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Carbon-based transition metal (TM) single-atom catalysts (SACs) have shown great potential toward
electrochemical water splitting and H, production. Given that two-dimensional (2D) materials are widely
exploited for sustainable energy conversion and storage applications, the optimization of SACs with
respect to diverse 2D materials is of importance. Herein, using density functional theory (DFT) and
machine learning (ML) approaches, we highlight a new perspective for the rational design of TM-SACs.
We have tuned the electronic properties of ~364 rationally designed catalysts by embedding 3d/4d/5d
TM single atoms in diverse substrates including g-CsN4, -conjugated polymer, pyridinic graphene, and
hexagonal boron nitride with single and double vacancy defects each with a mono- or dual-type non-
metal (B, N, and P) doped configuration. In ML analysis, we use various types of electronic, geometric
and thermodynamic descriptors and demonstrate that our model identifies stable and high-performance
HER electrocatalysts. From the DFT results, we found 20 highly promising candidates which exhibit
excellent HER activities (|AGu+| = 0.1 eV). Remarkably, Pd@B,, Ru@N,C,, Pt@B,N, Fe@Ns Fe@Ps,
Mn@P,4 and Fe@P, show practically near thermo-neutral binding energies (|AGw+| = 0.01-0.02 eV). This
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small overpotentials for the HER.*** Meanwhile, considerable
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1. Introduction

To reduce fossil fuel consumption and mitigate global warm-
ing, tremendous attention has been paid to hydrogen as
a renewable fuel."” Water electrolysis is regarded as an ideal
approach for high-purity hydrogen generation, which is of
great significance for global clean energy deployment and
ecological environmental protection.>® The key aspect to
promote this technology is the development of inexpensive,
stable and high-performance electrocatalysts.®” Platinum (Pt)
based catalysts have been most practical and efficient for the
hydrogen evolution reaction (HER), however, the practical
implementations for electrochemical hydrogen production
have been thwarted by high cost and natural scarcity of Pt.
Recently, for cost-effective and highly active electrocatalysts it
has been suggested to utilize ultra-low loading of precious
metals such as Pt, Ru, Rh, Pd and Ir as SACs which show very
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efforts are being made to search for new cost-effective, stable
and active non-noble metal electrocatalysts to replace these
precious noble metals.***® Recently, a vast number of different
classes of materials have emerged in the field of electro-
catalysis, such as metal carbides,"”*° nitrides,>> phos-
phides,* and two dimensional (2D) material families including
metal oxides,”*” layered double hydroxides (LDHs),>*** gra-
phene,**** MZXenes,*** phosphorene,® graphitic carbon
nitride (g-C3N,)***” and TM dichalcogenides (TMDs).***° These
diverse types of materials have been widely exploited for
various electrocatalytic applications, and indeed have shown
impressive electrocatalytic activities towards the HER,***!
oxygen evolution/reduction reaction (OER/ORR)>>30#2-44
nitrogen reduction reaction (NRR),**** carbon dioxide reduc-
tion reaction (CO,RR)* ammonia oxidation reaction (AOR),*®
etc. Among these heterogeneous material classes, graphene-
supported TM-SACs have gained considerable attention due
to their well-defined atomically dispersed active sites and
tunable electrocatalytic properties. The electronic properties
and durability of TM-SACs can be controlled by the modifica-
tion of the coordination environment and the formation of
particular types of vacancies on the surface.”* In principle, by
tuning these two parameters, the HER performance of these
materials can be substantially improved. Extensive work has
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been done on series of different non-metal (B, N, P, and S)
doped TM-SACs with various metal-nonmetal configurations,
which have shown great potential towards multifunctional
electrocatalytic applications.**** Also, significant efforts have
been devoted to identifying 2D materials beyond graphene that
offer a greater degree of tunability and excellent conductivity.
For example, Galeotti et al. successfully fabricated a two-
dimensional m-conjugated polymer (2DCP) with kagome
lattices in the mesoscale order.>® The 2DCP exhibited excellent
stability with a tunable bandgap and high carrier mobility.
Given these advantages, we also sought to consider 2DCP.
Theoretical exploration of key insights is advantageous for
promoting experimental development of new high-
performance HER catalysts.*>**® Recently, the ML approach
has shown immense potential to accelerate the discovery of
energy materials®>®® and electrocatalysts. Various geometric
and electronic descriptors have been proposed to guide the
design and screening of catalyst properties, such as Coulomb
matrix,** bag of bonds (BOB),” smooth overlap of atomic
positions (SOAP),* adsorption free energy d-band center,* etc.
Recently, Jager et al. predicted the hydrogen adsorption free
energies on various nanoclusters by using SOAP, many-body
tensor representation (MBTR), and atom-centered symmetry
function (ACSF) descriptors.® To this end, substantial interest
has been devoted to developing such descriptors which can be
directly employed to design and screen catalysts without per-
forming extensive DFT calculations.

Herein, we adopted a stepwise screening strategy and
investigated the stability and activity of several experimentally
feasible 2D structures for H, production. By DFT calculations
we screened over 364 catalysts, and out of these we found that
20 catalysts exhibit excellent stabilities and near-zero over-
potentials. Based on the thermodynamic stability energy (Estap)
and dissolution potential (Uy;ss), we further classified the cata-
lysts into four different groups and assessed their HER activi-
ties. For the ML study, we initially considered basic
physicochemical properties as possible features to train various
ML models. In order to recognize the intrinsic factors that
govern the stability and activities, we further employed the
subsequent equation learning method using the sure inde-
pendence screening and sparsifying operator (SISSO) approach
(see ESI Note 27).°® The top-ranked SISSO generated descriptors
were further passed to the feature selection step. By using the
step forward feature selection method, we carefully evaluated
the feature importance and reserved only the most relevant
features in the database for the catalytic performance predic-
tion. Our identified descriptors and systematic screening
strategy provide a stepping stone toward designing durable and
high-performance electrocatalysts.

2. Computational methods

DFT calculations were carried out by using the Vienna ab initio
simulation package (VASP)*” with the projector augmented wave
(PAW) method.®® We set a kinetic energy cutoff of 500 eV for
plane-wave expansion of the electronic wave function. The
exchange-correlation interaction was treated by the Perdew-
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Burke-Ernzerhof (PBE) functional within the generalized
gradient approximation (GGA).*”® For geometry optimization
we use a 3 x 3 x 1 Monkhorst-Pack k-point grid, however,
a denser 7 x 7 x 1 k-point grid was chosen for electronic
structure calculations. A vacuum of 15 A along the z-axis was set
throughout all the calculations to avoid interactions between
repeated images. The energy and force convergence criteria
were set to 10 ° eV and 0.01 eV A, respectively. Given that the
HER reaction intermediate adsorption/desorption is a surface
phenomenon, the effect of the van der Waals (vdW) interaction
was accounted for by applying the Tkatchenko-Sheffler (TS)
dispersion correction method.” The solvation effect was taken
into account by using the pure implicit solvent model as
implemented in VASPsol.”” In order to evaluate the HER activ-
ities we utilized different active sites and calculated the differ-
ential hydrogen adsorption Gibbs free energies by using the
computational hydrogen electrode (CHE) model developed by
Norskov et al.:”

AGH* = AEnH* + AEnH*(ZPE) —TAS +eU+ pH X kBT X 111(10)(1)

where AEy« represents the electronic energy difference between
the catalytic surfaces with and without adsorbates, and
AEy«zpg) and TAS are the changes in the zero-point energy
(ZPE) and the entropic energy, respectively, of the reaction at
room temperature. U is the electrode potential, which is refer-
enced to be 0 V in the CHE model such that the protons and
electrons are in equilibrium with the gas-phase of H, under
standard conditions (temperature 7 = 298.15 K, pressure P = 1
bar, and pH = 0). The last term is the free energy correction at
a finite pH. The H-adsorption energy was calculated by using
the following equation:

n

MEe = By — E— 3

En, (2)
where E,;;+ and Ex are the total energies of the catalyst with and
without adsorbed nH atoms (n = 1 except for n = 2 for Kubo's
form), respectively, and Ey, is the total energy of an isolated H,
gas molecule. AEpg) is calculated by using the following
equation:

n
AE,y+zpe) = Emn+zre) — Exzpg) — EEHZ(ZPE) (3)

where E,y«zpr) and Exzpg) are ZPEs of the adsorbed nH atoms
and the pristine surface, respectively, and the ZPE of an isolated
H, molecule is represented as Ex(zpr)-

The AS is obtained from

n

AS = — ZSHZ (4)
The theoretical overpotential n7*® is given by
AG *
nHER _ | eH | (5)

To compare the HER performance of promising candidates,
we calculated the exchange current densities (i,) by utilizing
free energy values at pH = 0.

This journal is © The Royal Society of Chemistry 2022
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1
o —ekom for AGH* =0
o = e(-AGi+ /K T) (6)
—kg—————— for AGy+ > 0

°7 1 e(-AGy+/KsT)
Here, k, and Ky represent the rate constant and Boltzmann
constant, respectively. We set k, as unity for calculating
exchange current values.”

Furthermore, in our ML analysis, we employed various ML
classification and regression models to classify the structural
stabilities and to predict HER activities. To estimate the model
performance, we employed the Monte-Carlo cross-validation
method.” The data samples were randomly split 100 times
into different training and test sets with 8 : 2 split ratios and the
weight-averaged prediction errors were presented for each ML
model.

3. Results and discussion
3.1 Structural stability

In spite of exhibiting excellent electrocatalytic activities, the
practical applications rely strongly on the long-lasting stability/
durability of catalysts. Using DFT calculations, we first investi-
gated the thermodynamic and electrochemical stabilities of
~364 rationally designed catalysts by using a combination of 28
(3d/4d/5d) transition metal (TM) atoms with 13 kinds of
experimentally available substrates (C,, Ny, Bj, N,C,, B,C,,
B,N,, 2DCP, g-C;3N,, h-B,N,, h-BN, Cs, N3 and B3). Fig. 1 and Fig.
S3 and S47 present all the geometrical structures we used in this
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study. In order to obtain the TM binding strength, we calculated
the embedding energies (E.mp) by using the following equation:

Eerib = Etva@surf — Esurr — ETm (7)

where Ery@sure and Egy,r are the TM embedded surface and the
defected (single or double vacancy) surface, respectively, and
Ery is the energy of an isolated TM single atom. The DFT
optimized geometries revealed that embedding TM may form
an in- or out-plane configuration depending on the atomic
radius of TM and the coordinating non-metal atoms. For
example, most of the phosphorous doped optimized geometries
revealed that the embedded TM and surface non-metal atoms
are protruded from the planar surface, forming a distorted final
geometry (Fig. S4t), and so we ruled out such unstable systems
in our further studies. However, among 3d, 4d and 5d TMs, the
elements of Ti, Cr, Mn, Fe, Co, Ni, Ru, Rh, Pd, Ir and Pt form the
planar geometric configurations in double vacancy structures.
Moreover, in all the single vacancy structures the TM atom is
protruded out of the planar geometry. Compared with double
vacancy systems the weak Ee,, values in single vacancy struc-
tures indicate that these are more liable to form aggregates.
Overall, Fe, Co, Ni, Rh, Pd, Ir and Pt are relatively more stabi-
lized in single and double vacancy structures. Moreover, their
negative embedding energy values indicate that the TM atom is
bound onto the surface strongly enough to avoid the metal
diffusion, and hence it could suppress the metal aggregation or
nanoparticle (NP) formation. We further calculated the ther-
modynamic stability energies (Eg.p) by considering the metal

Fig.1 Proposed 2D materials with TM embedded at various defect sites. (a) g-CsN4 (b) 2DCP (c) graphene with one C defect site (d) graphene
with two C defects site (e) h-BN with one B defect site (f) h-B,N, with one B and one N defects site. The labeled sites (x;—x4) in light gray color in
(c) and (d) represent the non-metal (B, N, P) doping sites in single and dual type doping fashion. Color code: metal, magenta; B, light pink; N, blue;

C, gray; O, red; H, cyan).

This journal is © The Royal Society of Chemistry 2022
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bulk cohesive energies. The E.,p, is defined as the difference
between E.,, and metal bulk cohesive energies (E_con =
—Econ), opted from the previous study*? (Eseap = Eemb — E_con)-
The calculated E.,,, and E.p, values are presented in Tables S1
and S2.7 The Eg,p is considered to be a good descriptor to
govern the thermodynamic stabilities of catalysts. The negative
Eap values indicate that TM embedding is preferred over metal
clustering/aggregation. The electrochemical stabilities are
investigated in terms of the dissolution potential (Ugiss),”®””
which is defined as

Usiss = Udiss(bulk metal) stab /1€ (8)

The U;iss(bulk metal) A0 7 represent the standard dissolution
potential of the bulk TM and the number of electrons involved
in dissolution, respectively. The materials with Ug;ss > 0 vs. the
standard hydrogen electrode (SHE) are regarded to be electro-
chemically stable. The exact Uy;ss values are listed in Table S3.t
A catalyst with Egp < 0 and Ugiss > 0 is considered to be ther-
modynamically and electrochemically stable. According to our
defined stability criteria, we grouped all the catalysts into four
classes (G': unaggregatable and indissoluble, G*: aggregatable
and indissoluble, G*: unaggregatable and dissoluble, G*:
aggregatable and dissoluble) depicted in Fig. 2 and Table S4. It
is worth noting that most of the experimentally synthesized
catalysts are falling into our stability evaluation criteria, which
suggests the reliability and feasibility of our approach. The
computed Eg,p and Ug;ss values reveal that the substrates such
as Cy, Ny, N,C,, 2DCP, h-BN, h-B,N, and C; are good supports to
form single atom moieties. Generally, the early TM-SACs such
as Sc, Ti, Cr, V, Y, Zr, Nb, Hf and Ta are more likely to be
stabilized thermodynamically (E., < 0), however, their negative
Uaiss values indicate that these catalysts are electrochemically
unstable under acidic conditions. We found that, particularly,
the 3d-TMs including Mn, Fe, Co, Ni and Cu in double vacancy
sites have planar structures with strong metal-support interac-
tions and exhibit excellent stabilities. Among 4d- and 5d-TMs,
the elements of Ru, Rh, Pd, Ir and Pt display superior
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thermodynamic and electrochemical stabilities on all the
surfaces studied here. To further check the dynamic stability of
single and double vacancy systems, we performed the DFT-
based ab initio molecular dynamics (AIMD) simulations at 500
K by using the Nose-Hoover thermostat method” and also
sparse Gaussian process regression (SGPR)™* machine-
learning DFT potential/force based AIMD simulations which
reproduced the DFT-based AIMD simulation results in a much
faster manner which can be readily extended to other metal
cases using universal potential generation. Fig. S57 illustrates
that during the AIMD simulations the energy and temperature
remain within a small range, indicating the stability of these
structures. Our identified mono- and dual-type non-metal
doped TM-SACs hold outstanding promise for synthesis.

3.2 HER activity and the reaction mechanism

Under standard conditions, the HER may go through two
possible mechanistic pathways involving the hydrogen adsorp-
tion in the first step through the Volmer reaction (H" +e~ — H*
where the asterisk denotes an adsorbed state), and in the
second step the H, desorption takes place through either the
Heyrovsky reaction (H* + H' + e~ — H,) or the Tafel reaction
pathway (2H* — H,) (Fig. 3a). For an ideal HER electrocatalyst,
the Sabatier principle suggests a thermoneutral binding
condition ie. |AGy+| = 0 of hydrogen adsorption,® since too
strong or too weak H-adsorption would decrease the overall
reaction rate. In order to establish a definite structure-activity
relationship, we utilized different active sites and estimated the
H-binding strength (AEy~+) over a wide range of 2D materials
(Fig. S3 and S4t). We found that in most of the double vacancy
systems H atoms preferentially get adsorbed at the bond edge
site (i.e. M-X, X = C, B, N). In the cases of Co/Ni/Cu/Pd/Ag/Pt/Au
at C,4, Cr/Fe/Co/Ni at B4, Ni/Rh/Pd/Pt at N,C,, Mn/Co/Ni/Cu/Pd/
Pt at B,C,, Co/Ni/Cu/Pd/Pt at B,N, and Mn/Fe/Co/Ni/Cu/Zn/Rh/
Pd/Ag/Ir/Pt/Au at h-B,N, templates, the active site is shared by
metal and surface non-metal atoms. In contrast, hydrogen
tends to bind at a metal site in all the single vacancy systems.
For better understanding of structural properties, we calculated

Sc Ti V CrMnFeCoNiCuZn Y Zr NbMo Tc RuRhPdAgCd Hf Ta W ReOs Ir Pt Au

Fig. 2 Stability classification of proposed 2D surfaces based on TM embedding over metal bulk cohesive energies (Egap) and electrochemical
dissolution potential (Ugiss) Values (Tables S2 and S3t). Four different classes (GY/G?/G3/G* of stabilities are represented with (blue/yellow/
orange/brown color) [G': unaggregatable and indissoluble, G*: aggregatable and indissoluble, G*: unaggregatable and dissoluble, G* aggre-

gatable and dissoluble].

6682 | J Mater. Chem. A, 2022, 10, 6679-6689

This journal is © The Royal Society of Chemistry 2022


https://doi.org/10.1039/d1ta09878k

Published on 02 Uinora 2022. Downloaded on 29.10.2025 19:17:15.

Paper
(a) solvated H*
! Wl
! Y
H, e7/ W \ HY, / W\
Yodd Volmer c.,“{ Volmer 4.;“{
]‘ Heyrovsky Tafel QP
N\ g g A
2 e s 26
1 H*, e H,
®) o0
P:@Bsz'd@B" @rd@20cP
—~ -0.5 Fe@Cy gl Ru@N;C
5 S
4 O 3
< g Piac, A T gtes
=7 0+ 2 @ coanc,
c‘»o‘ Fe@h-BN," $ rh@s.c,
S 5 - P@N,C, PA@HEN ",
@ Fe@nan,
TI@N,C,
-2.0 T T T T T -
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
AG- (eV)
Fig. 3

View Article Online

Journal of Materials Chemistry A

—
O
~

N
o
]

Heyrovsky
h 1.91 eV
S‘ 1.04 Volmer P 4046 eV
o 1. g
T ] 0.32eV " 0.26 eV
g 0.0+ S /
o | 2H+ + 2 =" — H2
o e (9
9 _1 .o_ —_—
w + — *
b 1H" +1e” +1H
-2.0-
(d) Reaction coordinate
2.4 Tafel
- Volmer 1.62eV
< 0.77 eV Hi VR RY
© 1.2 Volmer = 049eV {i 083eV
5 1 0.32eV
$ {oH + 27 ~047eV | Hz (q)
0 -1.2 >
n TH e+ H"
7 2H
2.4

Reaction coordinate

— Pd@N,C, — W@N,C, — Pt@N,C,

(a) Schematic representation for the mechanisms and reaction pathways of electrocatalytic reaction cycles over different proposed 2D

surfaces. (b) HER volcano plot for the promising electrocatalysts. The exchange current density plotted versus the calculated free energy of H-
adsorption. Free energy diagram for the (c) Volmer—Heyrovsky and (d) Volmer—Tafel route on Pd@N,C; (blue color), W@N,C, (red color) and

Pt@N,C; (green color) surfaces.

the metal to hydrogen bond distance (@™ ™) and the angle (™~
M) between adsorbed hydrogen (H) on a TM atom (M) and H
on its first coordinating nearest neighbor non-metal atom (Y) of
the 2D support (Tables S6, S7 and Fig. S6, S7t). Compared with
the metal top site, we found that H-adsorption at the bond edge
site exhibits a shorter bond distance (@™ ™) with a smaller bond
angle (o™ ™), which is also obvious from their optimal AEy=
values (Table S87).

In order to determine the HER activities, we calculated
hydrogen adsorption Gibbs free energies and HER overpotentials
(n™FR) for each system and considered the condition of |AGys|
= 0.1 eV as a descriptor. Relative to an ideal HER electrocatalyst
such as Pt, we compared the HER free energy values of undoped
systems with those of their mono- and dual-type non-metal
doped templates. The computed AGy« values are listed in
Table S9t and their relative HER activities are presented in HER
free energy diagrams shown in Fig. S8-512.F To find the high-
performance catalysts we plot the volcano curve for the exchange
current density (i,) as a function of AGy+ values (Fig. 3b). We have
found promising durable catalysts with excellent HER activities
(i.e. |AGu+| = 0.1 eV) (Table S107), such as Rh(—0.04) at C,,
Rh(0.05)/Pd(0.01) at B,, Ti(—0.10)/Co(0.06)/Ru(—0.02)/Pt(—0.08)
at N,C,, Rh(0.07)/Pd(—0.03) at B,C,, Pd(—0.10)/Pt(—0.02) at B,N,,
Fe(—0.02)/Co(—0.04)/Rh(—0.03)/Pt(—0.05) at Cs, Fe(—0.08)/
Pd(0.07)/1r(0.03) at h-BN and Pd(0.03) at 2DCP. In particular,
Pd@B,, Pt@B,N,, PA@2DCP and Ru@N,C, have almost ther-
moneutral H-adsorption Gibbs free energies and are located
around the top of the volcano plot.

This journal is © The Royal Society of Chemistry 2022

For getting deep insight into the kinetic aspects of the
reaction mechanism, we investigated various TM-SACs and
calculated the energy barriers for three elementary reaction
steps (Volmer step, Heyrovsky step, and Tafel step) of the HER.
By using the climbing-image nudged elastic band (CI-NEB)
method, we interpolated seven images between the initial and
final states. Herein, we presented the HER mechanism over
Pd@N,C,, W@N,C, and Pt@N,C, surfaces. Fig. 3a demon-
strates the mechanism for each reaction step involved in the
HER. Initially, in the Volmer step, we considered a layer of three
water molecules over these surfaces along with one hydronium
ion (H;0"). The solvated proton®* from the water layer is
transferred to the surface and is favorably adsorbed at the Pd-C
bond edge site with an activation barrier of 0.32 eV, while
W@N,C, having metal top as the most active site for the HER
shows a barrierless first Volmer reaction step. Similarly,
Pt@N,C, having the Pt-C bond edge as the most active site for
H adsorption exhibits a barrierless first Volmer reaction step.

In the second step, the hydrogen evolution takes place either
by the Heyrovsky or Tafel reaction mechanism. In the Heyrovsky
reaction pathway, the solvated proton from the water layer
reacts with the adsorbed H atom to form molecular H,, while in
the Tafel reaction pathway the two adsorbed H-atoms next to
each other react to form a H, molecule. Fig. 3c and d present the
activation barriers and free energy values of Volmer-Heyrovsky
and Volmer-Tafel reaction steps for H, evolution. The calcu-
lated energy barriers indicate that after adsorption of the first H-
atom, both the second Volmer step and the Heyrovsky reaction
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step compete with each other to accomplish the HER process. A
precise probing of the local atomistic structure revealed that the
adsorbed hydrogen may form a Kubas** type stable dihydrogen
complex® which may change the overall kinetics of the reaction.
We found that on Pd@N,C, and Pt@N,C, surfaces the second
H-atom is adsorbed at the Pd-C and Pt-C bond edge sites in the
trans-form. Their first and second adsorbed H-atoms are sepa-
rated by 3.21 A and 2.13 A, which exhibit large activation
barriers of 1.62 eV and 0.83 eV, respectively, indicating that the
H, formation through the Tafel reaction pathway is not favor-
able. In contrast, the W@N,C, catalyst favors the Volmer-Tafel
reaction pathway with an activation barrier of 1.15 eV due to the
favored direct migration of adsorbed H-atoms to form molec-
ular H,. These results indicate that the accelerated HER Kinetics
is tightly associated with the coordination geometry of the
active site and the spatial alignment of reaction intermediates,
which intimately govern the overall HER performance of
catalysts.

3.3 Machine learning modelling

ML is becoming more popular for the semi-automated and
quantitative discovery of data correlations in chemistry and
materials science.*>*¢>%>8* Although many data-driven strate-
gies are being successfully utilized in heterogeneous catal-
ysis,””® ML still remains at an early stage due to numerous
underexplored material data for water electrocatalysis. We
adopted a stepwise multistage screening strategy for discov-
ering promising electrocatalysts with enhanced HER activities.
We employed different ML classification and regression models
for the prediction of Eg.p, Ugiss and HER differential Gibbs free
energies. Fig. S21 demonstrates our stepwise feature selection
strategy and ML protocol for training, testing and validation of
different ML models used in this work.

3.3.1 Intrinsic descriptors. A core challenge in ML is to
effectively encode the material structure into unique and useful
representations which can be learned by the ML model for the
prediction of the desired target. In order to identify the correct
structure-activity relationship, we constructed various descrip-
tors which provide unique fingerprints for predicting stabilities
and activities of catalysts. Inspired by previous studies,*>*** we
consider four classes of feature sets (Table S127) including (a)
twelve elemental features from periodic table properties, (b)
eight features based on the coordination type and surface
composition, (c) five top-ranked SISSO generated features (see
ESI Note 2 and Table S11t), and (d) four DFT derived features.
Additionally, we use a Coulomb matrix as a descriptor which
requires a set of nuclear charges (Z; and Z;) and the corre-
sponding Cartesian coordinates (7;, and ;) as inputs for repre-
senting geometric structures, given by the following eqn (9):

0.5Z** for (i=j)

/ ZZZ 9
My J for (i = j) ()

=)

Being a local descriptor, cmy; facilitates the comparison of
chemical environments around adsorption sites within
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a certain cutoff radius (r.u). To be constrained specifically on
the metal site and its neighboring non-metal active sites we
calculated cmy at three cutoff radii (3, 4 and 5 A). As the
Coulomb matrix is symmetric with off-diagonal elements cor-
responding to the Coulomb repulsion between atoms 7 and j,
while diagonal elements correspond to a polynomial fit of
atomic self-energies to nuclear charges, we considered nine
Coulomb matrix elements from the upper triangular part of the
total-sorted elements within a 4 A (optimum) 7. For training
our ML models we adopted a stepwise feature selection strategy
by taking into account feature-feature correlation and feature
importance (Fig. S131) which are calculated by using the Pear-
son correlation coefficient and mutual information method,
respectively (Fig. 4a and b). Low-ranked features with high
feature-feature correlation values (>0.6) are removed from our
feature set, and after preprocessing, the final features were
imported for training different ML models.

3.3.2 ML prediction of catalyst stabilities and HER activi-
ties. We performed ML classification prior to regression, and for
training our ML classification model we took the Coulomb
matrix element (given in eqn (9)) with labeled site representa-
tion as discussed in our previous work (for detail see ESI Note
11).*> By learning the structure-stability relationship of initially
computed ~364 mono- and dual type non-metal doped cata-
lysts, we constructed a ML classification model that successfully
classified the catalysts based on Eg,, and Ug;ss values. Out of
twelve different ML classification models, the ERT-Extremely
Randomized Trees classifier showed the best ROC-AUC scores
of 0.87 and 0.93 for the prediction of Eg,, and Uy;ss, respectively,
showing good capability of classification (Fig. 4c and S14f).
After successfully training and validating our classification
model, we generated ~140 novel structures with different non-
metal doped configurations and predicted their stabilities
through our trained ML model (see Fig. S15f). Out of 140
systems, only 41 candidates passed the stability criteria and we
found that our model predicted most of the mono- and dual-
type phosphorous doped P,C,, P,B,, P,N, and B,Nj structures
into an unstable class. We further performed DFT calculations
for a few cases and found distorted geometries (Fig. S16+) with
stability values out of the bound space (i.e. Egap < 0 and Ugjss > 0)
and hence we excluded such systems from our dataset before
proceeding to the next screening step. The next section
describes how we constructed the ML regression model and
performed the prediction analysis for HER activities of these 41
stable candidates.

After classifying all the catalysts into stable and unstable
classes, in the second step we constructed a ML regression
model for the prediction of HER activities. It is worth noting
that our input properties for training the ML regression model
are ideally available and require only one step calculation of H-
adsorbed geometry optimization. For learning the structure-
activity relationship we characterized the local atomic and
electronic environment of active sites by using various elec-
tronic and structural descriptors in combination with the
elemental feature set from periodic table properties. Unlike the
classification problem, here we used the Coulomb matrix (cm;;)
descriptor based on DFT-optimized geometries. For training

This journal is © The Royal Society of Chemistry 2022
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Fig. 4 ML analysis for prediction of durable high performing electrocatalysts. (a) The heatmap of Pearson correlation coefficient matrix among
the selected 21 features/descriptors (see Tables S11 and S121). The intensity of colors represents the direct correlation (E: H-adsorption/free
energy). (b) The most important features ranking predicted by mutual information (MI) method. (c) Receiver operating characteristic (ROC) curve
for ERT-classifier and the corresponding area under the curve (AUC) for classification of Egap and Ugiss. The mean ROC is calculated among
curves for 100 random splits into the training and validation sets for predicting the thermodynamic and electrochemical stabilities. (d)
Comparison of DFT computed AGy=« values with those of predicted by CatBoost regression model, while the inset of histograms denotes the

values calculated by our DFT workflow.

our ML regression model we used a DFT-fitted model with a set
of total 21 features, including 6 elemental features (Z: atomic
number, r..,: covalent radius, x: Pauling electronegativity, mp:
melting point, r,: radius of the last occupied valence orbital, and
f4: unpaired d-electrons), 4 DFT-derived features (d: average
distance from TM to four nearest coordinating atoms, ¢: angle
between adsorbed hydrogen on TM and the sorted first nearest
surface non-metal atom, &"°: highest-occupied Kohn-Sham
eigenvalue and ¢": lowest-unoccupied Kohn-Sham eigenvalue),
2 SISSO generated features (s, and & s;3) and 9 Coulomb matrix
elements (cm; through cmy). The features presented in Fig. 4a
and b are the ones that we finally imported to train different ML
regression models. The root-mean-square error (RMSE) and the
coefficient of determination values (R?) for each model are
demonstrated in Fig. S17.f Among the nine different ML
regression models which we tested for prediction of HER
activities, the CatBoost regression model exhibited the highest

This journal is © The Royal Society of Chemistry 2022

accuracy with 0.18 eV RMSE and 0.88 R* score. Fig. 4d demon-
strates an obvious linear relationship in the whole data set,
indicating that the predicted results of the CatBoost regression
model are in good agreement with DFT-calculated data. In order
to examine the accuracy of our model, we conducted more
predictions on 41 stable candidates (see Fig. S15 and S18t). The
model predicted that Sc@P3;, Fe@P3, Zr@P3, Au@P;, Cr@P,,
Mn@P,, Fe@P,, Nb@P,, Mo@P,, Ru@P, and Ir@P, are high
performance HER electrocatalysts. We further performed DFT
calculations for these candidates and compared the results with
the ML predicted values (see Table S141). The small mean
square error (0.012 eV) demonstrates the great reliability of our
model. To encode the significance of the ML model and inter-
pret the contribution of each feature/descriptor, we adopt the
analysis framework of SHAP (Shapley Additive exPlanation).*®
The SHAP values provide a deep insight into the prediction
results. We computed the SHAP values and mean absolute
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SHAP values for each feature/descriptor, which are presented in
Fig. S19.7 It is worth noting that the features & em,, s, and ¢
have the highest mean absolute SHAP values and these features
are considered to be more critical in the model and have great
impact on the prediction results. The feature values of ¢, cm,
and s, show a negative correlation with the SHAP values, while ¢
shows a positive correlation with the SHAP values. The mean
absolute SHAP values for cm-, cmg, cmy and Z demonstrate that
these features have the lowest impact on the prediction
performance of the model. However, we observed that removal
of any single feature from the set of 21 selected features
decreases the overall prediction performance. Therefore, it is

(a)

Energy

PDOS after PDOS of
catalyst-hydrogen Hydrogen adsorbate
interaction

PDOS of catalyst
active center
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important to keep all these features for the future prediction
analysis of high performance HER catalysts.

3.3.3 Deciphering the structure-activity relationship.
Given that the structural stability and catalytic activities are
mainly correlated with the surface electronic structure proper-
ties and d-band level of TMs, we calculated the local charge
distribution and density of states (DOS) near the Fermi level to
probe the surface-adsorbate interaction. Fig. 5a illustrates the
schematics for H-adsorption on the catalytic surface. Generally,
during the HER reaction, the proton from the electrolyte solu-
tion interacts with the active site on the catalyst surface and
their hybridized states split into bonding (¢) and anti-bonding

A

| \v{\ \\M",\,,w,—\w ﬂ' !
\‘V

J

PDOS (a.u)

f

N 1\_} YAVia\m o o1

N AR
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Fig. 5 Correlation between electronic structure and electrochemical properties. (a) Schematic diagram of orbital hybridization of catalyst and
HER reaction intermediates. Er is the Fermi level of the substrate, ¢ and ¢* indicate bonding and anti-bonding states, respectively. (b) Isosurfaces
of differential charge density distribution for chemisorbed H atom on (Ti/Co/Rh/Pd) N,C, systems. The charge depletion and accumulation are
depicted as cyan and yellow colors, respectively. The isosurface value is 0.003 e A=3. (c) d-Band center, total and projected density of states

(PDOS) for (d) pristine and (e) H-adsorbed (Ti/Co/Rh/Pd) N,C, systems.
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states (0*) across the Fermi level. The fully occupied bonding
states and empty or partially filled anti-bonding states usually
represent the optimal structural stability, however, the excellent
catalytic activity may arise from free electrons near the Fermi
level. From our DFT calculated results, we found that most of
the structures with a low spin state demonstrated good stabil-
ities, and so we compared the computed spin state values for
each converged configuration before and after H-adsorption,
which are listed in Table S5.1 In order to quantitatively esti-
mate the charge transfer between adsorbed H and the catalyst
surface, we carried out the Bader charge analysis. Herein, as an
example, we considered Ti/Co/Rh and Pd embedded in the N,C,
moiety, each structure exhibiting a different kind of H-adsorbed
optimized configuration, i.e. [Ti: slightly pop-up structure with
H at the metal top, Co: planar structure with H at the metal top,
Rh: slightly pop-up structure with H at the Rh-C bond edge site
and Pd: planar structure with H at the Pd-C bond edge site]. The
Bader charge profile revealed that an intermediate value of
charge transfer from surface — H (0.52 e”) in the Ti@N,C,
system resulted in an optimal H-adsorption strength with an
exothermic adsorption free energy value (AGy+ = —0.10 eV),
while the Co@N,C, system showed a very little charge transfer
(0.04 e”) from surface — H and exhibited a weak H-adsorption
strength with an endothermic adsorption free energy value
(AGy+ = 0.06 eV). Similarly, Rh@N,C, also exhibited a very
small charge transfer (0.06 e”) from surface — H with an
exothermic adsorption free energy value (AGy+ = —0.15 €V).
Remarkably, Pd@N,C, showed H — surface charge transfer
(0.10 e7) and exhibited a relatively poor HER activity (AGy+ =
—0.37 eV). Fig. 5b and S207 display the isosurfaces of differen-
tial charge density distribution (Ap = py+ — px — pu), where the
p+ and py+ represent the charge densities of pure and H-
adsorbed surfaces, respectively, while py indicates the charge
density of adsorbed hydrogen atoms. To gain deep insight into
the catalytic activity we calculated the d-band center (&4) and
PDOS before and after H adsorption, which are presented in
Fig. 5¢c, d and e, respectively. As indicated in Fig. 5c, the d-band
center (¢4) of TI@N,C, is located at 0.44 eV relative to the Fermi
level, while downshifts of —0.51, —1.70 and —1.58 eV from the
Fermi level are observed for Co@N,C,, Rh@N,C, and Pd@N,C,
systems, respectively. As can be seen from Fig. 5c-e, the d-states
are more localized near the Fermi level for Ti@N,C, and
Co@N,C, systems, implying the strong hybridization between
the H-s orbital and Ti/Co d,» orbitals, and these structures
showed the metal top as an optimal binding site for H-
adsorption. However, for the cases of Rh@N,C, and Pd@N,C,
surfaces the d-band center (eq) is located far away from the
Fermi level. Hence, the major orbital hybridization in these
systems occurs between the H-s orbital and C-p orbitals,
rendering the M-C bond edge site more active for H adsorption
on Rh@N,C, and PA@N,C, structures, which is also obvious in
Fig. 5b that the H is adsorbed at the M-C bond edge site with an
oblique angle of ZH-Rh-C 61.4° and ZH-Pd-C 30.5° at
Rh@N,C, and PA@N,C, structures, respectively. These findings
suggest that the distinctive charge transfer behavior facilitates
the HER activity.

This journal is © The Royal Society of Chemistry 2022
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4. Conclusion

In summary, by means of the DFT combined ML framework, we
demonstrated that mono- or dual-type non-metal (B, N & P)
doping in a proper choice of support (g-C3;N,, 2DCP, graphene
and hexagonal boron nitride) can substantially enhance the
HER activity and stability. In order to unveil the structure-
activity relationship, we constructed various kinds of electronic
and geometric descriptors which work universally for these
systems. Our descriptors for prediction of stabilities are easily
accessible and exclusively based on elemental properties,
however for the prediction of HER activities we used the H-
adsorbed converged geometry for creating Coulomb matrix
elements. Besides this we also employed a SISSO method to
create more feature space. Based on our ML analysis we found
that ERT-Extremely Randomized Trees classifier showed the
best ROC-AUC scores of 0.87 and 0.93 for the prediction of Eg,p,
and Uy, respectively, while the CatBoost regression model
predicted the HER activities with a minimum test RMSE of
0.18 eV and 0.88 R> score. Moreover, through our DFT analysis
we elucidated the potential dependence of the coordination
environment and charge transfer behavior on activation energy
values of different reaction mechanisms of the HER. Out of
~364 catalysts, we found 20 most promising catalysts which
exhibited excellent stabilities and superior activities toward the
HER. Particularly, Pd@B;, Ru@N,C,, Pd@B,C,, Pt@B,N,,
Ir@h-BN, Fe@C;z;, Rh@C;, and Pd@2DCP and ML-recom-
mended systems Fe@P;, Mn@P, and Fe@P, exhibited an ultra-
small magnitude of the HER overpotential (™% = —0.01 to
—0.03 V), much better than that of commercial Pt based cata-
lysts. We believe that our established DFT based ML framework
should be equally applicable to other 2D systems and spur both
theoretical and experimental research in a wider effort to
explore ideal HER catalysts.
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