Open Access Article. Published on 09 kvtna 2020. Downloaded on 05.02.2026 11:20:21.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

#® ROYAL SOCIETY
PP OF CHEMISTRY

View Article Online

View Journal | View Issue,

i ") Check for updates ‘

Cite this: RSC Adv., 2020, 10, 17906

Received 28th March 2020
Accepted 20th April 2020

DOI: 10.1039/d0ra02834g

A phenol phosphorescent microsensor of
mesoporous molecularly imprinted polymers

Xiaodong Lv®? and Peng Gao*®

Based on the optical quenching phenomenon, a smart mesoporous phosphorescent microsensor was built.
It is a phenol microsensor, which inherits a high selectivity of molecularly imprinted polymers (MIPs) and
room-temperature phosphorescence (RTP) properties of Mn-doped ZnS quantum dots (QDs). On the
surface of silane-modified Mn-doped ZnS QDs, the phenol microsensor was synthesized by a sol-gel
process. Because of the presence of a porogenic agent, a mesoporous structure played an important
role in increasing the detection sensitivity. The MPTS-modified Mn-doped ZnS QDs were used as solid
supports and auxiliary monomers. Under optimal conditions, the experiment for the detection of phenol
had a linear range of 5.0 to 50 pmol L™t with a correlation coefficient of 0.9983 and a high imprinting
factor (IF) of 3.28. In addition, the as-prepared Mn-doped ZnS QD@ms-MIPs were successfully applied
for phenol determination and selectivity in water samples. Therefore, this study provides a highly
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Introduction

A microsensor'™ is a new branch of the intelligent information
interaction device, which is associated with analog-to-digital
conversion. It aims at parameterizing a model by collecting
and processing data. Quantum dots (QDs),** also called semi-
conductor nanocrystals, have many varieties, such as CdSe QDs
and CdTe QDs. Based on the electron-transfer mechanism
between the target and QDs, QDs have been used as an optical
microsensor of various analytes, including ions, small mole-
cules and biological macromolecules.”®

Compared with the above-mentioned traditional fluorescent
QDs, ZnS QDs'*** are a type of environment-friendly QDs. ZnS
QDs, wide-bandgap II-VI semiconductor materials, have the
room-temperature  phosphorescence (RTP)*** character.
Because of the spin-forbidden of triplet exciton transition, RTP
can minimize interferences from short-lived autofluorescence
and scattering light. This is why RTP has better stability than
fluorescence. Moreover, ZnS QDs have other excellent proper-
ties, for instance, longer emission lifetime and wider scope
between emission and excitation spectra. Bhargava'® reported
that the as-prepared Mn-doped ZnS QDs were able to yield
a photoluminescence quantum efficiency of 18%. Due to the
above-mentioned remarkable properties, Mn-doped ZnS QDs
are noteworthy of significant attention. It is significant to form
a mathematical pattern of phosphorescence quenching linear
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selective and sensitive mesoporous phosphorescent microsensor for the detection of phenol.

relationship between the target molecule and Mn-doped ZnS
QDs. Based on the kinetic analysis in quenching reactions,
quantitative estimation is convenient for measuring the
concentration of the target molecule. Because of multiple
analogues structurally similar to target molecules in real
samples, the selectivity of the synthetic microsensor of Mn-
doped ZnS QDs is limited. Therefore, its selectivity still requires
improvement. As a consequence, combining QDs with molec-
ularly imprinted polymers (MIPs)'"*® is a necessary, and it is
a general trend.

In recent years, molecularly imprinted technology (MIT),'*>°
as an effective way, has been widely used to guide the synthesis
of MIPs. MIPs have a predetermined selectivity for given
molecules through the process of pre-polymerization and
copolymerization among template molecules, functional
monomers and crosslinkers. After the removal of template
molecules, MIPs with tailored recognition sites are obtained.
The recognition sites are perfectly complementary to the
template molecules in space and chemical bonds. Therefore,
MIPs have been applied to numerous fields,**** including solid
phase extraction, chemical sensor, and simulation drug anal-
ysis. However, the recognition efficiency is lamed on account of
traditional MIPs with three-dimensional highly cross-linked
polymeric structure and incomplete eluted specific binding
sites. Therefore, in order to overcome these shortcomings, the
mesoporous structure has been introduced into the layer of
existing MIPs. These steps contribute to improving the binding
kinetics and capacity and direct a mass transfer between
recognition sites and template molecules. Hence, it is essential
to make the most of mesoporous structural MIPs,**** which can
establish a target microsensor.

This journal is © The Royal Society of Chemistry 2020
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In the traditional chemical industry, phenolic wastewater® is
generated from the process of metallurgical (coking) coal. It is
one of the largest industrial wastewater pollutant headstreams
in the natural environment. In particular, because of phenol
poison residues in soils, lakes and so on, it poses a threat to
human health. Hence, how to quickly and effectively detect
phenol residues is of great application value. So far, numerous
methods, such as chromatography and electrochemistry,>**”
have been developed to measure phenol. Moreover, QD@MIP
optical microsensors have been widely studied due to their
rapid response, low cost and operability. It is necessary to
develop a novel phenol microsensor.

In this study, a phenol microsensor, namely Mn-doped ZnS
QD@ms-MIPs, was prepared by a sol-gel process. The silane-
modified Mn-doped ZnS QDs (MPTS-ZnS QDs:Mn) was used
as the sensing nucleus matrix. On the surface of MPTS-ZnS
QDs:Mn mesoporous structural MIPs were obtained, which
use tetraethoxysilane (TEOS) as the cross-linker, cetyl trimethyl
ammonium bromide (CTAB) as the porogenic agent and NaOH
as the catalyst. In particular, CTAB provided a chance of
recognition site accessibility to target molecules for the phenol
microsensor. The morphology, characterization, optical
stability and selective recognition of the phenol microsensor
were investigated. Moreover, the as-prepared phenol micro-
sensor was successfully used for detecting phenol in real
samples.

Experimental
Reagents and chemicals

All reagents used in this study were of analytical grade purity.
ZnS0O,-7H,0, MnCl,-4H,0, Na,S-9H,0, ethanol, N,, 3-mer-
captopropyltriethoxysilane (MPTS), NaOH, NH;-H,O, phenol,
tetraethoxysilane (TEOS), 3-aminopropyltriethoxysilane
(APTES), cetyl trimethyl ammonium bromide (CTAB), catechol,
resorcinol and 2,6-dichlorophenol were all purchased from
Aladdin Reagent Co., Ltd. (Shanghai, China). Double distilled
water (DDW) was used throughout the experiment.

Instrument

The morphology was obtained using a transmission electron
microscope (TEM, JEOL, JEM-2100). The phosphorescence
measurements were carried out by a Cary Eclipse

Table 1 Adding components of the reagent
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spectrofluorometer (USA), equipped with a plotter unit and
a quartz cell. Infrared spectra (4000 to 400 cm™ ') were gained
using KBr disks with a Nicolet NEXUS-470 FTIR apparatus
(USA).

Synthesis of MPTS-ZnS QDs:Mn

MPTS-ZnS QDs:Mn was synthesized according to a previously
reported method.*® To begin with, 2.013 g of ZnSO,-7H,0 and
0.126 g of MnCl,-4H,0 were dissolved in a three-necked flask
with 40 mL of DDW. The flask was placed in a sonicator for
some time. Under the condition of N, flow for 10 min, 10 mL
DDW of Na,S-9H,0 (97.6 g L™ ') was added dropwise while the
mixture solution was stirred continuously for 30 min. Following
by the addition of 10 mL ethanol of MPTS (11.7 mL L") drop-
wise, the final mixture solution was again stirred for 20 h. Then,
via the process of centrifugal separation (800 rpm), washing and
drying (60 °C), a light pink powder, MPTS-ZnS QDs:Mn, was
prepared.

Synthesis of Mn-doped ZnS QD@ms-MIPs

To begin with, 20 mg of MPTS-ZnS QDs:Mn was dissolved in
a 100 mL flask with 50 mL of DDW. The flask was placed in
a sonicator for some time. Under the condition of N, flow for
5.0 min, 0.8 mL of CTAB (0.2 mol L™") and 100 pL of NaOH
(0.2 mol L") were added while continuously stirring for 30 min.
Following by the addition of 100 pL of TEOS, 0.2 mL ethanol of
20 pL APTES and 5.0 mg of phenol, the final mixture solution
was stirring at 70 °C for 24 h again. Then, via the process of
centrifugal separation (800 r min~"), washing and drying (60
°C), Mn-doped ZnS QD@ms-MIPs were prepared. In addition,
a comparison experiment under the same condition was con-
ducted, except for not adding target molecules.

Synthesis of Mn-doped ZnS QD@MIPs

To test the recognition efficiency of mesoporous structural MIPs
(Mn-doped ZnS QD@ms-MIPs), the as-prepared Mn-doped ZnS
QD@MIPs were compared. To begin with, 20 mg of MPTS-ZnS
QDs:Mn and 10 mL ethanol were dissolved in a 25 mL flask.
The flask was then placed in a sonicator for some time. Under
the condition of N, flow for 5.0 min, 20 uL of APTES and 200 pL
of DDW was added while stirring for 30 min. Following by the
addition of 100 pL of TEOS, 100 pL of NH;-H,0 and 5.0 mg of
phenol, the final mixture solution was stirring at 70 °C for 12 h

Mn-doped ZnS

Mn-doped ZnS

Mn-doped ZnS Mn-doped ZnS

QD@MIPs QD@NIPs QD@ms-MIPs QD@ms-NIPs

MPTS-ZnS QDs:Mn 20 20 20 20

CTAB/mL — — 0.8 0.8
Phenol/mg 5 5 5 5

NaOH/uL — — 100 100
NH;-H,0/uL 100 100 — —

APTES/uL 20 20 20 20

TEOS/uL 100 100 100 100

This journal is © The Royal Society of Chemistry 2020
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again. Then, via the process of centrifugal separation (800 rpm),
washing and drying (60 °C), Mn-doped ZnS QDs@MIPs were
prepared. In addition, a comparison experiment under the
same condition was conducted, except for not adding target
molecules (Table 1).

Measurement procedure

First, the Mn-doped ZnS QD@MIPs, Mn-doped ZnS QD@NIPs,
Mn-doped ZnS QD@ms-MIPs, and Mn-doped ZnS QD@ms-
NIPs were dispersed in DDW to gain the stock solution
(100 mg L™"). Meanwhile, phenol, catechol, resorcinol and 2,6-
dichlorophenol were dissolved in DDW to get the target solution
(10 mg L"), separately. Then, the appropriate volume of MIP or
NIP solution and a certain amount of target solution were
successively added to a 10 mL colorimetric tube. The mixture
was diluted to the mark with DDW and mixed thoroughly via
shaking. Finally, a partial solution was transferred to a quartz
cell to carry out the phosphorescence test after the reaction was
sufficient. In the experiments, all the phosphorescence
measurements were performed under the same conditions: the
slit widths of the excitation and emission were both 10 nm, the
photomultiplier tube voltage was set at 730 V, and the excitation
wavelength was set at 320 nm with the recording phosphores-
cence spectra range of 500 to 700 nm.

Results and discussion

Preparation and characterization of Mn-doped ZnS QDs@ms-
MIPs

As shown in Fig. 1, Mn-doped ZnS QD@ms-MIPs were synthe-
sized via a sol-gel process. First, Mn-doped ZnS QDs were
modified by MPTS. Due to the Si-O chain in MPTS, Mn-doped
ZnS QDs could be converted to silane-modified Mn-doped ZnS
QDs (MPTS-ZnS QDs:Mn). MPTS-ZnS QDs:Mn obtained the
protection of the silica layer to improve the aqueous RTP
stability. In order to improve the binding kinetics and capacity,
the porogenic agent, CTAB, built a channel to direct a mass
transfer between recognition sites and phenol. In the presence
of a functional monomer (APTES), cross-linker (TEOS), poro-
genic agent (CTAB) and catalyst (NaOH), polymerization
occurred on the surface of MPTS-ZnS QDs:Mn. After the removal
of the target molecule phenol and CTAB, mesoporous structural
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Fig. 1 Schematic for the preparation of (a) Mn-doped ZnS QD@MIPs
and (b) Mn-doped ZnS QD@ms-MIPs.
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Fig. 2 TEM images of (a) ZnS QDs:Mn, (b) MPTS-ZnS QDs:Mn, (c and
d) Mn-doped ZnS QD@MIPs and (e and f) Mn-doped ZnS QD@ms-
MIPs.

MIPs with a large number of recognition sites were prepared.
When encountering phenol, Mn-doped ZnS QD@ms-MIPs
would show high selectivity. This phenomenon could be
explained in two ways. On one hand, the recognition sites could
selectively rebind template molecules due to perfect comple-
ment between recognition sites and target molecules in size,
shape and chemical structure. On the other hand, the interac-
tions between Mn-doped ZnS QD@ms-MIPs and phenol was
covalent, which could greatly increase the selectivity of the
phenol microsensor.

As shown in Fig. 2, the morphologies of (a) ZnS QDs:Mn, (b)
MPTS-ZnS QDs:Mn, (c and d) Mn-doped ZnS QD@MIPs and (e
and f) Mn-doped ZnS QD@ms-MIPs were measured via TEM.
ZnS QDs:Mn had a uniform distribution of particle size about
2.1 nm. The diameter of MPTS-ZnS QDs:Mn was approximately
4.2 nm, which indicated the existence of a thin silica layer. In
contrast to Fig. 2b, MIPs were successfully synthesized in
Fig. 2(c-f). There was a stark contrast with Mn-doped ZnS
QD@MIPs, and mesoporous structural MIPs have appeared on
the surface in Fig. 2e and f. These phenomena were the same as
earlier predictions, indicating that the experiment was feasible.

As shown in Fig. 3a, the FT-IR spectra of MPTS-ZnS QDs:Mn
(curve 1), Mn-doped ZnS QD@MIPs (curve 2) and Mn-doped ZnS
QD@ms-MIPs (curve 3) were recorded. A strong and wide char-
acteristic peak at 1066 cm™ ' was Si-O-Si asymmetric stretching
vibration. Some other characteristic peaks at 786 cm ' and
457 cm™ " were Si-O vibrations. Other peaks at about 2926 cm™*

(aliphatic C-H stretching vibration), 3210 cm ™" and 1616 cm™*

T
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Fig. 3 (a) FT-IR spectra of MPTS-ZnS QDs:Mn (curve 1), Mn-doped
ZnS QD@MIPs (curve 2) and Mn-doped ZnS QD@ms-MIPs (curve 3);
(b) XRD patterns of MPTS-ZnS QDs:Mn (curve 1), Mn-doped ZnS
QD@MIPs (curve 3) and Mn-doped ZnS QD@ms-MIPs (curve 3).

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 (a) UV absorption (curve 1), excitation (curve 2) and emission
(curve 3) spectra of the MPTS-ZnS QDs:Mn. (b) UV absorption spectra
of the phenol (curve 1), excitation (curve 2) and emission (curve 3)
spectra of the MPTS-ZnS QDs:Mn.

(N-H band), indicated that the existence of aminopropyl groups.
All characteristic peaks suggested that MIPs have been success-
fully grafted onto the surface of MPTS-ZnS QDs:Mn via a sol-gel
process of APTES and TEOS.

As shown in Fig. 3b, the XRD patterns of MPTS-ZnS QDs:Mn
(curve 1), Mn-doped ZnS QD@MIPs (curve 3) and Mn-doped ZnS
QD@ms-MIPs (curve 3) were recorded. The XRD patterns of
curve 2 and curve 3 were consistent with ZnS standard PDF card
(PDF#05-0566). These peaks were (11 1), (22 0)and (31 1), and
no other characteristic diffraction peaks. The results of the
samples revealed that the cubic crystal structures of ZnS
appeared in curve 2 and curve 3, and produced the MIP layer did
not significantly change the crystalline structures. The charac-
teristic diffraction peaks of curve 2 and curve 3 weakened as
a whole. These figures proved that more amorphous materials
occurred on the layer of MPTS-ZnS QDs:Mn.

By calculation, the Jade 5.0 XRD data pattern of MPTS-ZnS
QDs:Mn was measured with peaks of (11 1), (22 0)and (31
1). The value of 8 (FWHM) at (1 1 1) was 2.022 rad, and 26 was
25.354°. Its computational particle size at (1 1 1) was 3.51 nm.
The value of 8 (FWHM) at (2 2 0) was 2.854 rad, and 26 was
44.964°. Its computational particle size at (2 2 0) was 2.0144 nm.
The value of 8 (FWHM) at (3 1 1) was 1.469 rad, and 26 was
55.549°. Its computational particle size at (3 1 1) was 1.653 nm.
Finally, according to the Debye-Scherrer formula,* the average
size of MPTS-ZnS QDs:Mn was 3.8197 nm, which was in line
with TEM images.

As shown in Fig. 4, the UV absorption spectra of the phenol
(curve b1), UV absorption (curve b2), excitation (curve 2) and
emission (curve 3) spectra of the MPTS-ZnS QDs:Mn were
recorded. A UV absorption characteristic peak of MPTS-ZnS
QDs:Mn was at 280 nm with an absorbance value of 0.057.
Simultaneously, MPTS-ZnS QDs:Mn had wider excitation
spectra and excellent RTP properties. Moreover, a UV absorp-
tion characteristic peak of phenol was at 204 nm with an
absorbance value of 4.0; another absorption characteristic peak
of MPTS-ZnS QDs:Mn was at 270 nm with an absorbance value
of 2, which was in line with the standard absorption band of
substituted hydroxyl (-OH) benzene derivatives. The maximum
excitation spectrum of MPTS-ZnS QDs:Mn was at 590 nm, which
did not overlap with the UV absorption spectra of the phenol.
The results indicated that RTP quenching was non-radiative
energy transfer (NRET).

This journal is © The Royal Society of Chemistry 2020
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Fig. 5 Stability of the RTP intensities of (a) MPTS-ZnS QDs:Mn, (b) Mn-
doped ZnS QD@MIPs and (c) Mn-doped ZnS QD@ms-MIPs.
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Fig. 6 Effect of different interval detection time on the relative RTP
intensities of (a) Mn-doped ZnS QD@MIPs and (b) Mn-doped ZnS
QD@ms-MIPs.

Effect of time, solution concentration and pH

As shown in Fig. 5, the stability of the RTP intensities of (a)
MPTS-ZnS QDs:Mn, (b) Mn-doped ZnS QD@MIPs and (c) Mn-
doped ZnS QD@ms-MIPs were measured. There were 12 repli-
cate measurements of their RTP intensities in an aqueous
solution for 48 h. The results showed that both had stable RTP
intensities in the aqueous solution, and the mesoporous
structure had no difference in RTP intensities.

When the target was added to the reaction system, it took
some time to reach a relatively stable value. As shown in Fig. 6,
different interval detection time periods on the relative RTP
intensities of (a) Mn-doped ZnS QD@MIPs and (b) Mn-doped ZnS
QD@ms-MIPs were considered. Based on 11 different interval
detection time periods for 35 min (adding a certain amount of
PL), the reaction time of Mn-doped ZnS QD@MIPs was 25 min to
reach a relatively stable value and another was 20 min. So, the
detection time of the former was 25 min, and that of the latter was
20 min. When the reaction time was from 0 to 5.0 min, the
response experiment level of Mn-doped ZnS QD@ms-MIPs was
higher. These phenomena showed that the mesoporous structure
provided a mass way for signal transmissions to improve the
sensitivity of Mn-doped ZnS QD@ms-MIPs.

RSC Adv, 2020, 10, 17906-17913 | 17909
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Fig. 7 (a) Effect of concentration of the Mn-doped ZnS QD@MIPs on
the RTP intensity and by adding quantitative phenol (5 mg L™, curve 1),
the quenching efficiency for different concentrations of the Mn-doped
ZnS QD@MIPs (curve 2); (b) effect of concentration of the Mn-doped
ZnS QD@ms-MIPs on the RTP intensity and by adding quantitative
phenol (5 mg L% curve 1), the quenching efficiency for different
concentrations of the Mn-doped ZnS QD@ms-MIPs (curve 2).
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Fig. 8 Effect of pH on the RTP intensity of MPTS-ZnS QDs:Mn.

As shown in Fig. 7, the additions of Mn-doped ZnS
QD@MIPs and Mn-doped ZnS QD@ms-MIPs were from 10 to
100 mg L', Both sensitivity and selectivity played important
but different and complementary roles in the phenol micro-
sensor. When the concentration of Mn-doped ZnS QD@MIPs
was 100 mg L', higher RTP intensity of Mn-doped ZnS
QD@MIPs obtained low sensitivity. When the concentration of
Mn-doped ZnS QD@MIPs was 10 mg L', higher RTP sensitivity
of Mn-doped ZnS QD@MIPs obtained low intensity. Mn-doped
ZnS QD@ms-MIPs had the same conclusion. So, the optimal
concentration values of Mn-doped ZnS QD@MIPs and Mn-
doped ZnS QD@ms-MIPs were 45 mg L' and 30 mg L7,
respectively. The results indicated that the mesoporous struc-
tural phenol microsensor had better sensitivity than a non-
mesoporous structure. The mesoporous structural phenol
microsensor made great contributions to a detection system.

As shown in Fig. 8, when the value of pH was between 7 and
8, the RTP intensity of MPTS-ZnS QDs:Mn was relatively stable.
Therefore, the value of 7.5 was selected as the optimal experi-
ment pH condition.

Mn-doped ZnS QD@MIPs and Mn-doped ZnS QD@ms-MIPs
with the template phenol of different concentrations

As shown in Fig. 10, under optimized conditions, the phenol
microsensor, based on the RTP intensities of Mn-doped ZnS

17910 | RSC Adv, 2020, 10, 17906-17913
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Fig. 10 (a) The RTP emission spectra of Mn-doped ZnS QD@ms-MIPs
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addition of different concentrations of phenol in DDW. The Stern—
Volmer values for (c) Mn-doped ZnS QDs@ms-MIPs and (d) Mn-doped
ZnS QDs@ms-NIPs.

QD@ms-MIPs or Mn-doped ZnS QD@ms-NIPs (30 mg L) with
adding phenol linearly, was further studied. As a contrast, the
non-mesoporous structural MIPs and NIPs (45 mg L") with
adding phenol linearly were also measured, which are shown in
Fig. 9. The RTP quenching relationship of phenol microsensors
can be described by the Stern-Volmer equation:**-

Ky
—=1+K
F SV[C]

F and F, are the RTP intensities of Mn-doped ZnS QD@ms-MIPs
(Mn-doped ZnS QDs@MIPs) or Mn-doped ZnS QD@ms-NIPs (Mn-
doped ZnS QD@NIPs) in the case of presence and absence of
phenol, respectively. The Ky is the Stern-Volmer quenching
constant, and [C] is the concentration of phenol. As shown in

Fig. 10, the RTP intensities of Mn-doped ZnS QD@ms-MIPs (Mn-
doped ZnS QD@ms-NIPs) decreased linearly with the increase in

This journal is © The Royal Society of Chemistry 2020
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Reference Method Detection target LOD Selectivity

N. B. Zhong** A photochemical fiber-optic sensor Phenol 1.4 pmol L™* Yes

F. Liu** Electrochemical sensors Phenol 3.4 M No

X. Xiao®® A columnar CeO, sensor Phenol 0.9 pmol L™* No

W. Li*® Flow injection-chemoluminescence Phenol 0.9 pmol L™* Yes
system

This method A mesoporous phosphorescent Phenol 1.4 pmol L™ * Yes
microsensor

quench efficiency
quench efficiency

Phenol  Catechol  Resorcinol 2,6-Dichlorophenol Phenol  Catechol Resorcinol 2,6-Dichlorophenol

0 cl

OB DD

] «

Phenol Catechol  Resorcinol 2,6-Dichlorophenol

Fig. 11 (a) The selectivity of Mn-doped ZnS QD@MIPs and Mn-doped
ZnS QD@NIPs with the addition of several similar structural of phenols
(5.0 mg L™Y; (b) the selectivity of Mn-doped ZnS QD@ms-MIPs and
Mn-doped ZnS QD@ms-NIPs with the addition of several similar
structural of phenols (5.0 mg L™Y).

the concentrations of phenol. By analysis, Ksy, msmps Of Mn-
doped ZnS QD@ms-MIPs was 3.77 x 10* M™', and the linear
range of standardization curve was 5.0 to 50 umol L™ with
a correlation coefficient of 0.9983; Ksy, ms~wes Of Mn-doped ZnS
QD@ms-NIPs was 1.15 x 10* M~ " and the linear range of stan-
dardization curve was 5.0 to 50 pmol L™' with a correlation
coefficient of 0.9919. By calculation, the imprinting factor (IF), the
ratio of Ksy, ms-mrps and Ksy, ms-ntes, Was 3.28. In Table 2, compared
with other works of literature, the limit of detection (LOD, 3a,/k;)
of Mn-doped ZnS QD@ms-MIPs was 1.40 pmol L™" in which o,
was the standard deviation of 6 replicate measurements and k;
was the slope of the calibration line. As a comparison in Fig. 9, Kgy,
wips of Mn-doped ZnS QD@MIPs was 1.65 10* M~ " and the linear
range of standardization curve was 5.0 to 60 pmol L™" with
a correlation coefficient of 0.9987; Kgy, nps Of Mn-doped ZnS

QD@NIPs was 0.59 10* M™" and the linear range of standardi-
zation curve was 5.0 to 60 pmol L™* with a correlation coefficient
of 0.9989. By calculation, the imprinting factor, the ratio of Ksy, ms-
mips aNd Kgy, msnips, Was 2.8. LOD of Mn-doped ZnS QD@ms-MIPs
was 2.32 umol L. It was found that the mesoporous structural
phenol microsensor was fruitful.

The selectivity of BI microsensors

Several categories of phenols (catechol, resorcinol and 2,6-
dichlorophenol) were selected as interferences to evaluate the
selectivity of the mesoporous structural phenol microsensor. As
shown in Fig. 11b, the quenching efficiency [(F, — F)/Fo]
sequence of Mn-doped ZnS QD@ms-MIPs for four compounds
was as follow: phenol (0.593) > resorcinol (0.296) > catechol
(0.294) > 2,6-dichlorophenol (0.221). The quenching efficiency
differences for four compounds, between Mn-doped ZnS
QD@ms-MIPs and Mn-doped ZnS QD@ms-NIPs, were 0.205,
0.035, 0.039 and 0.024, respectively. In comparison with
Fig. 11a, the quenching efficiency sequence of Mn-doped ZnS
QD@MIPs for the four compounds was as follow: phenol (0.487)
> resorcinol (0.349) > catechol (0.267) > 2,6-dichlorophenol
(0.241). It can be explained that after the removal of the target
molecule phenol, the MIPs left many recognition sites, which
can selectively bind to phenol. The mesoporous structure was
involved in binding kinetics.

Application in real samples

In order to study the feasibility of the mesoporous structural
phenol microsensor in real samples, synthetic polymers were
used to detect phenol. Through a 0.45 uM Supor filter, the water
samples collected from a nearby river were filtered and stored in
a pre-cleaned beaker. No phenol analogs were detected in the

Table 3 Recovery of phenol in water samples with phenol solution at different concentration levels

Sample 1 2 3 4

Mn-doped ZnS QD@MIPs Concentration taken (umol L") 5.0 15 25 35
Found (pmol L™Y) 4.62 16.77 24.41 35.84
Recovery” (%) 98.9 102.1 103.5 105.2
RSD (%) 4.1 3.4 2.5 3.1

Mn-doped ZnS QD@ms-MIPs Concentration taken (umol L") 5.0 15 25 35
Found (umol L) 5.39 15.62 25.18 35.70
Recovery” (%) 99.8 101.2 103.2 102.5
RSD (%) 3.2 2.7 1.6 2.2

¢ Average of three measurements.

This journal is © The Royal Society of Chemistry 2020
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water samples. As shown in Table 3, the samples were spiked
with 5.0-35 umol L™" phenol, and the value of RSD of the
former was relatively smaller. It was found that the detection
phenol of Mn-doped ZnS QD@ms-MIPs was more accurate than
that of Mn-doped ZnS QD@MIPs. The RTP quantitative recovery
of Mn-doped ZnS QD@ms-MIPs was from 99.8% to 103.2%, and
that of Mn-doped ZnS QD@MIPs was from 98.9% to 105.2%.
The experimental data were compared with a standard curve,
which has proved the practicability of the phenol microsensor.
Based on a series of analyses, a mesoporous structural phenol
microsensor was parameterized to estimate phenol in the
unknown water samples.

Conclusions

In summary, a mesoporous structural phenol microsensor
based on RTP of ZnS QDs:Mn was successfully synthesized and
applied. MPTS (silane coupling agent), functionalized the
surface of ZnS QDs:Mn to obtain MPTS-ZnS QDs:Mn. To
increase the sensitivity of the three-dimensional highly cross-
linked polymeric structure, it is meaningful for the meso-
porous structure to join a process of MIPs polymerization. By
adding CTAB (a porogenic agent), a phenol microsensor with
the mesoporous structure was built, which has provided
a channel to direct a mass transfer between recognition sites
and phenol. Moreover, RTP of ZnS QDs:Mn can minimize
interferences due to the spin-forbidden of triplet exciton tran-
sition. Under optimized conditions, this study presents a new
way in which MIPs can be used to improve application perfor-
mance by changing their physical morphology. Finally, based
on the optical quenching phenomenon, this paper can be
extended for the multiplexed analysis of phenol analogs by
studying the interaction among other quantum dots emitting at
different wavelengths, different functional monomers and
cross-linkers.
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