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Electrochemical nitrite (NO2
−) reduction can yield value-added ammonia (NH3) while removing NO2

− as

an environmental pollutant in wastewater; however, it involves a six-electron transfer process and requires

highly efficient and selective electrocatalysts. In this study, we report high-efficiency electrosynthesis of

NH3 via NO2
− reduction enabled by an Ag nanoparticle-decorated TiO2 nanoribbon array on a titanium

plate (Ag@TiO2/TP). When tested in 0.1 M NaOH containing 0.1 M NO2
−, such Ag@TiO2/TP shows a large

NH3 yield of 514.3 μmol h−1 cm−2 and a high faradaic efficiency of 96.4% at −0.5 V vs. a reversible hydro-

gen electrode. Significantly, it also demonstrates excellent durability for 12 h electrolysis.

Ammonia (NH3) is widely applied to manufacture nitrogen fertili-
zers, explosives, chemical products, etc., and it is also considered
as an attractive hydrogen carrier and zero-carbon fuel.1–3

Although the Haber–Bosch method realizes industrial NH3 syn-
thesis from hydrogen and nitrogen under high temperature and
high pressure, this process is highly energy-intensive and emits a
mass of greenhouse gases.4 Electrochemical nitrogen reduction
is thus deemed as a potential alternative to the Haber–Bosch
process for ambient NH3 synthesis, although the competitive
hydrogen evolution reaction and unsatisfactory adsorption and
cleavage effects of N2 severely hinder the selectivity and activity of
the electrochemical nitrogen reduction reaction.5–14

NH3 synthesis via electrochemical nitrite (NO2
−) reduction,

in contrast, needs lower energy to cleave the NvO bond with
faster reaction kinetics and achieves higher reaction substrate
concentrations, leading to a larger NH3 yield and higher fara-
daic efficiency (FE).1,15,16 In addition, excess NO2

− accumu-
lated in groundwater could destroy the ecological balance and
harm human health.17 Electrochemical conversion of waste
NO2

− can produce value-added NH3 under ambient conditions

and simultaneously remove NO2
−, which provides a solution

for restoring the imbalance in the global nitrogen cycle.
However, the electrochemical NO2

− reduction reaction
(NO2

−RR) involves a complex six-electron pathway with various
possible by-products (N2H4, N2, and H2), thus requiring highly
active catalysts for selective NO2

−-to-NH3 conversion.
18–27

Noble metal (Au,28 Pd,28,29 Ru,30 Ir,31 Pt32)-based catalysts
are active for the NO2

−RR, but their scarcity hinders large-scale
applications. Compared with the above noble metals, Ag is
relatively low in price and high in abundance, and it also per-
forms efficiently in NO2

− reduction electrocatalysis.33 As an
Earth-abundant transition metal oxide with high chemical and
structural stability, TiO2 is widely used as a support to load
noble metal nanoparticles for catalysis applications.34–39 Our
recent studies also suggest that it is active for the NO2

−RR and
its activity can be enhanced by introducing oxygen vacancies40

and P doping.41 We believe that TiO2 could be an ideal
support for Ag nanoparticles for an enhanced NO2

−-to-NH3

conversion performance with much less usage of noble
metals, which, however, has not been reported to date.

In this study, we constructed an Ag nanoparticle-decorated
TiO2 nanoribbon array on a titanium plate (Ag@TiO2/TP) as a
highly selective NO2

−RR catalyst for NH3 synthesis. When
tested in NO2

−-containing solution, Ag@TiO2/TP is capable of
delivering a large NH3 yield of 514.3 μmol h−1 cm−2 with a
high FE of 96.4% at −0.5 V vs. a reversible hydrogen electrode
(RHE). Furthermore, Ag@TiO2/TP exhibits robust stability for
long-term electrolysis.

As shown in Fig. 1a, Ag@TiO2/TP was synthesized through
a hydrothermal method in an alkaline solution, Ag+ exchange,
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and an annealing process under an Ar/H2 atmosphere (see the
ESI† for details). Fig. 1b depicts the X-ray diffraction (XRD)
pattern of Ag@TiO2/TP. The diffraction peaks at 38.15°, 44.30°,
64.43°, and 77.50° correspond to the (111), (200), (220), and
(311) lattice planes of Ag, respectively (JCPDS No. 04-0783),33

while the other diffraction peaks can be assigned to metallic
Ti (JCPDS No. 44-1294) and TiO2 (JCPDS No. 21-1272), and
these are in accordance with those for TiO2/TP (Fig. S1†). As
depicted in Fig. S2 and S3,† the scanning electron microscopy
(SEM) images show that the TiO2 nanoribbon array was grown
on TP. With regard to Ag@TiO2/TP, plenty of nanoparticles are
decorated on the surface of the TiO2 nanoribbon (Fig. 1c and
d). Additionally, the SEM image and corresponding energy-dis-
persive X-ray (EDX) elemental mapping images of Ag@TiO2/TP
confirm the existence of Ag, Ti, and O elements with a homo-
geneous distribution (Fig. 1e). Furthermore, the result of the
EDX spectrum confirms that the Ag content in Ag@TiO2/TP is
approximately 13.63% (Fig. S4†). The transmission electron
microscopy (TEM) image also provides evidence of the for-
mation of a large number of nanoparticles without agglomera-
tion on the nanoribbon, as shown in Fig. 1f. A high-resolution
TEM (HRTEM) image taken from one such nanoparticle dis-
plays a lattice spacing of 0.236 nm indexed to the (111) plane
of Ag (Fig. 1g). All these observations confirm the successful
fabrication of an Ag nanoparticle-decorated TiO2 nanoribbon
array.

The X-ray photoelectron spectroscopy (XPS) survey spectrum
(Fig. 2a) also shows the presence of Ag, O, and Ti elements.
The Ag 3d region spectrum (Fig. 2b) is divided into two peaks
at 368.28 and 374.28 eV, which are ascribed to Ag 3d5/2 and Ag
3d3/2, respectively.

42,43 In the Ti 2p spectrum, two fitting peaks
at 459.38 and 465.08 eV are assigned to Ti 2p3/2 and Ti 2p1/2,
respectively (Fig. 2c).44,45 In addition, two fitting peaks in the
O 1s spectrum are attributed to metal–oxygen bonds (M–O,

530.78 eV) and adsorbed surface hydroxyl groups (M–OH,
533.18 eV) (Fig. 2d).42,45

The electrochemical experiments of Ag@TiO2/TP, Ag/TP, and
TiO2/TP toward the NO2

−RR were implemented in Ar-saturated
NO2

−-free and NO2
−-containing 0.1 M NaOH electrolytes. UV–

vis spectra and related calibration curves are depicted in Fig. S5
and S6.† Linear scanning voltammetry (LSV) of Ag@TiO2/TP
was firstly conducted. Obviously, a markedly enhanced current
density ( j ) emerges upon the addition of NO2

− (Fig. 3a), verify-
ing that Ag@TiO2/TP enables efficient NO2

− reduction. In com-
parison, Ag/TP and TiO2/TP display lower j with NO2

−-contain-
ing electrolytes (Fig. S7†), confirming that the electrocatalytic
NO2

−RR activity of Ag@TiO2/TP is superior to those of Ag/TP

Fig. 1 (a) Schematic illustration of the fabrication process of Ag@TiO2/
TP. (b) XRD pattern and (c) and (d) SEM images of Ag@TiO2/TP. (e) SEM
and corresponding elemental mapping images of Ag@TiO2/TP. (f ) TEM
and (g) HRTEM images of Ag@TiO2.

Fig. 2 (a) XPS survey spectrum, and high resolution XPS spectra in the
(b) Ag 3d, (c) Ti 2p, and (d) O 1s regions of Ag@TiO2.

Fig. 3 (a) LSV curves of Ag@TiO2/TP in 0.1 M NaOH with/without 0.1 M
NO2

−. (b) UV–vis spectra of Ag@TiO2/TP at various potentials. (c) NH3

yields and FEs of Ag@TiO2/TP at various potentials. (d) Comparison of
NH3 yields and FEs of Ag@TiO2/TP, TiO2/TP, and Ag/TP at −0.5 V.
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and TiO2/TP. Chronoamperometry (CA) measurements at given
potentials (from −0.2 V to −0.7 V) were then executed to study
the NH3-generation ability of Ag@TiO2/TP (Fig. S8†), where the
peak intensity of the relevant UV–vis spectra strengthens with
an increase in the given potential (Fig. 3b), manifesting that a
more negative potential results in more NH3. Furthermore, we
evaluated NH3 FEs and yields of Ag@TiO2/TP in test windows
(Fig. 3c). Noticeably, as the cathode potential negatively shifts,
the NH3 yields of Ag@TiO2/TP progressively increase, and even-
tually the largest value of 846.3 μmol h−1 cm−2 (14 387.1 μg h−1

cm−2) at −0.7 V is obtained. Furthermore, the maximum FE of
NH3 production is 96.4% at −0.5 V with an NH3 yield of
514.3 μmol h−1 cm−2 (8743.1 μg h−1 cm−2), confirming an excel-
lent NO2

−RR electrocatalyst. The NH3 yields and FEs of
Ag@TiO2/TP exceed those of most reported NO2

−RR electrocata-
lysts (Table S1†). As shown in Fig. 3d, Ag@TiO2/TP exhibits a
much better performance than Ag/TP (77.38%, 228.5 μmol h−1

cm−2) and TiO2/TP (70.8%, 190.9 μmol h−1 cm−2).
The NO2

− reduction process of Ag@TiO2/TP was further
assessed by quantifying various by-products (N2H4, H2, and
N2). As exhibited in Fig. S9,† no N2H4 signals were monitored
as was proved by identical UV–vis absorption spectral peaks at
different potentials. Meanwhile, traces of H2 and N2 were
detected (Fig. 4a) with the maximal H2 and N2 yields being
2.82 μmol h−1 cm−2 and 1.85 μmol h−1 cm−2, with FEs of 4.9%
and 1.42%, respectively, much lower than that of NH3 at every

potential, verifying the superb selectivity of such Ag@TiO2/TP
electrocatalysts for NH3 synthesis. Furthermore, the partial
current densities ( jpartial) of Ag@TiO2/TP for NH3 reach
−122.1 mA cm−2 at −0.7 V, clearly higher than that of H2

(−4.1 mA cm−2) and N2 (−1.04 mA cm−2) (Fig. 4b), again
proving great NO2

−RR selectivity towards NH3 electrosynthesis.
Control experiments were then performed to determine
whether the synthesized NH3 just comes from the NO2

−RR on
Ag@TiO2/TP. It is clearly seen that the amounts of NH3 gener-
ated after 1 h of electrolysis in a blank solution (0.29 μg) and
open circuit potential (OCP, 0.66 μg) are extremely small
(Fig. S10†), which excludes possible interference factors from
the electrolytic solution and device.

Six alternative-cycle measurements were then carried out in
NO2

−-free/NO2
−-containing electrolytes at −0.5 V, and NH3

only is generated in NO2
−-containing electrolytes (Fig. 4c),

demonstrating that NH3 just originates from NO2
− via the

NO2
−RR on Ag@TiO2/TP. Additionally, stability is an extremely

important parameter of the NO2
−RR process for NH3 synthesis.

We thus implemented a 12 h electrolysis test, as displayed in
Fig. 4d, and the Ag@TiO2/TP electrode maintained an initial j
of nearly 100% with almost no fluctuation, confirming the
excellent tolerance of our catalyst. Furthermore, we carried out
8 consecutive measurements on Ag@TiO2/TP at −0.5 V, and
the volatility of NH3 yields and FEs was negligible, again
proving the durability of Ag@TiO2/TP (Fig. 4e and S11†),
which is also in good accordance with the LSV curve
(Fig. S12†), XRD pattern (Fig. S13†), and SEM images
(Fig. S14†) of Ag@TiO2/TP after long-term electrolysis. These
results suggest that Ag@TiO2/TP has excellent stability for the
electrocatalytic reduction of NO2

− to NH3.
In summary, a Ag nanoparticle-decorated TiO2 nanoribbon

array is proved to be an efficient and stable NO2
−RR catalyst

for NO2
−-to-NH3 conversion in an alkaline electrolyte, produ-

cing a remarkable NH3 yield of 8743.1 μg h−1 cm−2 with a
large FE of 96.4%. This study not only offers a highly selective
electrocatalyst for ambient NH3 synthesis via NO2

− reduction,
but also opens up a new avenue to construct a nanostructured
Ag/TiO2 hybrid array for applications.
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