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chemistry. Here we showcase a new class of building blocks, 2,5-disubstituted bicyclo[2.1.1]hexanes that

can act as rigidified cis-, or trans-1,3-disubstituted cyclopentanes, common motifs in drugs. The scalable

DOI: 10.1039/d35c02695g

rsc.li/chemical-science cycloaddition reactions.

Introduction

Conformational rigidification is an established strategy in
medicinal chemistry to improve affinity, selectivity, and meta-
bolic stability of a parent drug molecule by presenting defined
exit vectors." As such, many bicyclic and polycyclic scaffolds
have been designed that fulfill these features. Small rings such
as, cyclobutane and cyclopropane moieties have also been
extensively employed in medicinal chemistry due to their rigid
structure.”

A recent analysis of the most common rings found in drugs
ranked cyclopentane as the 18th most common.* However,
cyclopentane is flexible due to facile interconversion between
the half-chair and envelope conformations. Despite consider-
able progress in the conformational restriction strategy,' rigid-
ification of cyclopentane rings has not seen significant
development.

Among substituted cyclopentane rings, 1,3-disubstitution is
particularly common. These structures have appeared in
numerous patents and journals (Fig. 1A). Furthermore, 3-oxo-
cyclopentanecarboxylic acid is a popular building block for the
synthesis of various 1,3-disubstituted cyclopentanes (Fig. 1A
and B).* Cognizant of the commonality of these structures, we
sought to develop a rigidified 1,3-disubstituted cyclopentane
variant in the form of a 2,5-disubtituted-bicyclo[2.1.1]hexane
(Fig. 1C). In the case of syn-1,3-disubstituted cyclopentanes,
rigidification can allow for disfavored conformations to be
adopted (Fig. 1C). For anti-1,3-disubstituted cyclopentanes,
which are conformationally flexible, the bicyclo[2.1.1]hexane
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synthesis of these structures was enabled through the use of C-H functionalization logic and

analog can lock the conformation (Fig. 1C). In each case the exit
vectors between the cyclopentane and bicyclo[2.1.1]hexane are
similar (Fig. 1C).

Recent studies involving bicyclo[2.1.1]hexanes have focused
on 1,2/1,5-disubstituted variants, which are not appropriate for
rigidification of 1,3-disubstituted cyclopentanes.*® The required
2,5-substitution pattern has only been prepared in low yields
(Fig. 1D).” In addition, synthesis of this substitution pattern is
challenging as four stereoisomers is possible. In this manu-
script, we address these challenges though development of
efficient routes for 2,5-disubstituted bicyclo[2.1.1]hexanes
synthesis and diastereoselective further functionalization
(Fig. 1D).

The most common method for synthesizing bicyclo[2.1.1]
hexanes is a crossed [2 + 2]-cycloaddition reaction.** However,
the synthesis of bicyclo[2.1.1]hexanes via crossed [2 + 2] cyclo-
addition is limited to preparing structures with a bridgehead
substituents.” Our interest is to establish a route that can
incorporate two functional handles so that the target can be
easily manipulated for rapid incorporation into drug molecules.
In an orthogonal approach, we also envisioned that C-H func-
tionalization logic could be applied to substitute the bridging
positions of a mono substituted bicyclo[2.1.1]hexane.® Thus,
two distinct strategies are presented to allow for the synthesis of
diverse syn- and anti-2,5-disubstituted bicyclo[2.1.1]hexanes by
either [2 + 2] cycloaddition or C-H functionalization (Fig. 1E).

Results and discussion

To gain access to a wide array of bicyclo[2.1.1]hexane molecular
diversity, a crossed [2 + 2]-cycloaddition strategy was pursued
(Scheme 1A). Several substrate classes (3-6) were examined
under both direct excitation as well as sensitized with ITX (i-
prthioxanthone) as shown in Scheme 1B. It was found that
judicious positioning of the substituents and oxidation state
was necessary as only substrate 6 under direct irradiation

© 2023 The Author(s). Published by the Royal Society of Chemistry
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underwent cycloaddition (see the SIT for more details).® The
reaction likely proceeds via excitation of the ketone (I) to the S;
(n-7c*) followed by rapid intersystem crossing (ISC) to the T; (7-
m *) (II). 1,5-radical addition to the alkene results in the
formation of III, which upon ISC and radical recombination
results in the formation of the products. The observed diaster-
oselectivity is likely the result of positioning of the R-group away
from the bridging methylene hydrogen that projects over the
four-membered ring.

With this knowledge in hand the synthesis of bifunctional
bicyclo[2.1.1]hexane building block was pursued (Scheme 1C).
Allylic/homoallylic alcohol 9 could be readily prepared from
butadiene oxide via a three-step one pot procedure.'® Subse-
quent oxidation with DMP and exposure to 365 nm LEDs
allowed for a crossed [2 + 2]-cycloaddition to occur to generate
10 in 70% yield and 2:1 dr. Thus in only two steps, bicyclo
[2.1.1]hexane 9, with two functional group handles, could be
easily prepared on multi gram scale.™

Furthermore, the scope could be expanded to allow for
diverse product formation (products 11-17, Scheme 1C). The
products were generally formed in ~3: 1 dr. The approach was
tolerant of both aryl (product 11), heteroaryl (products 12-14)
and alkyl substitution (products 15-17). However, in some
cases, the heteroaryl starting materials underwent polymeriza-
tion under the photochemical conditions (e.g., thiophene),
which resulted in lower yield.

The silyl ether product 10 was found to be particularly useful
as deprotection oxidation led to the formation of readily sepa-
rable aldehydes 18 and 19 (Scheme 2). Oxidation to the corre-
sponding acids allowed for synthesis of useful building blocks
20 and 21, which are rigidified variants of the common building
block 4. These keto/acid building blocks could be easily elabo-
rated to various compounds. For example, esterification and
olefination results in the formation of 27. Alternatively, amide
bond formation followed by addition of NaBH, or PhMgBr
results in 24 and 25, respectively. In addition, reductive ami-
nation can be carried out to provide 26. This intermediate can
be useful in the construction of rigid peptidomimetics." In all
cases involving the ketone, the products were generated as
single observable diastereomers by nucleophilic attack from the
convex face of the bicyclo[2.1.1]hexane. In addition, bicyclo
[2.1.1] hexenes 29-31 could be prepared by cross coupling of
a generated enol phosphate 28. It should be emphasized that
synthesis of bicyclo[2.1.1]-hexenes is challenging and finds little
precedent.”

To further underscore the significance of the rigidified
building blocks, a case study was explored (Scheme 2C). FAS
inhibitor BI 99179 (6a) is a syn-1,3-substituted cyclopentane.**
The likely preferred conformation is that in which the two
substituents are diequatorial. However, an important question
to ask is if the diaxial conformation 6b is biologically relevant
either in an induced fit scenario,” or results in off target
complications. Probing this hypothesis would be challenging
with access to only the parent compound. Here, the bicyclo
[2.1.1]hexane variant 32 can be prepared and used to address
this question. Future studies will focus on comparative biolog-
ical studies.
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Scheme 2 Building block synthesis and reactions.

To explore the C-H functionalization approach towards 2,5-
disubstituted bicyclo[2.1.1]-hexanes, a suitable precursor was
needed (Scheme 3). It was envisioned that carboxylic acid 34 could
serve as an appropriate starting material. This intermediate was
easily prepared on gram scale in 5:1 dr from norbornanone by
application of a photochemical Wolff rearrangement of diazo-
ketone 33 (Scheme 3)."® Two key factors were crucial to realize the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 3 Synthesis of bicyclo[2.1.1]hexane carboxylic acid.

synthesis of gram quantities of product and make this approach
a viable synthetic strategy accessible to most chemists: (1) use of
commercially available, safe, and inexpensive dodecylbenzene-
sulfonylazide, and (2) the application of the photochemical Wolff
rearrangement in flow. Finally, to demonstrate that the carboxylic
acid 34 is a useful building block, the conversion to amide (35),
carbamate (36), and alcohol (37) functional groups were easily
accomplished. All of these substituents are of high relevance to
medicinal chemists.

With access to gram quantities of 34, C-H functionalization
was explored. The first successful strategy is illustrated in
Scheme 4. Pioneering work from Daugulis and Yu have
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demonstrated the utility of the 8-aminoisoquinoline (AQ) for
directed Pd-catalyzed C-H functionalization."” This system
could be used to convert 38 to aryl bicyclo[2.1.1]hexanes with
good control of diastereoselectivity (structure 39 confirmed by
X-ray). The y-selectivity of the reaction is likely the result posi-
tioning of the Pd-complex in IV close the C-H bond. Reaction at
the B-site does not occur since the C-H bond is tertiary and
orthogonal to the amide. A brief survey of substrates demon-
strated tolerance to electron-rich (product 39b), electron-poor
(product 39d), and heterocyclic aryl iodides (products 39e,f).
Notably, while the starting material was a 5:1 mixture of dia-
stereomers, the products were formed in >20: 1 dr. At this stage
it is not clear if the minor diastereomer decomposes or
undergoes epimerization under the rection conditions. The
relative stereochemistry was determined by X-ray crystallog-
raphy analysis (Scheme 4). Next, the removal of 8-amino-
quinoline was attempted. Under basic hydrolysis conditions,
the carboxylic acid undergoes epimerization to deliver ther-
modynamically favored product 40. Whereas when the hydro-
lysis was conducted under acidic conditions, the relative
configuration of the acid moiety was retained 41.*

Alternative strategies that do not use directing groups were
also explored. It was discovered that irradiation of ester 42 (5: 1
dr) with UVB (350 nm) in the presence of oxalyl chloride led to
formation of acid chloride 43 with complete stereocontrol for
the newly formed C-C bond (Scheme 5).* The generated acid
chloride (43) could be intercepted with various alcohols or
amines to provide products 44a-d. While the starting ester was
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a 5:1 mixture of diastereomers, the products resulting from the
minor diastereomer could generally be separated by simple
column chromatography. In addition, redox active ester 44d
could also be generated and subjected to decarboxylative cross
coupling to provide access to 45 as a single observable diaste-
reomer.”® Notably, this route offers a strategy to synthesize the
other diastereomer than the one shown in Scheme 4.

The reaction likely proceeds by initial generation of chlorine
radical by irradiation of oxalyl chloride by UV light." Chlorine
radical then abstracts the indicated hydrogen to generate VI.
The selectivity in the reaction can be rationalized in that chlo-
rine radical reacts with the weakest C-H bond. The bonds
proximal to the ester are deactivated, whereas the methylene
CH, are stronger by virtue of a strain induced rehybridization.**
Finally, capture of the secondary radical by oxalyl chloride
generates the product and chlorine radical to propagate the
chain.

Conclusions

In summary, an approach towards the rigidification of medici-
nally relevant 1,3-disubstituted cyclopentanes with 2,5-disub-
stituted bicyclo[2.1.1]hexanes is presented. To prepare the
desired structures, two distinct strategies were devised. One
involving [2 + 2]-cycloaddition that allowed for the synthesis of
keto-acid building blocks. Whereas a C-H functionalization
strategy allowed for incorporation of aryl and carboxyl groups
with control of stereochemistry. Overall, a diverse range of
molecular architectures can be prepared that constitute an
enrichment of the toolbox of drug designers and medicinal
chemists.
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