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Organophosphorus compounds (OPCs) are highly important chem-
icals, finding numerous applications in both academia and industry.
Herein we describe a simple photocatalytic method for the stanny-
lation of white phosphorus (P;) using a cheap, commercially-
available distannane, (BuzSn),, and anthraquinone as a simple
photocatalyst. Subsequent ‘one pot’ transformation of the resulting
stannylated monophosphine intermediate (BusSn);P provides
direct, convenient and versatile access to valuable OPCs such as
acylated phosphines and tetraalkylphosphonium salts.

White phosphorus (P4) - the most chemically important allo-
trope of this ubiquitous and abundant element - acts as the
common precursor from which all commercially valuable and
academically important organophosphorus compounds (OPCs)
are prepared. The current methods used for the industrial
synthesis of these myriad useful P; products include the
oxidation of P, with toxic Cl, gas to generate PCl; which can
subsequently be transformed into a variety of OPCs by reaction
with nucleophiles (Scheme 1a). As an alternative route, initial
acid- or base-mediated disproportionation of P, can be used to
generate highly toxic PH; gas which is then employed for the
hydrophosphination of unsaturated organic substrates.®

Given the drawbacks of these methods, a highly prominent
aim has long been to find ways of bypassing these multi-step
procedures. In particular, there is a longstanding desire to
develop more step-efficient direct — and, ideally, catalytic -
methods to functionalize P, and generate OPCs in a single
reaction.

As a result, for several decades comprehensive efforts have
been made to better understand the fundamental reactivity of
P,.> However, it is only very recently that it has finally become
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possible to successfully transform P, directly into a variety of
useful P; products.® Moreover, and despite these extensive
investigations, the number of successful examples remains
extremely low, and those that do exist still suffer from sub-
stantial limitations.* As such, there remains a clear need to
expand the range of strategies available for direct, productive P,
activation, with new catalytic methods being particularly
desirable.**

In one of our own contributions to this area, we recently reported
a simple ‘one pot’ method in which the classical radical reagent tri-
n-butyltin hydride (BusSnH) is used for initial hydrostannylation of
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Scheme 1 (a) Current state-of-the-art industrial methods for the synth-
esis of valuable P, products.! (b) Recently reported hydrostannylation of
white phosphorus (P,4) using BusSnH followed by reaction with electro-
philes to generate useful P; products in a ‘one-pot’ fashion.® (c) This work:
(i) photocatalytic stannylation of P4 using the photocatalyst anthraquinone
(AQ) and hexabutyldistannane (BusSn),; and (ii) subsequent functionaliza-
tion of the intermediate (BuszSn)sP with electrophiles into products such as
triacylphosphines and tetraalkylphosphonium salts.
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P, (Scheme 1b).” This reductive P, activation is mediated either by
light or by a chemical radical initiator such as AIBN (azobis(iso-
butyronitrile)) which can initiate a radical chain reaction that breaks
down the P, tetrahedron, yielding a mixture of hydrostannylated
phosphines (Bu;Sn),PH;_, (x = 0-3). Key to this mechanism is the
attack of stannyl radicals (BusSn®) on the P-P bonds of P,. The
resulting (BusSn),PH; , mixture can then be converted into a
number of important and useful OPCs by reaction with
electrophiles.”

Unfortunately, one significant disadvantage of this hydro-
stannylation strategy is the complexity of the (BusSn),PH;_ ,
mixture, which complicates ‘downstream’ reaction develop-
ment by requiring functionalization of two different types of
bond (P-Sn and P-H), both of which are distributed over four
distinct molecules. Moreover, the presence of gaseous PH; as a
component of this mixture has been suggested to have a limit-
ing effect on overall yields as it can easily be lost during
subsequent manipulations,*® and it is also problematic from
a safety perspective.

These drawbacks would be overcome if the initial P,
reduction step could instead furnish a single species with just
one functionalizable motif, but with reactivity otherwise similar
to (BuzSn),PH;_,. To achieve this, we describe herein a simple
photocatalytic strategy for the atom-precise stannylation of P,
using the cheap, commercially-available distannane (BusSn),
and simple benzophenone derivatives as photocatalysts
(Scheme 1c). This new procedure generates exclusively the
stannylated monophosphine (BusSn);P and subsequent, sim-
plified ‘one pot’ transformations with electrophiles afford
valuable OPCs including acylated phosphines and alkylated
phosphonium salts.

Based on the analysis above, we sought to develop a new
method by which P, could be selectively transformed into
(BusSn);P as the sole product.® It is worth noting that the
closely related product (Ph;Sn);P has previously been prepared
from P, using Ph;SnCl as the stannylating reagent, but this
required use of a relatively elaborate Ti(u1) reagent as a halogen
atom abstractor.” Instead, we imagined that an ideal reagent
for such a reaction would be the distannane (BuzSn),, which is
cheap to purchase and could in principle provide the target
phosphine with perfect atom economy.” Indeed, Sn-Sn homo-
lysis of (BusSn), is known to furnish BusSn® radicals, which
previous work has shown are capable of adding to P,
However, achieving this homolysis directly requires extreme
temperatures or very high energy UV light irradiation that is
known to lead to unselective reactivity, and is also unlikely to be
compatible with P,.5° Fortunately, it has been reported that
simple ketones can be used as photocatalysts to access BuzSn*®
radicals by Sn-Sn bond cleavage under much lower energy
irradiation.""

The light-driven photocatalytic stannylation of P, was there-
fore targeted, based on the mechanistic proposal outlined in
Scheme 2.° It was anticipated that photoirradiation of the
ketone R,CO would first provide an excited state, [R,COJ*,"
capable of reacting with (BuzSn), to generate a stannylated ketyl
radical and a free BuySn® radical.™* The former could then
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Scheme 2 Proposed mechanism for the light-driven, photocatalytic
stannylation of P4 in the presence of hexabutyldistannane, (BusSn),, and
a ketone photocatalyst, R,CO.

thermally release a second BusSn*® radical to close the catalytic
cycle. Once formed, these BuzSn® radicals would then add to
the P-P bonds of P,, ultimately breaking it down to generate
(BusSn);P as the only P; product.*®

To begin, benzophenone (BP) was chosen as a proof-of-
principle photocatalyst due to both its simplicity and the fact
that its photoreactivity towards hexaalkyldistannanes has been
studied previously.'* Gratifyingly, after an initial optimization
the photocatalytic stannylation of P, could successfully be
achieved, with use of 25 mol% BP (all stoichiometries, in both
equiv. and mol%, are defined per P atom) and a 3.3-fold excess
(5 equiv.) of (BusSn), providing 50% conversion to the target
stannylated phosphine (BusSn);P after stirring under near UV
LEDs overnight (Scheme 3; see also ESIL,i S3). Control experi-
ments confirmed that all reaction components (P,, (BusSn),,
BP, irradiation) were necessary for the reaction to proceed
productively (see ESI, S3, Table S1).

These initial results provided a clear proof-of-principle for
the proposed mechanistic strategy. Notably, the observed con-
version indicates the activation of at least three Sn-Sn bonds
per available equivalent of BP,'* making this a rare example of a
system where P, activation has been achieved catalytically,
using an otherwise inert substrate.”*“?”°*'> Nevertheless, in
order to improve the reaction outcome further, a broader range
of benzophenone derivates was subsequently screened, with
several found to provide markedly improved performance (see
ESL T S5). Particularly impressive results were achieved using

UV-LED
1 Bu3Sn SnBu
/4/I\ 4 _® @esom) o e
|
Z >>p benzene 22 h
BP (25 moi%) SnBus
(Bu3Sn), (5 equiv.) 50%

Scheme 3 Initial conditions for the direct, photocatalytic stannylation of
P4 into (BuzSn)sP optimized using benzophenone (BP) as photocatalyst.
Stoichiometries in equiv. and mol% are defined per P atom.
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Scheme 4 Optimized conditions for the direct, photocatalytic stannyla-
tion of P4 into (BusSn)sP using anthraquinone (AQ) as photocatalyst.
Stoichiometries in equiv. and mol% are defined per P atom.

anthraquinone (AQ) and following brief further optimization
(see ESI, S5 and S7) 79% conversion to (BuzSn);P could be
achieved using significantly reduced loadings of both AQ (12.5
mol%) and (BusSn), (3 equiv.) over the same timeframe
(Scheme 4; see also ESL1 S7). Based on the catalytic cycle
proposed in Scheme 2, this would correspond to a turnover
number (TON) of 10.0 for AQ. Further reductions in catalyst
loading to 6.3 mol% or 2.5 mol% were found to lead to even
higher TONs (16.8 and 28.2, respectively), albeit at the cost of
lower overall conversions (see ESL,t S7, Table S11).

With the stannylation of P, optimized, attention was then
shifted to its subsequent, ‘one pot’ transformation into other
useful P, products. Having previously developed procedures for the
analogous transformation of the phosphine mixture (BuzSn),PH;_,
which includes (BuzSn);P as a minor component, it was anticipated
that addition of electrophiles to photocatalytically-generated
(BusSn);P should be similarly productive,*> especially since neither
the AQ photocatalyst nor the (BuzSn), starting material is expected
to show appreciable reactivity towards such substrates. And, indeed,
in situ addition of a variety of acid chlorides yielded the corres-
ponding triacylphosphines (R(O)C);P (R = Ph, Cy, Ad, ¢Bu, iPr, nBu,
Me) with good conversions of up to 75% (Scheme 5a(i)).>'® Notably,
and in comparison to our previously-reported hydrostannylation
system, no exclusion of light and no additional base were required
for this step, highlighting both the robustness and simplicity of
(BusSn);P as a “P*~” synthon, relative to (BuzSn),PH;_,.

Similarly, reaction of (BuzSn);P with alkyl bromides RBr
(R = Bn, Et) under moderate heating successfully provided

(a) P, products
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‘one pot’ access to the corresponding phosphonium salts, [R,P]Br,
including tetrabenzylphosphonium bromide, [Bn,P]Br, which is a
known precursor for useful Wittig chemistry (Scheme 5a(ii))."”
Again, no auxiliary base was required for these reactions, in contrast
to the analogous procedures via (BusSn),PH;_, where the absence
of base leads to a 50% reduction in yield.?

Finally, another industrially important class of P; products
was targeted. Hydroxymethyl-substituted phosphine derivatives
are used as flame-retardant materials (among a number of
other applications),"® and could be accessed by reacting the
stannylated monophosphine (BuzSn);P with paraformaldehyde
in EtOH to furnish tris(hydroxymethyl)phosphine, (HOCH,);P
(THP; Scheme 5a(iii))."® Subsequent exposure to air then
yielded the corresponding phosphine oxide, (HOCH,);PO
(THPO; Scheme 5a(iv)),"®” while the phosphonium salt
tetrakis(hydroxymethyl)phosphonium chloride, [(HOCH,),P]Cl
(THPC),'®"*®¢ could be accessed by quenching the in situ
generated THP with HC, all in one pot (Scheme 5a(v)).

To demonstrate the viability of these reactions on a prepara-
tive scale the triacylphosphine (Ph(O)C);P and the phospho-
nium salts [Bn,P]Br and THPC were selected as representative
examples for isolation (Scheme 5b; see ESIt S9). At 0.8 mmol
scale (PhC(0));P could be isolated in 55% yield,'® which com-
pares well with our previously-reported hydrostannylation
method (51%). [Bn,P]Br could also be isolated in good 56%
yield, and THPC in a more modest yield of 33%."°

For this last reaction, efforts were also made to recover the Sn-
containing compounds present at the end of the reaction. We
have previously shown that for the analogous synthesis of THPC
via (BuzSn),PH;_, recovery of the BuzSnCl byproduct allows for
convenient regeneration and recycling of the Bu;SnH starting
material, thus minimizing the formation of organotin-containing
waste. BuzSnCl can also be used to regenerate (Bu;Sn), through a
net one-electron reduction,® meaning similar recycling should be
feasible for this newer system, provided BuzSnCl can again be
cleanly recovered. Satisfyingly, Bu,SnCl could indeed be recov-
ered during THPC workup through simple washing with diethyl

(b) Isolated yields of selected products

; P BuzSn SnBu; HO ; : :
girc;rlilpot, ’\ (BusSn), ~p” (i) ,(/\Oar \I : ('one pot', 0.8 mmol scale)
Y : — = | — 1 :
= HO I OH : O O Bn -
from P, ol N SnBuj EtOH ~ N\ ’ )L ,lL | Br
single THP : Ph” “P” “Ph *F “1gn
P, intermediate 48% conv. : OJ\Ph Bn” \B
' n
i © - (V) HCI (|v) alr :
) (i) [ RBr ! 151.2 mg 2122 mg
cI” R ; 55% 56%
“Tam 8 A bow |[ o5 =
oconv. I I |4+ Br c | " : c L+
Ad 40%conv. R PR P, HO P OH| |
Bu  64% conv. é\ R \"R HOH;C/ \ /CH,0OH ~ k\/ : HOHZC/ \"CHZOH
iPr 67% conv. O0” 'R R . CH,OH OH ! CH,OH
nBu 54% conv. R = Bn 69% conv. THPC THPO : 50.3 mg
Me 60% conv. Et 46% conv, 53% conv. 38% conv. ! 33%
Scheme 5 (a) One-pot synthesis directly from P, via photocatalytically generated P; intermediate (BuzSn)sP, of (i) triacylphosphines (R(O)C)sP (4 equiv.

RC(O)CL, R = tBu, Ph, Me, nBu, Cy, iPr, Ad), (ii) phosphonium salts [R4P]Br (5 equiv. RBr, R = Bn, Et, 60-80 °C), {iii) tris(hydroxymethyl)phosphine, THP (EtOH,
3 equiv. paraformaldehyde), (iv) tris(hydroxymethyl)phosphine oxide, THPO (as for (iii) then air, 80 °C), and (v) tetrakis(hydroxymethyl)phosphonium
chloride, THPC (as for (iii) using 12.5 equiv. paraformaldehyde, then 10 equiv. HCl); and (b) Isolated yields for reactions on preparative scale (0.8 mmol).
Stoichiometries in equiv. are defined per P atom.
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ether, being isolated as part of an otherwise clean mixture with
unreacted (BusSn), in an excellent overall yield of 92% (1.3:1
molar ratio, see ESI{ S9).

In conclusion, we have developed a simple, new method for
the direct transformation of P, into a variety of commercially
and academically interesting OPCs. The reaction proceeds
through a photocatalytic stannylation of white phosphorus,
which generates (BuzSn);P with perfect atom economy as a
single, convenient P; intermediate using an inexpensive, com-
mercially available distannane and a simple photocatalyst. This
method can be used to prepare a variety of different products
through inclusion of a range of different electrophilic sub-
strates, and we have demonstrated that the Sn-containing
byproducts of the reaction can in principle be recovered and
recycled. These results expand the currently very limited range
of strategies that are available for the direct functionalization of
P,, and suggest the intriguing possibility that P, activation
might also be achievable by reaction with other weak E-E
bonds under similar photocatalytic conditions.
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