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Avoiding the pull-in instability of a dielectric
elastomer film and the potential for increased
actuation and energy harvesting

Shengyou Yang,a Xuanhe Zhaobc and Pradeep Sharma *ad

Pull-in instability often occurs when a film of a dielectric elastomer

is subjected to an electric field. In this work, we concoct a set of

simple, experimentally implementable, conditions that render the

dielectric elastomer film impervious to pull-in instability for all

practical loading conditions. We show that a uniaxially pre-stretched

film has a significantly large actuation stretch in the direction

perpendicular to the pre-stretch and find that the maximal specific

energy of a dielectric elastomer generator can be increased from

6.3 J g�1 to 8.3 J g�1 by avoiding the pull-in instability.

Soft dielectrics are capable of achieving significantly large defor-
mations and find application in humanlike robots,1,2 stretchable
electronics,3 actuators,4–6 and energy harvesters7–11 among
others.12,13 However, soft dielectrics under applied electric
fields are also vulnerable to various types of electromechanical
instabilities.14–19 Instabilities are often thought to be detrimental
to material and device functionality and often avoided by design.
Recent works have, however, focused on harnessing instabilities
for various applications such as artificial muscles,20,21 dynamic
surface patterning,22,23 giant voltage-triggered deformation,24,25

and energy harvesting.26,27

A commonly used actuator is a dielectric thin film coated
with two compliant electrodes. Upon application of a potential
difference between the two electrodes, the dielectric film thins
down in the thickness direction and expands laterally. When the
thickness decreases to a certain threshold, the film is unable to
sustain the electric field and the so-called pull-in instability
occurs.14–16,26,28 To avoid failure and to enhance the actuation
strain and the harvested electrical energy density, pull-in instability
is often suppressed by using a pre-stress,28 materials that exhibit

load-dependent stiffening29,30 and charge-controlled operation.6,31

Moreover, pull-in instability can also be delayed or eliminated by
pre-stretch.32–34 In this work we analyze how properly chosen (and
experimentally realizable) boundary conditions can be exploited
to avoid or delay pull-in instability. We show that the pull-in
instability can be summarily avoided by a judicious combination
of dead-loads and controlled-displacement boundary conditions
which renders the pertinent Hessian matrix of the equilibrium
state positive-definite under all practical conditions. By prevention
of pull-in instability and through exploitation of the competition
between various pertinent factors such as electromechanical
loading conditions, consideration of buckling, and pre-stretch,
among others, we theoretically highlight a significantly increased
ability for energy harvesting and actuation. However, realizing the
theoretical maximum energy conversion experimentally has still
remained elusive and the reduction of the disparity between
experiments and theoretical predictions appears to be a challeng-
ing task.7–10

Consider an elastic dielectric film with dimensions (L1, L2, L3)
in its undeformed state. Subjected to the voltage F and the dead
load P2 at a prescribed stretch l1, the incompressible film deforms
to a homogeneous state with stretches l1, l2, and l3 = l1

�1l2
�1.

Moreover, the film gains a magnitude of total charge Q that
distributes uniformly on either side of the compliant electrodes.
The homogeneously deformed film is shown in Fig. 1. We remark
that the loading device actually controls the normal displacement
(or the stretch l1) only on the two sides of the film in the X1

direction. Since the deformation is homogeneous under these
circumstances, the entire film exhibits prescribed stretch l1.

The nominal electric field and the nominal electric displace-
ment are defined as Ẽ = F/L3 and D̃ = Q/L1L2, respectively. The
true electric field and the electric displacement are defined as
E = F/(l3L3) and D = l3Q/(L1L2). Furthermore, the nominal and
true stresses from the dead load P2 are denoted, respectively, as
s2 = P2/(L1L3) and s2 = l2P2/(L1L3).

The free energy of the system is28,35

G = L1L2L3W(l1,l2,D̃) � P2l2L2 � FQ. (1)
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We remark that the stretch l1, the dead load P2, and the
voltage F in eqn (1) are prescribed parameters. In contrast to
Yang et al.36 and Dorfmann and Ogden37 the dielectric film in
this work admits only a class of homogeneous deformations.
Thus, the general coordinate l1 has a zero variation dl1 = 0 for
any homogeneous perturbation. When other two generalized
coordinates l2 and D̃ vary by small amounts dl2 and dD̃, the free
energy of the system varies by

dG
L1L2L3

¼ @W

@l2
� s2

� �
dl2 þ

@W

@ ~D
� ~E

� �
d ~D

þ 1

2

@2W

@l22
dl22 þ

1

2

@2W

@ ~D2
d ~D2 þ @2W

@l2@ ~D
dl2d ~D;

(2)

where only the first and second variations are retained and all the
high-order terms are omitted. At equilibrium, the first variation
vanishes, and yields the following equilibrium equations:

s2 ¼
@W

@l2
; ~E ¼ @W

@ ~D
; (3)

where the nominal stress s2 = P2/(L1L3) and the nominal electric
field Ẽ = F/L3 are prescribed parameters. In contrast, the
nominal stress s1 is defined as

s1 ¼
@W

@l1
; (4)

which is no longer prescribed but depends on l2 and D̃ as well
as l1. Indeed, the partial derivative in eqn (4) is to be under-
stood as the partial derivative of W with respect to l1 at the pre-
stretch l1. It is exactly the coefficient of the zero dl1 in the first
variation of the energy. Thus, it has been omitted in the
variation form for simplicity. In equilibrium, from Cauchy’s
stress theorem, s1 in eqn (4) is equal to the stress generated by
the force applied on the left and right surfaces, and the
magnitude of the force is s1L2L3.

From the principle of minimum energy, the stability of
the equilibrium solution requires a positive-definite second
variation in eqn (2) for arbitrary dl2 and dD̃, that is, the
Hessian matrix

H ¼

@2W

@l22
@2W

@l2@ ~D

@2W

@l2@ ~D

@2W

@ ~D2

2
66664

3
77775 (5)

must be positive definite for the equilibrium solution.
Consider an ideal dielectric elastomer with the free energy

function,28,35

W l1; l2; ~D
� �

¼ m
2
l12 þ l22 þ l1�2l2�2 � 3
� �

þ
~D2

2e
l1�2l2�2; (6)

where m is the small-strain shear modulus and e is the permit-
tivity. The first and second terms on the right-hand side of
eqn (6) are the elastic and the dielectric energy. Then the equili-
brium condition [eqn (3)] and the nominal stress s1 in eqn (4)
become

s2 ¼ m l2 � 1þ
~D2

em

� �
l1�2l2�3

� �
; (7a)

~E ¼
~D

e
l1�2l2�2; (7b)

and

s1 ¼ m l1 � 1þ
~D2

em

� �
l1�3l2�2

� �
: (8)

Eqn (7) contains two algebraic equations with two variables
l2 and D̃ and three prescribed parameters l1, s2, and Ẽ. A
quartic equation in terms of l2 can be obtained by eliminating
D̃, such that

(m � l1
2eẼ2)l2

4 � s2l2
3 � ml1

�2 = 0, (9)

which has only one positive real root of l2 if and only if

0 �
~Effiffiffiffiffiffiffi
m=e

p o l1�1; (10)

and the real root of l2 in eqn (9) is a real number between max
{s2(m � l1

2eẼ2)�1, m1/4l1
�1/2(m � l1

2eẼ2)�1/4} and their sum.
Hence the critical nominal electric field is given by

~E�ffiffiffiffiffiffiffi
m=e

p ¼ l1�1 (11)

below which the equilibrium solution can exist. We note that
under the condition [eqn (10)] with prescribed parameters
l1 4 0, s2 Z 0, and Ẽ Z 0, eqn (7) exhibits positive solu-
tions for l2 and D̃. Otherwise, eqn (7) has no solution for
realistic physical situations that admit positive l2 and non-
negative D̃.

Fig. 1 Schematic diagram of a deformed film of a dielectric elastomer.
The film is extended/compressed between two well-lubricated (with rollers),
rigid plates by means of a controlled displacement (or the stretch l1) in the
X1 direction. A dead load P2 is applied in the X2 direction and a voltage F is
applied in the thickness direction of the film that is coated with two
compliant electrodes. The loads deform the film from L1, L2, and L3 to
l1L1, l2L2, and l3L3, as well as induce an electric charge of magnitude Q on
either electrode.
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The electromechanical stability of the electrostatic system
directly relates to the property of the Hessian matrix [eqn (5)]
that, at equilibrium [eqn (7)], is given by

H ¼
m 1þ 3 1þ

~D2

em

� �
l1�2l2�4

� �
�2

~D

e
l1�2l2�3

�2
~D

e
l1�2l2�3

1

e
l1�2l2�2

2
66664

3
77775: (12)

The 1 � 1 principal minors of the Hessian matrix [eqn (12)]
are the diagonal entries H11 4 0 and H22 4 0, and the only
2 � 2 principal minor is the determinant of the Hessian matrix
[eqn (12)], which is always positive, namely

detH ¼ 1

e
l1�4l2�6 4mþ s2l12l23

� �
4 0 (13)

due to the fact that s2 = P2/(L1L3) Z 0. Since all principal minors
are positive, the Hessian matrix H [eqn (12)] is always positive-
definite. A positive-definite Hessian matrix ensures the stability
of the homogeneous deformation in equilibrium, because the
dielectric film in equilibrium is in a state of minimum free-
energy. Thus the pull-in instability never appears in this homo-
geneously deformed system loaded with a prescribed stretch, a
dead load and an electric voltage under the condition [eqn (10)].
We emphasize that the stability is under the condition that the
film is not buckled in the X1 direction—we will return to this
point later in the communication.

To further understand the behavior of the dielectric film
in equilibrium, two special cases are discussed. Case I is a
dielectric film at a prescribed stretch l1 = 1 under an electric
field and several dead loads s2, while case II is a dielectric film
at a zero dead load s2 = 0 under an electric field and several
prescribed stretches l1.

In Fig. 2, we plot the behavior of the dielectric film for case I,
i.e. l1 = 1. Fig. 2(a) shows that the nominal electric field
increases monotonically with the increase of the nominal electric
displacement. The nominal electric field is bounded by eqn (11)
and the critical nominal electric field for the nonexistence of

equilibrium solutions at l1 = 1 is ~E�
ffiffiffiffiffiffiffi
e=m

p
¼ 1. With a constant

nominal electric field but an increase of the dead load s2, the
nominal electric displacement increases in Fig. 2(a), since a dead
load leads to a reduced thickness but a larger area, thus resulting
in a larger capacity (and charge). Fig. 2(b) shows the relation of
the nominal electric displacement and the true electric field
under several dead loads s2.

In Fig. 2(c), the variation of the stretch l2 is plotted. Both the
nominal electric field and the dead load s2 can increase the

stretch l2. At the critical value ~E�
ffiffiffiffiffiffiffi
e=m

p
¼ 1, the stretch l2

increases to infinity and the thickness (l3 = l2
�1) decreases to

zero, which, of course, is impossible in reality since prior to
such a blowup, electric breakdown will ensue due to the large
true electric field or, alternatively, mechanical rupture will take
place. The actuation stretch is defined as l2/l2p, where l2p is the
pre-stretch that exists due to the prescribed stretch l1 and the
dead load s2. At a prescribed stretch l1 = 1, the actuation stretch
l2/l2p under several dead loads s2 is shown in Fig. 2(d).

The true stress s1 = l1s1 shown in Fig. 2(e) is directly related to
electrical buckling and will be analyzed in the following. At a zero
dead load in Fig. 2(e), the true stress is s1/m = 1 � (1 � eẼ2/m)�1/2,
and the nominal electric field induces a compressive state in the
film, i.e. s1 o 0, and the magnitude |s1| increases monotonically
with the increase of the nominal electric field. On the other hand,
at a zero electric field, a dead load s2 expands the film (l2 4 1) and
induces a tensile state i.e. s1/m = 1 � l2

�2 4 0 in Fig. 2(e).
Interestingly, there exists a competition between the electric field
and the dead load due to their opposite effects on the stress s1. At
a low electric field, the dead load makes the dielectric film extend
within the plane. When the electric field increases, the stress s1

gradually decreases from a tensile stress (s1 4 0) to a compressive
one (s1 o 0). Without considering electric breakdown (under a
high true electric field) and rupture by stretch (at a high stretch
l2), the continually increasing |s1| of the compressive stress will
finally make the dielectric film buckle.

Fig. 3 plots the behavior of the dielectric film for case II, i.e.
s2 = 0. We note that eqn (11) gives the limit of the nominal

electric field, for example, ~E�
ffiffiffiffiffiffiffi
e=m

p
¼ 1 for a prescribed stretch

l1 = 1, while it is 0.2 for l1 = 5 in Fig. 3(a), (c) and (e). The
increase of the stretch l1 in Fig. 3(a) increases the film surface
area, leading to higher capacity and gain of additional charge.

Fig. 2 Behavior of the neo-Hookean dielectric film at l1 = 1 under various
loads, s2/m: (a) nominal electric displacement vs. nominal electric field,
(b) nominal electric displacement vs. true electric field, (c) stretch l2 vs.
nominal electric field, (d) actuation stretch l2/l2p vs. nominal electric field,
(e) true stress vs. nominal electric field, and (f) true stress vs. true electric
field.
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In other words, at a prescribed nominal electric field below
~E�

ffiffiffiffiffiffiffi
e=m

p
, a larger stretch l1 corresponds to a higher nominal

electric displacement. Fig. 3(b) shows the corresponding rela-
tion between the true electric field and the nominal electric
displacement.

In Fig. 3(c), the increase of the stretch l1 in the length
direction will make the film decrease its width (or the pre-
stretch l2p at a zero electric field), pre-stretch but an electric
field, on the other hand, will tend to make the film expand
in-plane and exhibit a larger stretch (l2). At s2 = 0, the actuation
stretch l2/l2p under several prescribed stretches l1 is shown in
Fig. 3(d).

The true stress from eqn (7) and (8) at s2 = 0 is obtained as
s1/m = l1s1/m = l1

2 � l1
�1(1 � l1

2eẼ2/m)�1/2. Without the electric
field, the true stress s1/m is l1

2 � l1
�1. When the electric field

increases from zero, for example, at a prescribed stretch l1 4 1
in Fig. 3(e) and (f), the true stress s1 will decrease from a tensile
stress (s1 4 0) to a compressive one (s1 o 0).

It is well-known that a thin film subjected to a lateral
compression is easy to buckle. In our model, the deformation
in the X1 direction is controlled by two well-lubricated plates,
and a compressive stress (s1 o 0) in the film can occur under

some conditions (see Fig. 2(e), f, 3e and f for example). In the
following, we will discuss electric buckling of a dielectric film
subjected to electromechanical loads.

The special case, loss of tension, is of interest because it is
a turning point for the compression–tension behavior of the
dielectric film. The compressive stress can make the film
buckle and should be avoided.5,7,36,37 When the nominal stress
s1 in eqn (8) becomes zero, it is in the so-called state of loss of
tension. From the equilibrium equations [eqn (7)], the nominal
electric field at loss of tension is

~Ecffiffiffiffiffiffiffi
m=e

p ¼ l2�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l1�4l2�2

p
for l12l2 � 1; (14)

where l2 ¼
1

2m
s2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22 þ 4m2l12

p	 

� l1 due to s2 = P2/(L1L3) Z 0.

At the state of loss of tension, if we, for example, continue to
prescribe the stretch l1 and the dead load s2 but increase the
nominal electric field, the stress s1 in eqn (8) will decrease from
zero to negative and the film will be in a state of compression.
Inspired by Euler’s buckling of a long, slender, ideal column,
we analyze here the electrical buckling of a dielectric film.
Euler’s formula for the buckling of a column with two fixed end
supports is

Fc ¼ 4p2EeI e

L1
2

; (15)

where Fc is the critical compressive force, Ee is the effective
elastic modulus, Ie is the area moment of inertia of the cross
section, and L1 is the length of the column. For a film of an
incompressible neo-Hookean dielectric with shear modulus
m under the small-deformation assumption, the effective modu-
lus is Ee = 3m and Ie = L3

3L2/12. Thus the critical compressive
stress fc from eqn (15) is

f c ¼ m�f c ¼ F c

L2L3
¼ mp2

L1=L3ð Þ2
: (16)

It is assumed that the dielectric film begins to buckle when
the magnitude of the compressive stress s1 = l1s1 o 0 in eqn (8)
reaches fc in eqn (16). Together with the equilibrium equations
[eqn (7)], the critical nominal electric field for the electrical
buckling can be expressed as

~Ecffiffiffiffiffiffiffi
m=e

p ¼ l2c�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �f cl1�2 � l1�4l2c�2

q
; (17)

where lc2 ¼
1

2m
s2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22 þ 4m2 l12 þ �f c

� �q	 

and %fc = p2/(L1/L3)2.

Compared with the length (L1) and the width (L2) of the film,
the thickness (L3) is often much smaller. Then the buckling
stress %fc in eqn (16) is very small, for example, %fc o 0.1 for a film
with an aspect ratio L1/L3 4 10. Therefore, the critical nominal
electric field in eqn (17) for buckling is very close to that in
eqn (14) for the loss of tension.

Fig. 4 shows the critical electric fields for the loss of tension
[eqn (14)] and electrical buckling [eqn (17)] in which the aspect
ratio is chosen to be L1/L3 = 10. The difference between the two

Fig. 3 Behavior of a neo-Hookean dielectric film at s2 = 0 under various
stretches l1: (a) nominal electric displacement vs. nominal electric field,
(b) nominal electric displacement vs. true electric field, (c) stretch l2 vs.
nominal electric field, (d) actuation stretch l2/l2p vs. nominal electric field,
(e) true stress vs. nominal electric field, and (f) true stress vs. true electric
field.
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critical nominal electric fields is negligible at a stretch l1 4 1,
while it is minor at a stretch l1 o 1. Moreover, the critical
electric field for the loss of tension is always below that of
electrical buckling. Therefore, there is no electrical buckling
when a loss of tension occurs in the film, but the film will
buckle if the electric field increases.

For each curve in Fig. 4(a), there exists a peak that corre-
sponds to the maximum of the critical nominal electric field. At
that peak, any infinitesimal variation of the stretch l1 will make
the film buckle; however, the decrease of the nominal electric
field will avoid the electrical buckling. On the other hand, if a
point on the buckling curve is on the left-hand side of the peak,
the increase of the stretch l1 will avoid the electrical buckling,
while a point is on the right-hand side of the peak, the electrical
buckling can be avoided by a decrease of the stretch l1. The
corresponding relation between the critical true electric field
and the stretch l1 is shown in Fig. 4(b).

A high actuation strain for an actuator driven by an electric
field is desirable. Without an electric field, the pre-stretch l2p

due to the prescribed stretch l1 and the dead load s2 can be
determined by eqn (7) with Ẽ = 0. The effects of s2 and l1 on the
pre-stretch l2p are shown in Fig. 5(a). The pre-stretch is
l2p = l1

�1/2 at s2 = 0, while it is approximately equal to s2/m at
a high dead load.

Subjected to the electric field, the dielectric film thins down
and expands in the plane. When the electric field increases to
the critical value in eqn (17), the electrical buckling occurs in
the dielectric film with a critical stretch l2

c. The critical actua-
tion stretch is defined as lc

2/l2p. Fig. 5(b) plots the effects of the
stretch l1 and the dead load s2 on the actuation stretch lc

2/l2p.

It shows that when the dielectric film is subjected to a pre-
scribed stretch l1, the actuation stretch in the direction normal
to the prescribed stretch is significantly larger, especially in the
case of a larger prescribed stretch (l1) and at a zero dead load
(s2 = 0). Hence the actuation stretch can be dramatically
increased by a prescribed stretch. A similar observation has
also reported before in the analysis of the electromechanical
instability of a uniaxial pre-stressed dielectric film.28

Inspired by the aforementioned discussion related to the
avoidance of pull-in instability, we now show the possibility of
increasing the capacity of the energy conversion of a dielectric
elastomer generator. It is known that the usual modes of failure
in a dielectric film include electrical breakdown (EB), electro-
mechanical instability (EMI or pull-in instability), loss of tension,
and rupture by stretch. The area of the cycle enclosed by these
four modes of failure is exactly the maximal energy that can be
converted in a dielectric film subjected to equal biaxial in-plane
forces.7 With the same dielectric film but mechanical boundary
conditions suggested in this work, the pull-in instability can be
avoided and then the four modes of failure reduce to three. This
reduction admits the possibility of enhanced energy conversion.
In the following, we will show that not only the maximal energy
of a dielectric elastomer generator but also the specific energy
enclosed by a rectangular in the voltage–charge plane and the
amplification of voltage (ratio of the input voltage to the output
voltage) can be increased significantly.

In a previous work,7 the dielectric film is subjected to equal
biaxial in-plane forces and voltage in the thickness direction,
such that the equal nominal stresses s1 = s2 and the equal
stretches l1 = l2 at equilibrium. It should be noted that there is
no difference between the forms of the equilibrium equations
in the work7 and in this paper, but the difference is the control
parameters. Unlike the equal biaxial in-plane forces,7 this paper
takes a prescribed stretch l1 and a dead load s2 as control para-
meters. Since the equilibrium equations have the same forms,
the equilibrium solutions of a film subjected to equal biaxial in-
plane forces – as discussed by Koh et al.7 – can be achieved by
choosing properly controlled parameters (l1, s2) in this work;
however, the pull-in instability will be avoided. This similarity
makes feasible the direct use of their model in this work for the
illustration of enhanced energy conversion by the proposed
avoidance of the pull-in instability.

To make this communication self-contained, we briefly
review the four modes of failure when subjected to equal
nominal stresses s = s1 = s2 and equal stretches l = l1 = l2 in
equilibrium [eqn (7)]. First, the curve under a zero electric field
(E = 0) in Fig. 6(a) is determined by eqn (7a) with D̃ = 0, while it
is the origin in Fig. 6(b). Next, the electrical breakdown (EB)
curve is governed by eqn (7) with Ẽ = EEBl

�2, where EEB = 3 �
108 V m�1 is the critical true electric field when EB occurs.7,38

Other material parameters used in the numerical calculations
are m = 106 N m�2 and e = 3.54 � 10�11 F m�1 as well as the mass
density r = 1000 kg m�3. Then, the curve of the loss of tension
is the horizontal axis in Fig. 6(a), while it is represented by
eqn (7) with s = 0 in Fig. 6(b). The curve of rupture by stretch in
Fig. 6(a) is the vertical line l = lR while in Fig. 6(b) it is

Fig. 4 Comparison of the loss of tension (dashed lines) and electrical
buckling (solid lines) under several dead loads s2/m. Effects of the stretch l1

on (a) the critical nominal electric field and (b) the critical true electric field.

Fig. 5 Effects of the prescribed stretch l1 and the dead load s2 on (a) the
pre-stretch l2p and (b) the critical actuation stretch lc

2/l2p.
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determined by eqn (7b) with l = lR, where lR r 6 when the film
ruptures when subjected to equal biaxial stretch.15 Here we use
lR = 5. Last, the curve of electromechanical instability (EMI) is
based on eqn (6) and (7) in the work by Koh et al.7

In Fig. 6, the shaded areas enclosed by various modes
of failure (also the E = 0 curve) define the maximal energy of
conversion, that is, the maximal specific energy. In the work by
Koh et al.7 four modes of failure leads to a maximal specific
energy of 6.3 J g�1. In contrast, the EMI (pull-in instability) is
avoided in our proposed scheme and the remaining three
modes of failure admit a maximal specific energy of 8.3 J g�1,
increasing the capacity of the dielectric elastomer generator by
nearly 33%.

The aforementioned maximal-energy cycle is idealized and
may be difficult to realize in practice. The rectangular7 and
triangular39 cycles are often used for energy conversion. We
refer the reader to the Koh et al.7,39 for the detailed circuit
design that pumps electric charge from a low-voltage battery
to a high-voltage battery. A rectangle with vertices 1–2–3–4 is
plotted in Fig. 6(b), where the energy enclosed by the rectangle
is called the specific energy. The electric voltage corresponding
to vertices (1,2) is the input voltage Fin, while the electric voltage
corresponding to vertices (3,4) is the output voltage Fout. The
specific energy and the amplification of voltage for various Fin

are plotted in Fig. 7(a) and (b). Evidently, the avoidance of pull-in
instability can enhance the ability of energy conversion of a
dielectric elastomer generator by increasing the specific energy
and the voltage amplification.

In summary, in this work, we propose the avoidance of the
pull-in instability of a dielectric film by introducing controlled-
displacement boundary conditions, which ensure that the

Hessian matrix is always positive definite in equilibrium
regardless of the values assigned to the prescribed stretch,
the dead load, and the electric field. The limit of the nominal
electric field for the existence of equilibrium solutions is
presented. We also show that the critical electric field for the
loss of tension is slightly below that of electrical buckling and a
uniaxial pre-stretched dielectric film can exhibit a significantly
larger actuation strain in the direction perpendicular to the pre-
stretch. Here we should emphasize that the film needs to be
highly pre-stretched, uniaxially, to avoid loss of tension (or
electrical buckling) when the electric field is high and the dead
load is low. Finally, we find that the maximal specific energy that
can be harvested may be increased from 6.3 J g�1 to 8.3 J g�1 by
avoiding pull-in instability.
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