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The self-assembly of a series of low molecular weight gelator dipeptides containing para amino benzoic
acid has been studied in mechanistic detail. All four dipeptides form phase selective, thermoreversible,
rigid gels in a large range of organic solvents and fuels such as petrol, diesel, and kerosene. The
mechanism of self-assembly has been dissected in detail using several experimental techniques. Self-
assembly is driven mainly by aromatic and hydrophobic interactions. Hydrogen bonding groups, though
present, seem to make a trivial contribution towards the self-assembly process. Phase selective gelation
abilities in fuels in the presence of acidic, basic and saline conditions, together with the easy recovery of
fuels from the organogels, render the peptides potential candidates for addressing oil-spill recovery.
Being electron rich systems, these organogelators can absorb cationic dyes with >90% efficiency from
wastewater. Finally, conducting biomaterials have been synthesized by the insertion of reduced
graphene oxide into the organogels. Such small peptide based gelator molecules, being economically
viable and easy to prepare, in addition to being multifunctional, are a hot area of research in the field of

rsc.li/rsc-advances materials chemistry.

Introduction

Low molecular weight supramolecular gels (LMWGSs) are an
important class of materials that can encapsulate large
amounts of solvents in mesh-like entangled structures that are
formed via the ordered hierarchical arrangement of individual
molecules.”™ These assemblies are driven by non-covalent
forces such as hydrogen bonding, m-7 interactions, hydro-
phobic interactions, van der Waals forces, charge transfer
interactions, etc.,® and can be controlled by various stimuli
such as concentration, pH, UV radiation, temperature, solvent
polarity and by salts.’®* Various small molecules such as
amides, peptides, ureas, peptoids, nucleobases, etc. have shown
spectacular abilities to self-assemble. Supramolecular gels have
been used in various applications such as in water purification,
through the removal of organic dyes, oils and metal ions;**>* as
templates for nanoparticle fabrication;>*** and in cosmetics,
catalysts,**® dye sensitized solar cells,”” drug delivery
systems,*** etc. Although the self-assembly of peptides was
achieved serendipitously previously, extensive research over the
last couple of decades has established that, by proper choice of
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the individual building blocks that are capable of promoting
interactions, smart molecules with
predictable and tunable self-assembling properties can be
designed. However, even now the design of LMWGs is an
important field of research due to their reduced expenditure,
easy synthesis, biocompatibility and multifunctionality.

Water pollution is one of the fundamental environmental
problems faced by humanity at present. Marine oil spills due to
the leakage of crude oil and petroleum products (i.e. fuels) are
a major source of water pollution that creates a great environ-
mental hazard for marine ecosystems.* Different methods such
as bioremediation,***” dispersants,*® solidifiers,*** sorbents
and skimmers*®* have been developed to tackle the problem.
However, each of these approaches have their own shortcom-
ings.®® Hydro/organogel materials have also been used in the
recovery of oil spills.***®*7* Another critical source of water
pollution is the organic dyes that are routinely used in several
industries.” Dye effluents and their degradation products are
carcinogenic, and have a negative impact on the reproductive and
immune systems.”>”” Conventional methods of treating dye
effluents such as incineration, biological treatment, absorption
upon solid matrices such as activated carbon, chemical precipi-
tation, electrochemical techniques, ion exchange, and others,
have their own limitations due to their low sensitivity, incomplete
removal, high energy requirements, and production of toxic
sludge.”® Hydro/organogel-based soft materials®®*>* offer an
appealing alternative for the removal of dyes from contaminated
water, due to their high water permeability, large surface area for

various non-covalent
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adsorption and simplicity of use, along with their reusability and
good biodegradability.

The supramolecular assembly of bioconjugates appended to
optoelectronically active m-conjugated chromophores in
organic solvents has already been reported.”** Hybrid mate-
rials using graphene and its derivatives with inorganic/
polymeric materials are highly conducting and have been
used in interesting applications including renewable energy
conversion/storage devices, supercapacitors, electroresponsive
systems, electrocatalysis, optoelectronic devices, electromag-
netic interference shielding etc.*>®® In a number of studies,
graphene and its derivatives have also been incorporated into
peptide organogels. Peptide-based hybrid materials become
moderately conducting in nature upon insertion of graphene or
its derivates.””**

In this study, four dipeptides, P1-P4, which are rich in
aromatic moieties were synthesized in order to study their self-
assembly and to generate materials with multiple applications.
The building blocks of P1-P4 were chosen so that their self-
assembly would be guided by aromatic and hydrophobic
interactions. The mechanism of self-assembly of P1-P4 was
established using various spectroscopic and microscopic
experiments. Interestingly, all the peptides were capable of
forming gels in a variety of organic solvents and in fuels such as
petrol, diesel and kerosene, and this made them ideal materials
to be used for oil spill recovery. All the organogels studied here
were excellent adsorbents for cationic dyes. RGO was incorpo-
rated into the peptide organogels to generate conducting
biomaterials. Generating environmentally friendly materials
that have multiple applications, using directed self-assembly
methods, is of considerable interest and was the main focus
of our study.

Materials and methods

Materials

All amino acids, 1-Phe, 1-Trp, PABA, 1-Phg, r-HomoPhe, all
solvents, di-t-butyl dicarbonate, N,N'-dicyclohexylcarbodiimide
(DCCQ), sodium hydroxide, 1-hydroxybenzotriazole (HOBt), and
thionyl chloride were purchased from Spectrochem, Merck and
Rankem. CDCl; and DMSO-dg solvents were obtained from
Sigma Aldrich. The dyes crystal violet (CV) and rhodamine B
(RB) were purchased from Spectrochem. Fuels such as kero-
sene, diesel and petrol were obtained from Bharat Petroleum
Gas Station. Graphite powder was purchased from Asbury
Carbons.

Methods

Synthesis of peptides. All peptides were synthesized by
a racemization-free, fragment condensation technique based
on traditional solution phase methodology. The N-termini of
the amino acids were protected by Boc groups using (Boc),O,
while the C-termini were protected as methyl esters. Peptide
couplings were carried out using DCC and HOBt as coupling
reagents. All compounds were purified by column chromatog-
raphy using silica gel (100-200 mesh size) as the stationary
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phase and hexane/ethyl acetate as the eluent. Finally, dipeptides
were characterized by analytical HPLC (Fig. S1-S471), mass
spectrometry (Fig. S5-S81) and "H NMR spectroscopy (400 MHz
and 600 MHz) (Fig. S9-S127).

Yield: P1, 78%; P2, 80%; P3, 82%; P4, 86%.

All peptides were characterized using HPLC (Fig. S1-S4%),
ESI-MS (Fig. $5-S81) and 'H NMR (Fig. $9-S121).

ESI-MS. ESI-MS of P1. Mass cale. for P1: (M + H) =
438.208 Da; mass obs.: (M + H)" = 438.2092 Da.

ESI-MS of P2. Mass calc. for P2: (M + H)" = 413.208 Da; mass
obs.: (M + H)" = 413.2020 Da.

ESI-MS of P3. Mass calc. for P3: (M + H)" = 385.178 Da; mass
obs.: (M + H)" = 385.1934 Da.

ESI-MS of P4. Mass calc. for P4: (M + H)" = 399.188 Da; mass
obs.: (M + H)" = 399.1927 Da.

'H NMR. P1 (Fig. S91): "H NMR (400 MHz, DMSO-dg) 6 10.82
(s, 1H, NH of indole ring), 10.40 (s, 1H, NH of backbone), 7.92
(d, J = 8.5 Hz, 2H, aromatic ring Hs), 7.75 (d, J = 8.6 Hz, 2H,
aromatic ring Hs), 7.65 (d, J = 7.9 Hz, 1H, aromatic ring H), 7.32
(d,J = 8.1 Hz, 1H, NH of Boc group), 7.18 (s, 1H, H of aromatic
ring), 7.05 (t, J = 7.7 Hz, 2H, aromatic ring Hs), 6.97 (t, J =
7.4 Hz, 1H, H of aromatic ring), 4.39 (d, J = 6.7 Hz, 1H, H of
alpha -CH), 3.82 (s, 3H, Hs of -CHj; group), 3.12 (dd, J = 14.6,
5.3 Hz, 1H, H of beta -CH,), 3.00 (dd, J = 14.5, 9.0 Hz, 1H, H of
beta -CH,), 1.33 (s, 9H, Hs of Boc group).

P2 (Fig. S107): "H NMR (600 MHz, DMSO-d,) 6 10.36 (s, 1H,
NH of backbone), 7.93-7.89 (m, 2H, Hs of aromatic ring), 7.74
(d,J = 8.8 Hz, 2H, Hs of aromatic ring), 7.32 (d,J = 7.6 Hz, 1H,
NH of Boc group), 7.27 (t, J = 7.5 Hz, 2H, Hs of aromatic ring),
7.24-7.19 (m, 2H, Hs of aromatic ring), 7.19-7.15 (m, 1H, H of
aromatic ring), 4.10 (ddd, J = 9.5, 7.5, 4.7 Hz, 1H, H of alpha
-CH group), 3.82 (s, 3H, Hs of -CH; group), 2.71 (ddd, J = 13.3,
10.8, 5.0 Hz, 1H, H of beta -CH, group), 2.58 (ddd,J = 13.5, 10.8,
5.9 Hz, 1H, H of beta CH,), 1.97-1.83 (m, 2H, Hs of gamma
-CH, group), 1.40 (s, 9H, Hs of Boc group).

P3 (Fig. S11+): "H NMR (400 MHz, DMSO-dg) 6 10.57 (s, 1H, H
of backbone NH), 7.93-7.88 (m, 2H, Hs of aromatic ring), 7.74-
7.68 (m, 2H, Hs of aromatic ring), 7.59 (d, J = 8.1 Hz, 1H, NH of
Boc group), 7.52-7.47 (m, 2H, Hs of aromatic ring), 7.38-7.27
(m, 3H, Hs of aromatic ring), 5.36 (d,J = 8.1 Hz, 1H, H of alpha
-CH), 3.81 (s, 3H, Hs of -CH3), 1.39 (s, 9H, Hs of Boc group).

P4 (Fig. S127): "H NMR (400 MHz, DMSO-d,) 6 10.39 (s, 1H,
NH of backbone), 7.96-7.90 (m, 2H, Hs of aromatic ring), 7.77-
7.69 (m, 2H, Hs of aromatic ring), 7.29 (dt,J = 14.8, 7.5 Hz, 4H,
Hs of aromatic ring and NH of Boc group), 7.20 (d, J = 7.7 Hz,
2H, Hs of aromatic ring), 4.44-4.16 (m, 1H, H of alpha -CH),
3.82 (s, 3H, Hs of -CH; group), 2.99 (dd, J = 13.7, 4.7 Hz, 1H, H
of beta -CH,), 2.84 (dd, J = 13.7, 10.1 Hz, 1H, H of beta ~CH,),
1.32 (s, 9H, Hs of Boc group).

Gelation. In order to check the ability of P1-P4 to form gels
in different solvents, weighed amount of the purified
compounds (P1-P4) were taken in micro centrifuge tubes and
500 pL of different solvents were added to them. The samples
were heated in a heating block at temperatures ranging from
60-100 °C and then they were subsequently cooled to room
temperature. Gels were formed within 10-15 minutes that was
stable to inversion of the micro centrifuge tube.

RSC Adv, 2020, 10, 5220-5233 | 5221
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To make the RGO incorporated P1 organogel (RGO-P1), the
freshly prepared RGO (1 mg, 0.2 wt%) was added to 500 pL 1,2-
DCB solution of peptide P1 at its MGC. The mixture was soni-
cated until a homogeneous suspension of RGO in the peptide
was obtained. This was further heated at 100 °C for 15 min,
followed by vortexing for 10 s. Upon cooling the mixture, a black
colored organogel was formed within a further 5-10 min.
Hybrid organogels were formed by varying the amount of RGO.

Determination of the gel-to-sol transition temperature. The
gel-to-sol transition temperatures (T,) of the organogels from
single peptides and the RGO-peptide hybrid organogel were
determined by placing the vials containing the gels in an oil
bath and increasing the temperature of the bath at a rate of
1 °C min~". The temperature was monitored using a thermom-
eter. The T value was defined as the temperature at which the
gel melted and started to flow.

Phase selective gelation. Peptides P1-P4 at their MGC were
added to mixtures of 500 pL each of organic and aqueous
solvents. The mixture was vortexed for 2 minutes to yield
a homogeneous suspension, heated at 60-100 °C and subse-
quently cooled. Gels were selectively formed from the organic
solvents within 10-15 min.

Rheology. The viscoelastic properties of the self-assembled
and RGO incorporated hybrid organogels were determined by
rheology studies using an Anton Paar MCR102 Rheometer
equipped with a 20 mm parallel-plate measuring system at
25 °C. 1.0 w/v% pristine organogels of P1-P4 in 1,2-DCB and
1 wt% RGO incorporated in RGO-P1 were used for the study. A
strain sweep test was performed over a range from 0.1-100%
strain at a fixed oscillating frequency of 1 rad s~ . Furthermore,
the mechanical strength of the organogels was determined from
the oscillatory test, i.e. the frequency sweep (with the frequency
ranging from 1-100), and this was carried out under a fixed
strain. Rheological experiments measure two parameters:
storage modulus (G') and loss modulus (G”). A defining measure
of the gelation process is obtaining a higher value of G’ than G”,
which are essentially independent of frequency.

FESEM. The field emission scanning electron microscope
(FESEM) images reported in this study were obtained on an
FESEM Sigma Zeiss microscope. A drop of the solution of P1-P4
in 1,2-DCB was cast on a silicon wafer and was allowed to dry for
a few hours under vacuum before imaging. To study the
morphology of the pristine organogels P1-P4 and the hybrid gel
RGO-P1, small pieces of the organogel were cast on the silicon
wafer and allowed to dry under vacuum before imaging.

FT-IR. Fourier-transform infrared (FT-IR) spectroscopy
measurements were recorded on a Spectrum Two PerkinElmer
FT-IR Instrument using KBr pellets. Measurements were per-
formed on both powdered samples and on xerogels (obtained
from organogels in 1,2-DCB) for P1-P4. Lyophilized peptides
that were obtained post-purification were used as powdered
samples. Measurements were also performed on xerogels of P1
(obtained from the organogel in kerosene) and RGO-P1 (ob-
tained from the organogel in 1,2-DCB). The xerogels were
prepared by keeping the organogels in a desiccator under
vacuum conditions. After 3-4 days it visibly became a white, dry
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and solid mass. This solid mass was used for making KBr pellets
in the FT-IR analysis.

NMR. Nuclear magnetic resonance (NMR) experiments were
performed on a 600 MHz and a 400 MHz Bruker NMR spec-
trometer. "H NMR experiments were performed in DMSO-d, for
the routine characterization of the molecule. Concentration
dependent 'H NMR (5 mM, 6.86 mM (MGC), 9 mM and 13 mM
for P1; 2 mM, 3 mM, 4.8 mM (MGC) and 7 mM for P2) was
recorded for the peptides P1 and P2 in CDCl; at ambient
temperature. DMSO titrations of P1 and P2 were performed by
the addition of increasing concentrations (0.5% to 10%) of
DMSO-de in CDCl; at ambient temperature.

Fluorescence. To gain insight into the role of aromatic -7
stacking in the self-assembly of P1, a concentration dependent
fluorescence experiment was performed by monitoring the
intrinsic fluorescence of the amino acid Trp on a Fluoromax-4
spectrophotometer. Samples of different concentrations of P1
were prepared in THF and their fluorescence emission was
monitored, keeping the fluorescence excitation wavelength
fixed at 280 nm.

PXRD. Wide angle X-ray diffraction analysis was carried out
on a Bruker D2 Phaser X-ray diffractometer (Cu-Ka radiation, A
= 1.5406 A) and using a Rigaku Smartlab X-ray diffractometer
(Cu-Ko radiation, 2 = 1.540 A) for both the powdered samples
(P1-P4) (as obtained post lyophilization) and for the xerogels
obtained from drying the organogels (described above) of (a)
individual peptides (P1-P4) grown from 1,2-DCB, (b) P1 in
kerosene and (c) the RGO-P1 hybrid organogel obtained from
1,2-DCB. Powder X-ray diffraction (PXRD) measurements were
carried out on the GO and RGO synthesized for characterization
of the materials.

Crystallization and X-ray crystallography. Single crystals
were obtained from peptides P2 and P4 in MeOH-H,O solvent
systems. Intensity data was collected with Mo-Ka radiation (A =
0.71073 A) by a Bruker APEX-2 CCD diffractometer. Data was
processed using the Bruker SAINT package. The structure
solution and refinement were performed by SHELX2016.

FETEM and EDX analysis. The synthesized GO and RGO
were characterized using field emission transmission electron
microscopy (FETEM). The samples were prepared by casting the
suspensions containing GO and RGO on the TEM grid and
letting them dry for a couple of days under vacuum. FETEM was
performed using a JEOL (JEM-2100F) transmission electron
microscope with an operating voltage of 200 kV. Energy-
dispersive X-ray (EDX) spectroscopic analysis was performed
to determine the percentages of carbon and oxygen in the GO
and RGO samples.

Raman analysis. Raman analysis of GO and RGO was carried
out using a laser micro-Raman (Horiba Jobin Yvon LabRam HR)
with 514 nm laser excitation.

Dye absorption studies. An aqueous solution of dye was
added to the preformed gels obtained from the self-assembly of
the individual peptides P1-P4, and this was allowed to stand for
24 hours at RT, after which the amount of unabsorbed dye in
the supernatant was checked by monitoring the UV of the
supernatant aqueous solution and calculating the concentra-
tion from a standard curve of the dye. The amount of dye loaded

This journal is © The Royal Society of Chemistry 2020
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in the gel and the dye loading efficiency were then calculated as
follows:

Dye loaded = initial dye — unabsorbed dye,

loading efficiency = (dye loaded/initial dye) x 100

Recyclability of the organogels for dye absorption. To the dye
absorbed organogels, diethyl ether was added and left for 24
hours. The dye was released into the ether medium and the gel
became colorless again. The ether layer was removed and after
another round of ether washing, the gel was reused for the
second cycle of dye absorption studies. Such studies were
carried out for 3 subsequent cycles and the efficiency of the dye
absorption was estimated in each cycle.

Conductivity determination of the RGO-peptide hybrid
organogels. Two copper wires were inserted into the RGO-P1
(with different amounts of RGO) hybrid organogel and were
connected to the sourcemeter (Keithley 2450 model). A potential
of —1 to +1 was applied, and the conductivity measurements
(i.e. current-voltage (I-V) characteristics) were recorded.

Results and discussion

We synthesized four dipeptides, Boc-Trp-PABA-OMe (P1), Boc-
homoPhe-PABA-OMe (P2), Boc-Phg-PABA-OMe (P3) and Boc-
Phe-PABA-OMe (P4) (Fig. 1), using a standard solution based
peptide synthesis strategy, purified them using column chro-
matography and characterized them using analytical HPLC, 'H
NMR and ESI-MS (Fig. S1-S127). All four dipeptides were
terminally protected and contained an aromatic delta amino
acid residue, PABA. The second amino acid residue (Trp, Homo-
Phe, Phg or Phe) was aromatic in nature. The design of the

Heating followed
by cooling

Heat

Fig.1
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building blocks intended to facilitate self-assembly using
aromatic interactions and hydrophobic interactions. Homologs
of Phe, namely Phg and Homo-Phe, were used to understand
the role of the length of the side chain on the assembly of the
peptides.

All of the dipeptides readily formed phase selective, ther-
moreversible gels in various organic solvents such as chloro-
form, THF, 1,2-dichlorobenzene, etc. (Fig. 1 and Table S1t) and
in fuels such as kerosene, diesel and petrol, upon heating and
subsequent cooling. The minimum gelation concentration of
the peptides depended on the solvents, but it was generally
between 0.2-0.4 w/v% (Table S17). The thermal stability of the
peptides was studied from the T value, which was in the range
of 30-80 °C. As the gels were translucent and were most ther-
mostable in 1,2-DCB, further characterization of the organogels
was carried out in this solvent.

The self-assembled morphologies of P1-P4 in 1,2-DCB in
both solution and gel states were studied using Field Emission
Scanning Microscopy (FESEM) (Fig. 2 and S13t). It was clear
that the morphology of P1 in solution (Fig. S131) and in the gel
state (Fig. 2) were different. The morphology of P1 was nano
fibrous in the solution state, while it appeared as a densely
packed continuous matrix in the gel state. The morphologies of
the peptides P2 and P3 in solution and in the gel state were the
same, but with slight variations. Peptide P4 formed a fibrous
entangled morphology both in solution and in the gel state,
with a denser mesh in the latter. The subtle differences in the
morphologies of P1-P4 can be attributed to the varying chains
of the amino acids present in them.

Rheology

The mechanical strength and the stability of the organogels
derived from self-assembly of the individual peptides were

Heating followed

by cooling
—p
Phase selective

gelation

(@) Chemical structures of LMWG P1-P4, (b) gels formed in 1,2-DCB by P1-P4 (c) thermoreversibility of the organogel formed by P1in 1,2-

DCB and (d) phase selective gelation of P1in 1,2-DCB in the presence of water.
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Fig. 2 FESEM images of the organogels obtained in 1,2-DCB for (a) P1,

studied by rheology. The storage modulus (G') and the loss
modulus (G") were measured as functions of different param-
eters such as angular frequency and the strain sweep. For this
study, gels were formed from P1-P4 in 1,2-DCB at 1.0% w/v. In
the angular frequency sweep experiment that was performed at
a constant strain of 0.1% at 25 °C, for all four organogels, the G’
value was found to dominate over the G” value, until about 100
rad s~ ' (Fig. 3a and S14at). In addition, G’ and G” were found to
be independent of angular frequency in the region of 1-100 rad

a1o°

) . G'

G“

" []
/\10~ u
g g ® H = = = = = 2
o
6910’-

10°

o1 1 10 100

Angular Frequency(rad/s)

(b) P2, (c) P3 and (d) P4.

s, indicating the formation of stable organogels. The storage
moduli of all the organogels were of the order of =10" Pa in the
frequency sweep experiment, indicating considerable mechan-
ical strength of all the organogels. In the strain sweep experi-
ment, where the storage moduli (G') and the loss moduli (G”) for
the four organogels were plotted as a function of % strain (0.1-
100%) (Fig. 3b and S14b¥), it was found that G’ was higher than
G"(of the order of 10" Pa) until a particular strain (linear
viscoelastic region (LVR), ¥ = 0.1% for P1-P4).

b)
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Fig. 3 Rheology of the P1 xerogel. (a) Frequency dependence and (b) strain dependence of the dynamic storage modulus (G') and the loss

modulus (G") of the organogel from P1in 1,2-DCB at 2% w/v.
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Fig. 4
powdered (black) and xerogel (red) states.

Non-covalent interactions in promoting self-assembly

The peptides were designed to be hydrophobic and rich in
aromatic moieties. Thus, aromatic pi-pi interactions and
hydrophobic interactions were expected to be the key non-
covalent forces driving self-assembly. Peptide backbones are
rich in hydrogen bond donor and acceptor groups and hence
hydrogen bonding might be another important factor aiding
self-assembly. The following experiments were performed to
identify the key interactions driving the assembly process.

Fluorescence studies

The intrinsic fluorescence of the tryptophan residue was used to
study the role of aromatic -7 stacking interactions in the self-
assembly of peptide P1. Fig. 4a shows the fluorescence emission
spectra of P1 in THF at various concentrations (0.1-7 mM). The
emission maxima of tryptophan at 325 nm was steadily
quenched upon increasing the concentration of the peptide.
This could be attributed to the stacking of the tryptophan
moieties with progressive self-assembly upon increasing the
concentration of the peptide. A prominent excimer peak was
observed at 455 nm, and this was quenched upon increasing the
concentration of the peptide. Usually, increasing the peptide
concentration leads to more excimer formation, which is
accompanied by an increase in the intensity of the excimer
fluorescence peak. P1 contains two types of aromatic moieties,
the indole ring from Trp and the aromatic backbone of the
PABA amino acid. If the self-assembly of P1 leads to stacking of
these two different moieties, then an exciplex is formed instead
of an excimer. The fluorescence intensity for the exciplex may be
quenched with the increase in the concentration of the exci-
plex.*** Thus, this experiment clearly proves that in the case of
P1, aromatic - stacking interactions play an important role
and suggests that stacking occurs between the Trp side chains
and the aromatic ring of PABA.

As peptides P2-P4 are structurally very similar to P1, it can be
assumed that aromatic stacking also plays an important role in
their self-assembly.

This journal is © The Royal Society of Chemistry 2020
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(a) Concentration dependent tryptophan fluorescence spectra for P1in THF (A, at 280 nm) and (b) superimposed FTIR spectra of P1in the

FT-IR

Fig. 4b shows the superposition of the FT-IR spectra recorded for
the powder and xerogel samples in 1,2-DCB for P1. There are two
distinct peaks observed at 3414 and 3346 cm™ " in the powdered
form of P1 for non-hydrogen bonded and hydrogen bonded NHs,
respectively, and these shift to 3401 and 3324 cm ™', respectively,
in the xerogel, indicating increased hydrogen bonding in the
xerogel state. However, the presence of two peaks indicates both
the existence of hydrogen bonded and non-hydrogen bonded
NHs. The CO stretching frequency shifts from 1691 cm™* in the
powdered form to 1653 cm ™" in the xerogel form, suggesting that
the backbone conformation of the P1 is not beta sheet-like. In the
case of P2-P4 (Fig. 5a and S157), a broad peak is observed in the
NH stretching region at around 3420-3430 cm ™" for the xerogel,
indicating the presence of non-hydrogen bonded backbone NHs.
The lack of any peak at around 3200 cm ™" suggests the absence of
hydrogen bonded amide protons in these systems in the self-
assembled state. The amide I peaks in P2-P4 do not indicate
a typical B-sheet type of conformation. The presence of the
hydrogen bonding status of the amide protons was further
studied using NMR spectroscopy.

NMR

The role of intermolecular hydrogen bonds in driving self-
assembly was probed by monitoring the NH chemical shifts of
P1 and P2 in CDCI; at concentrations below, above and at their
minimum gelation concentration (Fig. S16a and bt). For both
peptides, none of the NH protons showed any change in their
chemical shifts over the entire concentration range, indicating
that there was no change in the hydrogen bonded state of the
backbone amide protons over the concentration range in which
the study was performed. Furthermore, in order to understand
the hydrogen bonded state of the amide protons, DMSO titra-
tion experiments of P1 and P2 were performed (Fig. S171 and
5b). For P1, it was seen that the NH of tryptophan did not show
any change in the chemical shift value, suggesting it to be
hydrogen bonded, while the NH of the PABA residue and the
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Fig. 5 (a) Superimposed FT-IR spectra of P2 in powder (black) and xerogel (red) states. (b) Stacked NH region of the 'H NMR spectra obtained
upon addition of increasing amounts of DMSO-dg to the CDClz solution of P2.

indole NH showed considerable changes in their chemical shift
values, suggesting that they were solvent exposed or non-
hydrogen bonded. This corroborates the observations from
FT-IR experiments of P1 in the xerogel state, where there was the
presence of both hydrogen bonded, as well as non-hydrogen
bonded, NHs. Aromatic protons show a striking upfield shift
upon the addition of DMSO-d, to the CDCI; solution of P1. The
addition of increasing amounts of DMSO-d¢ disrupts the self-
assembly, thus changing the electronic environment of the
aromatic protons, which become shielded. This is an indirect
proof of the fact that stacking of aromatic moieties plays an
important role in the self-assembly of P1. In the case of P2, NHs
of both the amino acid residues were solvent exposed or were
non-hydrogen bonded, supporting the FT-IR data where only
a broad peak corresponding to non-hydrogen bonded NHs was
observed.

Thus, in summary, the hydrogen bonding pattern in P1 is
slightly different from that in P2-P4. Hydrogen bonding does
not seem to play a crucial role in the self-assembly process of
P2-P4, unlike it does in P1.

PXRD

Information on the molecular packing of peptides P1-P4 in the
gel state was obtained upon performing PXRD experiments
(Fig. S187). The PXRD pattern for the P1 xerogel is ordered,
unlike that for its powdered form (Fig. S191). The wide angle
PXRD patterns for the P1-P4 xerogels showed similar periodic
diffraction patterns, indicating the presence of a similar
ordered arrangement in all the xerogels. In the peptide xerogels
of P1-P4, peaks were observed at d values of 6.25 A (20 = 14.12),

5226 | RSC Adv, 2020, 10, 5220-5233

5.19 A (20 = 17.04), 4.75 A (20 = 18.64) and 4.10 A (26 = 21.60)
(Table S27). The ideal centroid to centroid distance in the -7
stacked aromatic systems is about 4 A. The distance of 4.20 A
that was present in all the xerogels may be attributed to the
distance in between the aromatic moieties of the gelator
molecules present in the system. This again indicates that
aromatic pi-pi interactions are crucial for self-assembly, and
that they are present in all the xerogel systems. The peak at
around 4 A is absent in the PXRD pattern of the powdered
samples of P1, P3 and P4, indicating the lack of aromatic pi-pi
interactions in the powdered form of the peptides.

Crystal structures of P2 and P4

The structures of peptides P2 and P4 were elucidated from the
single crystal X-ray analysis. Crystals were grown from the
MeOH-H,0O system by slow evaporation of solvent at room
temperature (Table S37). The backbone of both peptides P2 and
P4 are kinked at the Ca carbon of the alpha amino acid residue
(Fig. 6, S20 and Table S41). There are no intramolecular
hydrogen bonds present in either of the peptides. We could not
obtain crystals for peptides P1 or P3 but, as the backbone of all
the molecules is the same, we can assume that a similar back-
bone conformation is also present in P1 and P3. P2 and P4 do
not have a beta sheet-like conformation, and this explains the
absence of any characteristic peak in the amide I region in the
FTIR spectra of the xerogels. Fig. S21 and S22} show the packing
in crystals of P2 and P4, respectively. The packing in both the
systems is fairly similar. For both the peptides, pairs of mole-
cules pack together and such pairs stack to form column-like
structures. In the case of P2, Boc groups of the two individual

This journal is © The Royal Society of Chemistry 2020
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Fig. 6 An ORTEP diagram for peptides (a) P2 and (b) P4, with an ellipsoid of 50% probability, as obtained in the crystals grown from the slow

evaporation of MeOH-H,O.

molecules in a pair face each other. The aromatic rings of PABA
come close together, while the aromatic groups of Homo-Phe
stick out in opposite directions. In P4, the packing of a pair of
molecules is a bit different, with the Boc groups of one molecule
pointing away from the other and the Phe side chain of one
molecule stacking with the phenyl ring in the backbone of PABA
of the other molecule. In both P2 and P4, pairs of molecules
self-assemble to form columnar structures, primarily through
aromatic stacking interactions, hydrophobic interactions and
weak hydrogen bonding interactions (C=O---H-N bond
distance of about 2.2 A, Table S51).

Aromatic pi- pi stacking

-
—
[ |
A
[
|
| =
P1-P4 B
| =
O Boc - -
PABA
=
Trp/Phe/ Phg/
L Homophe |

Possible arrangement of
two molecules

Fig. 7 Mechanism of the self-assembly of P1-P4.

This journal is © The Royal Society of Chemistry 2020

Mechanism of self-assembly

Fig. 7 summarizes the mechanism of self-assembly of LMWG
P1-P4. The molecules assemble primarily through aromatic pi-
pi stacking and hydrophobic interactions. Pi-pi stacking might
occur in between the same or different aromatic moieties.
Although all the molecules contain ample hydrogen bond
donors and acceptors in the backbone, there seems to be an
absence of hydrogen bonding in the self-assembled system, as
evidenced from the FT-IR and NMR studies. While P2-P4
completely lack hydrogen bonding, P1 contains both hydrogen

Aromatic pi- pi stacking

Aromatic pi- pi stacking Hydrophobic |nteracf|ons

Thick nanofibers from assembly
of thin nanofibres

Columnlike packing
Thin Nanofibres
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bonded and non-hydrogen bonded NHs. In the crystals of P2
and P4, weak hydrogen bonds (2.2 A) are present, which help
with crystal packing. A closer approach of the molecules to yield
stronger hydrogen bonding might be absent in the crystals to
minimize associated unfavorable van der Waals interactions. In
the supramolecular packing arrangement in the organogels, the
presence of solvent molecules further weakens the hydrogen
bonds to the limit of non-existence. Thus, it is clear that the
mere presence of hydrogen bonding groups does not ensure
hydrogen bonding to be one of the driving forces in the self-
assembly of the system. Instead, the assembly of molecules
exploits only those parameters that are sufficient, to give rise to
a thermodynamically favored system. In this case, the aromatic
pi-pi stacking interactions and the hydrophobic interactions
were sufficient enough to create and sustain thermodynamically
favorable self-assembly. There might be subtle differences in
the self-assembly of the molecules of P1-P4, depending on the
side chains of the first amino acid residue. However, the global
arrangement of the molecules is similar, as evidenced from the
PXRD experiments. The backbone conformation of the peptides
is kinked at the Ca carbon atom, preventing the formation of
beta sheets, as is evidenced by the FT-IR studies. The molecules
stack on top of each other, initiating unidirectional self-
assembly, giving rise to column like structures with fibrous
morphology. Many of these thin fibers assemble together due to
favorable hydrophobic interactions, forming thicker fibers that
are seen in the FESEM experiments.

Careful observation indicates that P1-P4 form gels in several
less polar organic solvents such as in toluene, chloroform,
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dichlorobenzene etc., in contrast to more polar organic solvents
such as ethanol, DMSO etc. This seems to be logical, as the non-
polar solvents are better accommodated in the entangled
network formed by the hydrophobic peptides P1-P4. As the
solvents are non-polar and there is no evidence of hydrogen
bonding obtained from either FTIR or NMR, it can be concluded
that the only interaction of the peptides with the solvents is of
hydrophobic origin.

0Oil spill recovery

Peptides P1-P4 phase selectively formed gels in fuels such as
kerosene, petrol and diesel in the presence of acidic, basic and
saline aqueous media upon being heated and subsequently
cooled (Fig. 8, S23b and Table S671). The gels had a fibrous
morphology, as seen from FESEM results (Fig. 8b) and they were
mechanically robust (Fig. 8c). In the frequency sweep experi-
ment, the G’ value was greater than the G” value throughout the
entire range of the experiment. G’ had a value in the order of 10*
to 10°, and this suggested that the gels were robust in nature
(Fig. 8c). The backbone conformation of the peptide in the
xerogel state was probed using FT-IR (Fig. 8d). Although the
amide I peak in the xerogel of P1 in kerosene at 1636 cm™ ' was
in the antiparallel beta sheet region, the observation of the peak
at 3445 cm ! indicated the presence of non-hydrogen bonded
amide protons in the system, and this counters the presence of
the beta sheet-like conformation. PXRD of the P1 xerogel in
kerosene showed a similar peak pattern and hence interplanar
distances as observed for the xerogels of P1 obtained from other
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(a) Gels formed by P1in kerosene, diesel and petrol, (b) FESEM image of the P1 organogel in kerosene, (c) frequency dependence of the

dynamic storage modulus (G’) and the loss modulus (G”) of the organogel from P1in kerosene at 1% w/v. (d) FTIR spectrum of the xerogel of P1in

kerosene.
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Fig. 9 Dye absorption by the organogels P1-P4 in 1,2-DCB. A bar diagram representing the efficiency of (a) the absorption of cationic dyes CV
and RB by organogels P1-P4, and (b) CV absorption in the subsequent cycles by the organogels from P1.

organic solvents (Fig. S23at). This indicated identical arrange-
ment of the molecules in both cases. Summarizing all of the
above, the mode of self-assembly of P1 in kerosene seems to be
identical to that in other organic solvents. About 70% of the
kerosene could be easily recovered upon vacuum distillation of
the P1 organogel in kerosene. Facile recovery of the fuel in
addition to the gelation ability of the peptides in the presence of
variable pH and salt conditions renders the peptides potential
candidates for addressing oil spill recovery.

Dye absorption

The presence of organic dye pollutants in water bodies is one of
the major concerns for modern civilization. There have been
previous reports in the literature on peptide-based dye
absorbing materials.”*** The organogels obtained from P1-P4
in the present study were checked for their dye absorption
abilities. As the peptides were rich in aromatic moieties and
hence rich in electrons, they might be good candidates for the
absorption of cationic dyes (Fig. S24 and S25%). Most of the
organogels showed high efficiency (=90%) of absorption of the
representative cationic dyes CV and RB (Fig. 9a and Table S77).
Organogel P4 showed relatively less efficiency in the absorption
of RB.

Reusability of the organogel for dye absorption

For commercial use as dye absorbents in the purification of
water, organogels should be reusable. The dyes could be
released in diethyl ether medium over 24 hours and the original
organogel recovered. The organogels from P1-P4 were tested for
three consecutive cycles. Fig. 9b indicates the decreasing
loading capacity of CV by the P1 organogel in three subsequent
cycles.

RGO incorporated organogels

In order to fabricate conducting organogels, we incorporated
RGO into organogels from P1-P4. Reduced graphene oxide is

This journal is © The Royal Society of Chemistry 2020

conducting in nature, unlike graphene oxide. As the peptides
P1-P4 were rich in aromatic amino acid residues, the incorpo-
ration of RGO into the gel was anticipated to be facilitated by
aromatic pi-pi stacking interactions. All the peptides formed
organogels in the presence of RGO at their MGC in 1,2-DCB
(Fig. 10a). The RGO containing peptide organogels were ther-
moreversible in nature. The RGO doped organogels were ther-
mostable in nature and their Ty values were in the same range
as those of the native gels. Different amounts of RGO were
incorporated into the P1 organogel. In the present study, we
incorporated a maximum of 1.2. wt% of RGO into the hybrid
gels without destroying the gelation ability of the peptide gela-
tor molecules. Attempts to load higher percentages of RGO in
these organogels led to the precipitation of RGO and the
formation of inhomogeneous material.

To probe the morphology, FESEM was performed on the P1-
RGO organogel. Fig. 10b shows the presence of both the RGO
nanosheets and the peptide fibers in the hybrid RGO-P1 orga-
nogels containing 1 wt% of RGO. The RGO nanosheets are
clearly visible with the peptide fibrous network dispersed on its
surface, indicating good interaction in between the components
of the hybrid organogel system. As the peptides are hydrophobic
and contain a considerable amount of aromatic moieties,
a good interaction with the RGO, rich in aromatic components,
might be anticipated in the hybrid organogel.

To understand the backbone conformation of the peptide
molecules in the hybrid organogel RGO-P1, FTIR was performed
on the xerogel containing 1 wt% RGO (Fig. S26at). The NH
stretching frequency was observed at 3421 cm ™", indicating the
presence of non-hydrogen bonded NHs in the hybrid xerogel,
much like in the scenario of the pristine xerogels made from
peptides alone. The amide I stretching peak was observed at
1667 cm™ ', similar to that obtained from the xerogel containing
the peptide alone. Thus, the backbone conformation of the
peptides is identical both in the pristine and in the RGO-P1
xerogel. PXRD data obtained from the RGO-P1 xerogel is similar
to that obtained from the pristine xerogel, indicating that the

RSC Adv, 2020, 10, 5220-5233 | 5229
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(a) The reduced graphene oxide incorporated hybrid organogel RGO-P1. (b) An FESEM image of the RGO-P1 hybrid organogel. (c)

Frequency dependence of the dynamic storage modulus (G') and the loss modulus (G”) of the RGO-P1 hybrid organogel (1 wt%) in 1,2-DCB. (d)
|-V curve showing the conductivity of the hybrid organogels upon RGO incorporation.

solid-state arrangement of the molecules is the same in both the
hybrid and in the pristine organogel systems.

The viscoelastic properties of the RGO-P1 xerogel were pro-
bed by rheological studies. Studies were performed on the RGO-
P1 hybrid organogels containing 1 wt% of RGO (Fig. 10c). In the
frequency sweep experiment, the value of G’ was greater than
that of G” throughout the experimental limits, indicating that
the hybrid organogels were “solid-like”, which is similar to the
native gel. Interestingly, the values of G’ and G” increased 10-
fold in the case of RGO-P1 containing 1 wt% of RGO, in
comparison to the native gel. This means that the incorporation
of RGO enhances the rigidity of the gel. This could be attributed
to the favorable interaction between the peptide nanofibers and
the RGO sheets.

In summary, the insertion of RGO into the peptide organogel
did not disrupt the self-assembly pattern that was present in the
peptide-only system. The backbone conformation, solid-state
packing etc. remained unaltered upon insertion of RGO. From
the FESEM images, it was evident that both RGO and the
peptides retained their distinct morphologies. Hence, the mode
of co-assembly may be considered as “orthogonal” in this case.
Favorable aromatic interactions between the peptides and the
RGO might result in increased rigidity in the system.

Graphene is known for its highly conducting nature. The
oxidation of graphite to graphene oxide changes some carbons

5230 | RSC Adv, 2020, 10, 5220-5233

to sp?, thus destroying the conductivity of the material. RGO, on
the other hand, once again becomes conducting in nature,
though it is not as good as graphene. Upon incorporation of
RGO into the organogels, the hybrid materials became con-
ducting in nature. There have been lots of studies in the liter-
ature where hybrid materials containing graphene and its
derivatives have been used for energy conversion and
storage.®®* Most of these hybrid materials are of an inorganic
nature and have high conductivity. There are fewer examples of
peptide-based materials containing graphene and its deriva-
tives.®>?* Although peptide-based hybrid materials are less
conducting in nature compared to their inorganic counterparts,
they are interesting as they might find applications in
biomedical applications/devices, due to their biocompatibility.
Fig. 10d shows the I-V curves obtained from the hybrid orga-
nogel RGO-P1 containing different amounts of RGO. The
conductivity of the RGO-doped organogels increased pro-
portionately to the amount of RGO in them. Homogeneous gels
could not be prepared beyond the insertion of 1.2 w/v% of RGO,
hence they were not considered for conductivity studies.

Conclusions

Small gelator peptides that are rich in aromatic moieties were
designed in this work, and they readily formed phase selective,

This journal is © The Royal Society of Chemistry 2020
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thermoreversible, mechanically robust organogels in a large
variety of organic solvents and in fuels such as kerosene, diesel
and petrol. The phase selective gelation ability of P1-P4 in
petroleum fuels in various pH and saline conditions renders
these organogels as potential materials for controlling marine
oil spills. Aromatic pi-pi stacking and hydrophobic interactions
were the driving forces for the assembly process, while
hydrogen bonding played a trivial role in some systems and was
completely absent in others. All four organogels, obtained from
P1-P4, were excellent dye absorbents and are potential mate-
rials to be used in water purification. RGO was incorporated
into the peptide organogels to yield hybrid organogels that were
conducting in nature. The hybrid organogels were more rigid
than the native peptide gels and their conductivity was
proportional to the RGO content of the organogel. Hence, with
rational design of the structural components in the LMWG, self-
assembly can be directed to yield materials that are economi-
cally viable, recyclable and that can be utilized for multiple
applications.

Abbreviations

DCU Dicyclohexyl urea

Boc Tertiary butyloxycarbonyl

FESEM Field emission scanning electron microscopy
NMR Nuclear magnetic resonance
FTIR Fourier-transform infrared spectroscopy
PXRD Powder X-ray diffraction

LMWG Low molecular weight gelators
1,2 DCB 1,2 Dichlorobenzene

Ccv Crystal violet

RB Rhodamine B

MGC Minimum gelation concentration
Trp Tryptophan

Phe Phenylalanine

Phg Phenyl glycine

Homo-Phe Homo phenylalanine

PABA para aminobenzoic acid

RT Room temperature

THF Tetrahydrofuran

CDCl; Chloroform

DMSO-dg Dimethyl sulfoxide

GO Graphene oxide

RGO Reduced graphene oxide
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