Facile synthesis of bimetallic-based CoMoO4/MoO2/CoP oxidized/phosphide nanorod arrays electroplated with FeOOH for efficient overall seawater splitting
Abstract
A hierarchical rod-array structure Mo and Co-based oxidized/phosphide electroplated with FeOOH (NF@P-S450@FeOOH) composites on Ni foam (NF) was prepared via facile hydrothermal and electrodeposition methods. The as-synthesized rod-arrays exhibited excellent electrocatalytic performance and favorable stability for the oxygen evolution reaction (OER) under an alkaline atmosphere (overpotential of 240.5 mV under 100 mA cmâ2). After doping P into Mo and Co-based oxidized (S450) nanorods, excellent composites were developed for the hydrogen evolution reaction (HER) with an overpotential of 162.8 mV under 100 mA cmâ2. Thus, an asymmetric setup composed of Mo and Co-based oxidized/phosphide (P-S450) nanorods and P-S450@FeOOH electrodes were constructed for overall seawater splitting, which delivered a potential of 1.828 V at 300 mA cmâ2 in alkaline simulated seawater (1 M KOH + 0.5 M NaCl). This work may provide a new method for overall seawater splitting using the reasonable design and synthesis of non-noble metal composites.
- This article is part of the themed collection: Nanomaterials