are adsorbed on the
zeolite samples. Conterosito and co-workers reported CO2 and
Xe adsorption in FAU zeolite followed by in situ XRD thus
enabling estimation of the lattice parameters and location of
extra-framework cations during adsorption and desorption
processes.130 The in situ XRD under adsorption of gases can be
coupled with DFT calculations and machine learning
approaches in order to provide information concerning the
necessary energies for extra-framework cation relocations.
Additionally, in situ solid-state NMR while adsorbing guest
molecules can be of importance to clarify the atomic order that
contributes to the guest-induced exibility.131 Recently, Ilkaeva
and co-workers developed a method to follow CO2 adsorption
using in situ solid-state NMR which shed light on different CO2

chemisorbed species on SBA-15.132 In situ FTIR while adsorbing
guest molecules also illustrates the atomic orders especially
those of the silanol sites.131,133 As a result, combining all these in
situ techniques (i.e. XRD, NMR, and FTIR), while adsorbing
© 2023 The Author(s). Published by the Royal Society of Chemistry
guest molecules, can help to solve the intertwined dynamics
between the zeolite framework and extra-framework cations.

For the compositionally-induced exibility due to the
framework's T-site composition, we propose to consider lattice
parameters of all silica zeolites of any particular framework as
the reference in the future. Thus, the exibility can be compared
to all silica zeolites when Al is replacing the Si and the Si/Al ratio
varies. The use of NMR spectroscopy may give insights into the
distortion of the framework due to the inclusion of Al tetrahedra
by monitoring changes in the quadrupolar coupling constants
of 27Al and 17O nuclei but also the chemical shis of 29Si nuclei.
For the compositionally-induced exibility due to the extra-
framework cation compositions, the proton form (H-form) of
zeolites can be considered as a reference and different cationic
forms can be compared to the proton form of zeolites at
a constant Si/Al ratio. The framework distortions can be exam-
ined by conducting Rietveld renement of the XRD patterns and
by monitoring the framework's vibrational bands through
Raman spectroscopy. This terminology was used to estimate the
changes in unit cell volume of several zeolites (GIS, RHO, NAT,
and MER) presented in Fig. 8. Signicantly more detailed
studies are needed to explore zeolite exibility; however,
understanding exibility in zeolites can open a new avenue for
zeolite utilizations.
2.2. Emerging applications related to the exibility of
zeolites

The concept of inducing and controlling exibility in zeolites
can be utilized in different applications. The most prominent
one is the bulk separation and purication of small gas mole-
cules such as gas drying (H2O removal), CO2 separation from N2

in ue gas, CO2 separation from CH4 in landll gas separation
or bio-methane upgrading, CO2 separation in dilute streams for
direct air capture, etc. The main advantage of using exible
zeolites for gas separation is the ability to ne-tune the zeolite
pore aperture (size and shape) due to compositionally-induced
exibility by using various extra-framework cations. This has
been illustrated for zeolite RHO.5 In addition, thanks to guest-
induced exibility (extra-framework dynamics – cation gating
phenomenon), superior selectivity was observed towards any
non-neutral gas molecules such as H2O (polar) and CO2

(polarizable molecule – quadrupole moments).3,77,78 These
separations are important since enormous efforts have been
dedicated to developing materials for carbon capture and
storage since the rising concentration of CO2 is contributing to
the current anthropogenic global climate change.

In addition, gas storage of CH4, CO2, O2, H2, etc. is of
signicant importance. Storage of these small gas molecules is
extremely hard and can be achieved only at very high-pressures
and low-temperatures. Thanks to guest-induced exibility
(extra-framework dynamics), it is possible to selectively admit
and store specic gas species at pressures and temperatures
near ambient conditions. One example is the storage of CH4

and H2 in CHA zeolite as reported by Li et al.10 The additional
advantage of using exible zeolite for gas storage is the
controlled release of the guest molecules under ambient
Chem. Sci., 2023, 14, 12430–12446 | 12439
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conditions (e.g. CH4) which is much safer compared to the
traditional gas storage inside high-pressure vessels (usually
between 50 and 200 bars); the encapsulation and release of CH4

gas molecules inside K-CHA zeolite were reported as well by Li
et al.10 Another example of controlled guest molecule release is
in biological applications where FAU zeolites were used to
deliver O2 as well as other necessary drugs to cancer cells.134,135

Finally, exible zeolites are also suitable candidates for
sensing applications as it was reported before.136–138 Wales et al.
demonstrated that zeolites hold great promise for various
sensing applications, as discussed in their work.139 In this
prospective review, we have highlighted zeolites such as FAU,
MFI, MOR, and others, showcasing their remarkable exi-
bility.139 This underscores the idea that understanding various
aspects of zeolite exibility can also contribute to sensing
applications. Another important class of porous materials used
as gas adsorbents or sensors, which exhibit structural exibility,
is MOFs.140–143 However, zeolites offer advantages in terms of
greater chemical and thermal stability (some zeolites can
withstand temperatures up to 1200 °C compared to 500 °C for
MOF-related zeolitic imidazolates139), environmentally-friendly
synthesis methods, and ease of integration into smaller
devices such as sensors. This perspective is further supported
by the work of Wales et al., who reviewed zeolitic and MOF-
based sensors for automotive applications and found that
approximately 62% of these sensors were zeolite-based, while
38% were MOF-based.139

Zeolites can no longer be considered exclusively as rigid
materials. Based on calculations, all zeolitic frameworks can
theoretically show different degrees of exibility.26–28 Flexibility
in zeolites can be dened as a reversible framework deforma-
tion (expansion/contraction) or a dynamic of extra-framework
cations, an intrinsic property of zeolitic frameworks due to
the spring-like behavior of Si–O and Al–O bonds and the
distortion of Si–O–Al and Si–O–Si angles as a response to an
external trigger such as gas adsorption/desorption or a change
in temperature or pressure. Based on these different triggers, we
categorized zeolite exibility into three categories: (1) temper-
ature and pressure-induced exibility, (2) guest-induced exi-
bility, and (3) compositionally-induced exibility. Evaluation of
zeolite exibility is another challenge which can be solved by
combining in situ spectroscopic techniques (XRD, FTIR, and
NMR), gas adsorption measurements, high resolution micros-
copy, DFT calculations, and machine learning techniques.
Understanding and quantifying zeolite exibility can open
a new avenue for applications such as gas separation, gas
storage, drug delivery, sensing applications, etc.

3. Conclusions and outlook

In this perspective article, the origin of zeolite exibility is
revealed based on the understanding of spring-like features of
Si–O and Al–O bonds and the distortion of Si–O–Al and Si–O–Si
angles as a response to an external trigger. Different aspects of
zeolites' exibility were presented including themain triggers of
zeolite exibility identied as temperature and pressure, guest-
molecules, and composition variations. By tuning the
12440 | Chem. Sci., 2023, 14, 12430–12446
temperature and zeolite composition, one can tune the size and
shape of zeolite pores. Guest molecule chemistry can also be
used to design smart zeolites to capture/separate targeted
molecules. The zeolite exibility can be either at the unit cell
level (changes in the lattice parameters) or at the atomic level
(relocation of extra-framework cations within the zeolite).
Further studies are necessary to develop experimental methods
to quantify, normalize and compare the exibility of different
zeolite frameworks and perhaps for other porous materials. By
gaining a deep understanding of zeolite exibility, we can
manipulate and control zeolite adsorption and separation
properties. Moreover, this newfound ability opens up exciting
possibilities for diverse applications, such as drug delivery and
sensing. In drug delivery, the exible nature of zeolites can be
exploited to design innovative carriers that respond to specic
stimuli, releasing therapeutic agents precisely when and where
needed. Similarly, in sensing applications, zeolite exibility can
be leveraged to create advanced sensor materials with improved
sensitivity and selectivity. These sensors can detect and quantify
various substances, ranging from gases and liquids to biomol-
ecules, enabling their application in environmental monitoring,
healthcare, and other industries. Overall, the growing under-
standing of zeolite exibility opens up a vast array of emerging
applications in diverse elds.
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